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Abstract

INTRODUCTION: Rapid development in the field of the Internet of Things (IoT) and Unmanned Aerial
Vehicles (UAVs) is allowing them to be utilized across multiple sectors like industrial manufacturing,
healthcare, defense, etc. In the agricultural industry, IoT and UAVs are also proving themselves as one of the
most promising technologies. These technologies have opened the door to numerous innovative opportunities
in precision agriculture, particularly in predicting crop yields more accurately and efficiently. Traditional
methods for crop yield prediction were based on manual sampling and statistical models, which proved to be
time-consuming and less accurate.

OBJECTIVES: This paper mainly contributes to the comprehensive study of IoT and UAVs in crop yield
prediction. It highlights how data-driven methods, sensor technologies, and remote sensing enhance decision-
making in precision agriculture.

METHODS: The paper discusses traditional practices for crop yield prediction and their limitations. It
explains the architecture of IoT and its various layers, including a detailed study and comparison of different
IoT sensors, microcontrollers, and communication standards. The paper further focuses on the potential
of UAVs for yield prediction, including details of different types of UAV platforms, control strategies, and
communication standards. Additionally, the paper explains the benefits and limitations of integrating IoT
and UAVs for more accurate crop yield prediction.

RESULTS: The study demonstrated that IoT-enabled monitoring and UAV-based remote sensing improve crop
prediction accuracy.

CONCLUSION: Overall, this paper presents the transformative capability of integrating IoT and UAV in
modernizing the process of crop yield prediction and other precision agriculture practices. As a future scope,
the paper focuses on the use of edge/fog computing, mobile apps, and AI chatbots to enhance the power of
IoT and UAVs in crop yield prediction.
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1. Introduction

By 2050, the world’s population will reach about 10
billion people and food demand will increase by 70%
[1]. To meet this high demand, we need to improve the
rate of food production. Traditional farming practices
are fraught with challenges and are more prone to
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crop loss. One of the greatest challenges humanity
is currently facing includes sustainable production
of food for a growing population. To enhance
crop productivity, we must apply the principles of
precision agriculture. Precision agriculture involves the
implementation of smart agriculture for better yield.

Smart farming involves the use of new technologies
that have evolved through the fourth industrial
revolution, such as Artificial Intelligence, Robotics,
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IoT, and UAVs [2] [3]. The use of these technologies
increases the quantity and quality of production
by utilizing resources to the maximum level and
minimizing the environmental impact. Figure [1] shows
the benefits of smart farming, including production;
reducreducreduceder use; Improved crop quality; Pest
and disease detection; and better sustainability [4].

The Prediction of crop yield is crucial for maintaining
economic and ecological balance, promoting sustain-
able growth. An effective crop yield prediction has
a significant impact on efficient use of resources [5].
Nowadays, the use of remote sensing techniques is ideal
for collecting data to predict crop yield, as it provides
quantitative and timely information [6] [7].

IoT is the emerging technology that allows multiple
devices to connect remotely. It is gaining importance in
almost all sectors, including health, industry, agricul-
ture, and communications, among others. In agricul-
ture, the IoT remotely monitors plants and crops, col-
lecting information using sensors and instruments [8].
The IoT helps monitor crop health and water levels for
irrigation, ultimately leading to improved crop yields.
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Figure 1: Benefits of Smart Farming

UAVs, or Unmanned Aerial Vehicles, are flying devices
without pilots that are now available to the public
at affordable prices. It has a Global Positioning
System (GPS), brushless motors, propellers, and flight
controllers [9]. The use of UAVs is increasing rapidly
in the agricultural sector. It is replacing satellites and
other remote technologies. Unlike satellites and other
aircraft, UAVs fly at lower altitudes, which allows them
to take clear photographs[10].

2. Crop yield Prediction Techniques

Forecasting crop yields is one of the most challenging
tasks for farmers. Since the beginning of humanity,
our ancestors have employed various techniques to
predict the yield of their crops. Those traditional
methods were usually manual and required extensive
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personal experience. Slowly and gradually, with the
advancement of time, many modern technologies have
evolved, which have been proven to be more efficient
[11].

2.1. Traditional Methods

Conventional methods for predicting crops usually
involve the experience and knowledge of farmers. They
studied the local climate of the area, the historical yield
of the crop, and soil conditions to predict the future
yield. They also developed weather-based forecasting,
in which farmers analyze weather parameters such as
rainfall, temperature, and humidity to estimate their
yield. Traditionally, farmers also used various crop
growth models, in which predictions were based on
factors such as the date of planting, crop species,
soil type, weather conditions, and water availability.
Depending on these factors, they made simulations and
predicted the yield.

2.2. Limitations of traditional methods

Traditional crop yield prediction technologies had
numerous drawbacks. They were highly dependent on
data. Primarily, the available datasets were limited to
historical weather records and yields, which may not
accurately represent large-scale factors such as soil
conditions, climate change, or diseases and pests in
crops. Those technologies were not as accurate and
precise as they were based on farmers’ knowledge
and experience, which are subject to biases. Their
knowledge may fail under unpredictable natural
conditions. They also proved to be inaccurate when
applied to large-scale regions[12]. Traditional practices
were not efficient for real-time monitoring of the crop
and its factors, making it challenging to take targeted
measures for crop management.

2.3. Introduction of loT and UAVs as alternative
methods

To overcome the drawbacks of traditional techniques
of crop yield prediction, various modern methods
emerged, which include data analytics, Machine
Learning (ML), Deep Learning (DL), IoT, UAVs, etc.
[13]. These modern technologies were more promising
in terms of accuracy and timely prediction. Of all
modern technologies, the introduction of IoT and
UAVs has revolutionized present farming practices.
IoT involves the use of sensors, actuators, and other
devices in the field to collect real-time data [14].
The collected data are used for analysis and decision-
making regarding crop management, irrigation, and
pest control[15]. The use of UAVs, often referred to
as drones, is also gaining popularity in the field of
agriculture due to their potential for real-time crop
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monitoring[16]. UAVs are equipped with cameras and
sensors that help capture aerial images of crops to
monitor their health, observe crop growth patterns, and
detect diseases and pests[17].

3. Internet of Things (loT) for crop yield prediction

IoT in agriculture involves the use of various embedded
sensors to create a network of interconnected devices
that can collect and share data. IoT enables farmers
to collect data on crop growth, soil conditions, and
environmental factors. The Adoption of IoT devices
for agriculture is increasing rapidly. Currently, the
United States, Germany, and Japan are dominating
other countries in sensor technologies[18]. When
talking about IoT architecture for smart agriculture,
we can divide the architecture into four major layers:
(1) IoT Sensors, (2) Communication Technology, (3)
Database and Server technology, and (4) Users [19]. This
illustration is presented in Figure [2].

3.1. loT sensors

Sensors are small devices that measure various
conditions, such as temperature, light, and motion, and
convert them into digital values. Sensors are required to
make farming "Smart". The yield of any crop depends
significantly on various parameters, including weather
conditions, soil nutrients, and soil moisture. With
the help of multiple sensors, we can easily monitor
and collect data, then analyze it to make informed
predictions for the future. Table [1] represents the
emerging implications of the sensor in the field of crop
yield prediction.

Smart sensors (sensors equipped with chips) are
capable of recording various environmental and soil
parameters with higher accuracy. These sensors are
installed throughout the field and then begin collecting
data regarding soil and crop health. The collected
data are then transferred in real-time to a centralized
platform, where they are processed for further analysis
and the development of predictive models to predict
crop vyield [34]. Here is a detailed step-by-step
procedure of how sensors work for the prediction of the
yield of any crop:

1. Installation: Sensors are wisely installed
throughout the agricultural field to record
the various factors related to crop growth. Soil
sensors are buried inside the soil. Crop health
monitoring sensors are placed above the crop,
and weather stations are installed on the ground.

2. Data Collection: All sensors continuously mea-
sure all the parameters related to crop yield. Soil
sensors measure soil moisture and soil nutrients.
Crop health sensors monitor the health of leaves

and temperature, while weather stations measure
rainfall, temperature, humidity, and wind speed.

. Data Transmission: Sensors transmit data to

a centralized database by utilizing wireless
communication over the internet. This centralized
database may be located on the farm or in any
other remote location.

. Data Integration: The data collected from various

types of sensors is integrated into a centralized
database and is converted into a structured form.
This integrated data enables farmers to access all
data from a single location.

. Data Analysis: After data collection and inte-

gration, the prepared dataset is further analyzed
using advanced data analytics techniques, like
ML algorithms, to uncover different trends and
patterns and predict crop growth and yield.

. Crop Yield Prediction Models: Data collected

from sensors are used to develop predictive
models that forecast the yield of the crop.

3.2. loT Controllers

IoT Controllers manage and control all the
devices connected to them, including sensors,
actuators, and other connected devices. They
serve as the developers’ board to collect data from
sensors, process it, and perform actions using the
actuators. In agriculture, various microcontrollers
are used to manage and automate different
activities, enhancing crop productivity. Table [2]
discusses the various IoT controllers with respect
to other parameters.

Arduino is the most commonly used microcon-
troller, but it lacks WiFi capabilities, which limits
its suitability [35] [36]. Various Arduino boards,
including the Arduino Uno, Arduino Nano, and
Arduino Mega, are used as needed. NodeMCU
(ESP8266) is another widely used controller. It
relies on wireless connectivity, which makes it
more user-friendly and easy to store data on the
cloud [37][38] [39] [40]. Raspberry Pi is also a
powerful controller with multimedia support and
numerous connectivity options, making it suit-
able for complex IoT applications [41] [42] [43].
The controller, equipped with an ESP32, provides
Wi-Fi and Bluetooth connectivity. It has more
GPIOs and other connectivity options [39] [44]
[45] [40]. Giant Board and Particle Photons are the
new boards that are gaining popularity in the field
of agriculture for various applications [46] [47].

EAIl Endorsed Transactions on
Internet of Things
| Volume 112025 |

2 EA 3



Purnima Awasthi, Sumita Mishra, Nishu Guptag

Bluetooth Wi-Fi

Cloud

Farmers

[Camera Sensors} [ Soil Sensors } [

Temp. & Humidity
Sensor

@ [ZigBee} [LoRa} [NB-IOT}

2 B

Big Data

Agri-Business

Figure 2: IoT Architecture for Agriculture

Table 1. Comparison of different loT Sensors used in Agriculture

ML Analysis DL Analysis

e n A

Policy Makers

Sensor Type | Use Methodology of Sensor Ref.
Optical Sen- | They are used to monitor veg- | They work by measuring the | [20], [21],
sors etation index, growth of crop, | absorbance rate of red and | [22],[23]

detect pests and diseases, mon- | infrared light through an object

itor water use, etc (leaf).
ElectrochemicalThey are used to detect soil | They work by using an ion- | [24], [25],
Sensors moisture content, soil nutrients, | selective electrode that senses | [26]

soil electrical conductivity, tem- | different ions.

perature, soil pH, and other

parameters.
Mechanical | They are used to detect mechan- | They work by measuring the | [27]
Sensors ical properties such as wind | mechanical resistance in soil.

speed and pressure, soil com-

pression or displacement.
Dielectric They are used to measure soil | They work by measuring the | [28], [29],
Sensors moisture content. dielectric constant of soil. [30]
Location They measure the range, height, | They work upon images taken | [31], [32],
Sensors and distance of any area. from GPS satellites. [33]

3.3. loT Communication Standards

When we discuss IoT communication, we primar-
ily refer to the manner in which data is exchanged
between IoT devices, such as sensors, gateways,
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and other platforms. Transmission of field data is
a crucial component of agricultural IoT. IoT Com-
munication standards refer to the set of proto-
cols and technologies that facilitate the exchange
of data. Wireless Sensor Networks (WSNs) have
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Table 2. Comparison of different loT Controllers used in Agriculture

Controller| Processing Memory | Connectivit{/O Power Cost Ref.
Power Inter- Con-
faces sump-
tion
Arduino | Low Limited Limited Limited Low Low [35], [36]
(USB,
UART)
Node- Moderate | Moderate | WiFi, GPIO, Moderate | Low- [37],[38],
MCU USB SPI, 12C, Moderate | [39], [40]
UART,
ADC
ESP-32 Moderate- | Moderate-| WiFi, GPIO, Moderate | Moderate | [39], [44],
High High Blue- SPI, 12C, [45], [40]
tooth UART,
ADC,
PWM
Rasberry- | High Moderate- | WiFi, GPIO, Moderate | Moderate- | [41], [42],
Pi High Ethernet, | SPI, 12C, High [43]
Blue- UART,
tooth, USB
GPIO
Giant High Moderate | WiFi, GPIO, Low Moderate- | [46]
Board Blue- SPI, 12C, High
tooth, UART
GPIO
Particle Moderate | Moderate | WiFi, GPIO, Low Moderate | [47]
Photon USB SPI, 12C,
ADC,
PWM
been utilized for various applications, including WiFi. WiFi is one of the most commonly used

agriculture, to enhance crop yields. WSNs are a
boon for farmers as they are cost-effective [48].
These communications define the way data is
exchanged, its format, and the encryption tech-
niques used. These standards also ensure the
authenticity and security of data. The IoT devices
used in agriculture typically come in various
shapes and sizes, and they often employ differ-
ent communication technologies. The IoT com-
munication standards provide a common frame-
work to communicate with each other. Several
IoT communication standards are utilized in the
agricultural field to connect and exchange data
between various devices, sensors, and other plat-
forms. Some commonly used IoT communication
standards are: (1) WiFi, (2) Bluetooth, (3) ZigBee,
(4) Long Range Wide Area Network (LoRaWAN),
(5) Sigfox. Table [3] shows the comparison of some
commonly used IoT communication standards in
the field of agriculture.

technologies in agriculture. It is primarily used in
controlled environments, such as indoor farming
and greenhouses. It helps us to transmit data
at high speed from the farm to any cloud-based
platform. This transmission of data from the field
to the cloud enables us to monitor various agri-
cultural parameters, such as soil nutrient content,
soil moisture, temperature, and humidity, in real-
time. Malhotra et al. [49] proposed a system in
which they collected agricultural data like soil
moisture, temperature, humidity, sunlight, and
CO,. The collected data was stored in a gateway
and then transmitted to a server using a WiFi net-
work. Fathy et al. [38] developed an IoT-based irri-
gation system utilizing light cryptography. Com-
munication was established between NodeMCU,
ESP8266, and Raspberry Pi using WiFi. Juan et
al.[50] proposed a SAgric-IoT framework that
combines IoT and CNN-based approaches for
monitoring environmental and physical variables,
facilitating early disease prediction. They col-
lected the data from sensors and a camera and
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transferred it over the internet using a WiFi inter-
face. They stored the data in the cloud, analyzed
it, and made a disease prediction with an accu-
racy of over 90%. Murali et al. [51] proposed an
IoT-based soil nutrient classifier and crop rec-
ommendation system using different sensors and
Arduino. They used the ESP8266 as a WiFi mod-
ule. WiFi is used as their communication standard
to transmit the field data to the cloud over the
internet.

Bluetooth. Generally, Bluetooth is used for short-
range wireless communication. It is used in agri-
culture to connect devices and enable them to
share data for real-time monitoring and control.
Yunseop [52] et al. proposed an irrigation system
to conserve water and increase crop productivity.
They used low-cost Bluetooth communication to
transmit signals from sensors and controllers to
the base station. Nongye et al. [53] designed a
Bluetooth-based system for monitoring and con-
trolling crop growth parameters in a greenhouse.
Gu-zhah Hong et al. [54] utilized a Bluetooth
module to develop an Integrated Control Strategy
(ICS) system for irrigation, aiming to conserve
electricity and water usage.

Zigbee. Zigbee technology offers low-power, low-
data-rate wireless communication capabilities.
It follows a mesh networking topology to
connect devices and communicate data over short
distances. The Zigbee communication standard
is utilized in agricultural activities, such as crop
monitoring in greenhouses and controlling crop
irrigation in confined areas. It offers a cost-
effective and reliable solution. Peng Gao et al. [57]
proposed a system to predict soil moisture and
electrical conductivity of citrus orchards using
sensors and used the Zigbee network to group
data in a remote server. Swapnil et al. [58]
proposed a Zigbee module-based IoT system to
collect natural and soil parameters from different
field locations and aggregate data over the cloud.
Gangawar et al. [59] described a framework for
an agro-ecological resource management system.
They proved it to be a low-cost solution, as
they utilized the Zigbee communication standard,
which is a lightweight wireless sensor network.
Yinjun et al. [60] used ML/DL algorithms for
the accurate detection of disease in tomato
farms. They collected real-time soil data from
the farm and aggregated it on the edge server.
For data transmission, they used the Zigbee
communication standard.

LoRaWAN (Long Range Wide Area Network) . It
offers a long-range, low-power wireless commu-
nication service. This communication standard is
primarily used in large agricultural setups to con-
nect remote devices and sensors, enabling them
to transmit data over long distances. It is suit-
able for monitoring weather and crop health in
bigger farms in rural areas. Mushran et al. [62]
utilized the LoORaWAN communication standard
to develop a wide-area Alternate Wetting and
Drying (AWD) system for rice crop irrigation.
Singh et al.[63] presented a LoRaWAN-based IoT
framework for farmers to monitor soil moisture,
temperature, humidity, and other weather condi-
tions, making the system more efficient and opti-
mized. Y.N. Goh et al. [64] deployed LoRaWAN-
based sensors for the monitoring of soil moisture,
pH levels, and temperature in an oil palm farm.
Using the LoRaWAN communication standard,
they transmitted the collected data from remote
locations to a centralized server.

Sigfox. Sigfox is a wide-area network technology
that consumes very low power. It provides long-
range connectivity for IoT devices set up in
remote and rural areas. This feature of Sigfox
makes it suitable for use in large agricultural
areas with limited infrastructure, making it a
cost-effective solution. Gennaro et al.[67] used
Sigfox’s low-power, long-range feature to transmit
data collected from the sensors deployed in
water bodies to a centralized server. They built
a system to monitor water quality and detect
pollution in water bodies. Ahumada et al. [68]
created a sustainable and intelligent solution for
monitoring and operating irrigation in farms.
They collected real-time soil data and weather
data and transferred it to the cloud using the
Sigfox communication standard.

4. UAVs for Crop Yield Prediction

Use of UAV-based data can significantly improve
the prediction accuracy of the yield of any
crop [69]. UAVs, or drones, are helping farmers
and analysts collect aerial data flexibly at high
resolution with improved spatial and temporal
granularity [70]. Using UAVs, we can monitor
crops and collect data at any time, as it is
not affected by cloud cover and other weather
conditions, unlike satellites [71]. There are many
advantages of UAVs and drones over both
satellites and manual monitoring [72]. Figure [3]
explains some of them. These advantages of UAVs
have expanded their applications to various other
areas of agriculture, including fertilizer spraying,
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Table 3. Comparison of different loT Communication Standards

Standard Range Data-rate Powe con- | Security Ref.
sumption
WiFi Short to | Upto several | Moderate to | WPA2, [49], [38],
medium Gbps High WPA3 [50], [51],
range [55]
Bluetooth Short range | Upto several | Low to mod- | AES encryp- | [52], [53],
and wireless | Mbps erate tion [54], [56]
Zigbee Short range | Upto 250 | Low to | AES encryp- | [57], [58],
and wireless | kbps Lower tion [59], [60],
[61]
LoRaWAN Long range | Upto 50 | Ulta-Low AES encryp- | [62], [63],
and wireless | kbps tion [64], [65],
[66]
Sigfox Long range | Upto 1000 | Very Low AES encryp- | [67], [68]
and wireless | bps tion
weed detection, disease detection, and seed a high correlation between UAV-based data and

plantation, among others [73]. The deployment
of UAVs for crop yield prediction encompasses
various leading technologies, including different
types of UAV platforms, sensor types, various
communication protocols for UAVs, and control
methodologies.

4.1. UAV Platform Types

UAV platforms deployed in agriculture are
primarily categorized based on their design type,
payload capacity, flight range, and flight time.
Talking about the types of UAV platforms, UAVs
are mainly of three types: a) Rotatory Wings
UAVs, b) Fixed wings UAVs, and ¢) Hybrid UAVs.

Rotary-Wings UAVs. Rotary wings UAVs have 4 to
8 rotors. It can hover and take off vertically. It
has a flight time of typically 15 to 40 minutes,
with an average speed of 5 to 15 meters per
second. These are easy to fly and deploy, making
them suitable for smaller fields. They are also
ideal for complex terrain. Ge et al. [74] used a
rotary wing UAV embedded with a Red-Green-
Blue(RGB) camera for maize yield prediction.
They integrated classification with regression
to improve the accuracy of yield prediction.
Yang et al. [75] also used a rotary wing-based
UAV embedded with an RGB camera for the
development of a field-based plot extraction
technique. By using this technique, they achieved
higher plot extraction accuracy as compared to
existing methods. Liu et al. [76] used a DJI
Phantom 3(a rotary wing-based UAV) for the yield
estimation of maize crop. As a result, they found
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ground data.

Fixed-Wing UAVs.

Fixed-wing UAVs have an

airplane-like structure, and they use wings for
lift. It has a flight time of approximately 45
to 120 minutes with an average speed of 15
to 25 m/s. It usually uses a runway for the
launch and a parachute for landing. They are
generally used for large-scale monitoring due
to their high endurance and range. They have
better aerodynamic performance than rotary-
wing UAVs. Bending et al. [77] used eBee (a
fixed-wing UAV) embedded with a multispectral
camera for the mapping of canopy height and
vegetation in a wheat crop field. Moghimi et al.
[78] deployed a fixed-wing UAV embedded with
a hyperspectral camera for the high-throughput
yield phenotyping of wheat crop. Their work
proved the potential of UAV-based hyperspectral
images for more accurate yield prediction.

Hybrid UAVs.

These UAVs combine the agility of

rotary-wing UAVs and the endurance of fixed-
wing UAVs. Their flight time is about 60 to 90
minutes. They are capable of hovering like multi-
rotors and have a long range. They are suitable
for high-resolution aerial mapping and scouting
of large fields. They are costlier than the other
two UAVs. Tsouros et al. [79] used a fixed-wing
based UAV named WingtraOne VTOL for the
monitoring and data collection of olive orchards.
As a result, they achieved high spatial accuracy.
Pretto et al. [80] developed an integrated aerial-
ground robotic system for crop monitoring and
intervention. In this system, they utilized the
capability of a hybrid VTOL UAV, which proved
to be very efficient.
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Advantages of UAVs Over Satellites and Manual Monitoring

Manual Monitoring
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* Cost-effective for small areas = Lower resolution imagery = Labor-intensive and slow

+ High spatial and temporal resolution » Fixed revisit intervals » Limited coverage

* On-demand data collection = Affected by cloud cover = Prone to human error

Figure 3: Advantages of UAVs over satellites and manual monitoring

Table 4. Comparison of different UAV Platform Types

UAV Flight
Platform | time
Rotary- 15-40

wing min

Coverage | Payload Cost Launch Usage Ref.

10-50 ha Small

crop field
monitoring,
Spot

spraying

Light-
moderate

Low No runway
required

[74][75][76]

Fixed-
wing

45-150
min

100-500
ha

Moderate

Moderate to
high

Runway or
catapult
required

Bigger

crop  field
monitoring,
Yield
prediction

[77]178]

Hybrid

6-190
min

150-400
ha

High

High

No runway
required

Medium
and varied

[79] [80]

terrain

crop field
monitoring,
Crop
mapping
with  high
accuracy

4.2. UAV Sensors

UAVs have gained significant importance in pre-
cision agriculture. It is widely used for predicting
crop yields. UAVs, when equipped with various
sensors, provide timely data with high resolution.
This data enhances the decision-making power of
the farmers. There are basically six types of UAV
sensors: 1) RGB (Red-Green-Blue) Cameras, 2)
Multispectral Sensors, 3) Hyperspectral Sensors,
4) Thermal Infrared Sensors, 5) LiDAR (Light

Detection and Ranging) Sensors, and 6) Multi-
modal (Fusion) Sensors.

RGB (Red-Green-Blue) Cameras. RGB cameras
utilize the visible spectrum to capture images.
They are affordable and easy to use. They are
mainly used for plant growth monitoring, crop
disease detection, and measuring canopy cover
[81]. RGB images can be used to derive the
Vegetation Index (VI), which indicates the crop
health and crop yield. Hang Yin et al. [82]

EAIl Endorsed Transactions on
Internet of Things
| Volume 112025 |

< EAI 8



Enhancing Crop Yield Prediction with loT and Agricultural UAVs: A Comprehensive Review

conducted a study examining the use of UAV-
based RGB imaging to predict biomass in potato
crops across various growth stages. They analyzed
the color and texture features from the collected
images and developed a model that effectively
estimates the biomass in potatoes.

Multispectral Sensors. These sensors are used
to collect data and images across a specific
wavelength. They include visible and Near-
Infrared(NIR) spectra. They are used primarily
for calculating VI, such as Normalized Difference
Vegetation Index (NDVI), which is used to analyze
plant stress and vigor. Multispectral images are
used to monitor chlorophyll content in leaves,
measure Leaf Area Index (LAI), and assess other
physiological parameters, which help predict
crop yield. Herrero-Huerta et al. [83] used a
multispectral sensor-based UAV to predict the
yield of the soybean crop. They analyzed the UAV-
collected data using ML algorithms and achieved
high accuracy in yield prediction.

Hyperspectal Sensors. These sensors provide high
spectral details about the object by capturing data
across many narrow, continuous spectral bands. It
helps in detecting nutrient deficiencies in plants,
diseases, and other factors affecting crop yield,
even before they are visible to the naked eye.
Zongpeng Li et al. [84] utilized a hyperspectral-
based sensor-based UAV to predict the yield of
winter wheat. They analyzed the UAV-based data
using ML algorithms and predicted the accurate
yield of the wheat crop. They proved the potential
of hyperspectral imaging with ML technologies in
precision agriculture.

Thermal Infrared Sensors. UAVs equipped with
thermal sensors are used to measure the tem-
perature around the crop, indicating water stress
and transpiration rates within the crop. This data
helps inform wise decisions regarding crop irri-
gation. Yulin et al. [85] conducted a study that
combines UAV-based thermal and multispectral
imaging along with ML techniques to predict the
yield of wheat crop with better accuracy.

LiDAR (Light Detection and Ranging) Sensors.
LiDAR sensor-based UAVs emit laser rays for
measuring distances. They are used to create
high-resolution 3D maps of the crop canopy and
terrain, which are then used to assess biomass,
plant height, and other plant characteristics.
LiDAR-based data helps in estimating the plant
volume and biomass, which ultimately helps in
accurate yield prediction. Zhu et al. [86] used both
LiDAR data and multispectral images to assess the

biomass of the maize crop, thereby predicting the
actual yield of the crop.

Table [5] clearly shows the comparison of different
UAV-based sensors with respect to their Spectral
band, Resolution (both Spatial and Temporal),
Cost of implementation, and their application in
precision agriculture.

4.3. Communication Protocols for UAVs

The functionality of UAVs greatly depends on
the effective communication protocols. They are
responsible for the effective transfer of data from
UAV sensors to control stations, which facilitates
real-time monitoring of crops and enables the
prediction of their yield. Several factors play
a significant role in selecting the appropriate
communication protocols. These factors include
data range, transmission range, power consumed,
etc. Several communication protocols are used in
agriculture for predicting crop yields.

MAVLink (Micro Air Vehicle Link). This proto-
col is nowadays mainly used in UAVs. It is a
lightweight communication protocol specifically
designed for communication between UAV sen-
sors and ground-based control stations. It utilizes
telemetry messages for facilitating real-time com-
munication. Mogili et al.[87] proposed a drone
system using the capabilities of the MAVLink
communication system for various agricultural
applications, such as water stress management
and crop harvesting. This drone proved to have
great potential in enhancing crop management
activities to increase crop productivity.

IEEE 802.15.4 based protocols. IEEE 802.15.4-
based protocols encompass protocols such as Zig-
Bee and IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPAN). These protocols basi-
cally offer low power consumption and have the
ability for mesh networking. They are suitable for
short-range communication. These protocols are
often used for transmitting environmental data,
such as temperature and soil moisture, to UAVs
and control stations, which helps in crop yield
prediction. Kumar, J.N.V.R.S. et al.[88] devel-
oped a drone system to measure environmental
parameters like soil moisture and temperature
using the IEEE 802.15.4 communication proto-
col, which includes HyLaR-OF-M (an intelligent
routing algorithm) to choose the best way of
data traveling depending upon factors like signal,
availability of sensors, and battery power. Their
system proved to be more reliable and helpful in
collecting real-time crop data.
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Table 5. Comparison of different UAV-based sensors

Sensor Spectral | Resolutidesolutidises Cost Ref.
type bands (Spa- | (Tem-
tial) po-
ral)
RGB R, G, | High | High | Plant growth monitoring. | Cheap | [82]
Camera B(Visible) Canopy cover, Phenotyp-
ing.
MultispectralNIR, Red | Medium High | NDVI, Chlorophyll | Moderate83]
edge Content monitoring, LIA,
Stress detection
Hyperspectr@lontiguous, Variabl¢ Medium Plant grown monitoring, | Very (84]
narrow Canopy cover, | high
Phenotyping,  Nutrient
deficiency = monitoring,
stress and other disease
detection
Thermal | Infrared | Medium Medium Irrigation management Moderate85]
infrared
LiDAR It uses | Very Medium 3D maps of canopy cover | Moderatd 86]
laser High and terrain
pulses
LoRaWAN (Long Range Wide Area Network). to collect local data on plant health, which helps

LoRaWAN is basically a long-range, low-power
networking protocol. It is ideal for wireless
devices. It is a wide-area network-based protocol
that is most suitable for large-scale agricultural
field monitoring. It enables the transfer of data
collected using sensors from remote fields to
UAVs and central servers, which aids in crop
yield prediction [89]. Xu Tao et al. [90] proposed
a decentralized framework using UAVs for
intelligent crop monitoring. Since the monitoring
was done in large-scale farms, they utilized
LoRAWAN as the communication technology.

Wi-Fi (IEEE 802.11.Standards). It serves short to
medium range communication with high data
rates. It is utilized in various applications for
real-time data transmission. Wi-Fi facilitates
high-throughput data transfer from UAVs to
ground-based stations, aiding in the analysis of
yield. Brinkhoff et al. [90] introduced a low-
cost framework that utilizes an IEEE 802.11 Wi-
Fi communication platform to measure various
factors, such as soil moisture and temperature, for
real-time monitoring. The collected data are then
transferred to a cloud platform, which enables
informed decision-making.

Bluetooth Low Energy (BLE). This communication
protocol offers short-range communication with
less power consumption. It is utilized for
connecting UAVs with nearby devices and sensors

2 EA

in building yield prediction models [69].

Cellular Networks. These communication net-
works include 3G, 4G, and 5G networks. They
enable real-time data transfer by providing wide-
area coverage and high data speed. UAVs are
equipped with these networks to allow the trans-
mission of a large amount of data from sensors
to cloud platforms, where they can be further
analyzed and used for yield prediction.

Table [6] represents the detailed comparison of
different types of communication protocols used
in UAVs for effective crop yield prediction.

4.4. UAV Control Methodologies

UAVs’ control methodologies refer to the mecha-
nisms and algorithms that enable UAVs to man-
age their flights and maintain stability in the
air. They address the environmental impacts of
drones during their flight. These control method-
ologies manage the speed, altitude, and navi-
gation of UAVs, ensuring they fly safely and
accurately. For an effective and accurate crop
yield prediction, UAVs must have the ability
to fly efficiently over large and uneven terrain-
based fields to collect high-resolution images and
other sensor read parameters data. For this, sev-
eral UAV control methodologies are available.
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Table 6. Comparison of different Communication Protocols for UAVs

Protocol Standard | Comm.| Rate Power | Uses Ref.
range | of con-
data sump-
trans- | tion
fer
MAVLink UAV Pro- | Medium Low- | Low Used in Communication | [87]
tocol Moderate of Telemetry-based mes-
sages for real-time moni-
toring
ZigBee IEEE 10- 250 Very Used in recording | [88]
802.15.4 | 100M | Kbps | low and transmitting
environmental data
to UAVs and ground-
based stations
LoRaWAN LoRa 2-15 0.3-50 | Very Used in transmission of | [88]
Alliance | Km Kbps | Low remote field data to UAVs
and data stations
Wi-Fi IEEE 50- 10s of | Moderateédsed in transmission of | [90]
802.11 100 M | Mbps | High | high-resolution data from
UAVs
BLE Bluetooth | Less 1 Very Used for connecting | [69]
SIG than Mbps | Low UAVs to nearby sensors
100 m and other devices
Cellular(4G/5@&TE/NR | 10-30 | High | ModerateUsed for synchronization | [69]
Km (> 100 of UAVs and cloud plat-
Mbps form
for
5G)

The PID (Proportional-Integral-Derivative) Con-
trol methodology primarily helps maintain alti-
tude during steady flight. However, they are
not suitable for changing environmental condi-
tions, such as locations with high-speed winds.
Sairoel Amertet et al. [91] implemented hybrid
fuzzy PID controllers in UAVs to precisely mon-
itor their crops and predict crop yields. They
demonstrated that these control methodologies
enabled them to enhance their adaptability to
varying agricultural conditions. Yunling Liu et al.
[92] developed a UAV-based variable spray con-
trol system. They integrated the potential of the
Radial Basis Function (RBF) neural network with
the PID control methodology. This system effec-
tively improved the pesticide spraying process.
Their results demonstrated that the RBF-PID-
based controller outperforms traditional PID and
fuzzy PID controllers, resulting in improved crop
management and yield prediction. Model Predic-
tive Control (MPC) is another control methodol-
ogy that can predict the future behavior of UAVs
and optimize their control accordingly. They help
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in precision farming by enabling UAVs to man-
age their flight in real-time. It ensured the accu-
rate collection of field data even in areas with
disturbances and uneven terrain [93]. MPC can
manage complex agriculture processes, helping
to improve precision agriculture practices [94].
Fuzzy Logic Control methodology is capable of
mimicking humans. It performs decision-making
using linguistic variables. It can handle varying
crop conditions with imprecise inputs and make
informed decisions. This Fuzzy Logic Control
helps UAVs to perform well in diverse environ-
mental conditions in agriculture [95]. Next comes
the Neural Network-Based Control methodology,
which can learn from data and adapt to envi-
ronmental changes over time. It is usually used
in applications that require real-time decision-
making. When integrated with ML, it helps UAVs
to map the crop yield zone.
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Table 7. Comparison of some existing review papers with the this study.

Paper (Source & Year)

Focus / Scope of Review

Traditional IoT Cov-

Practices
Dis-
cussed

erage

UAV
Cover-
age

Integration
Discus-
sion

Mustafa et al. (2024) [96]

Discusses  Bibliometric review
mapping research trends in crop
yield prediction using UAV and
ML technologies.

X

v

X

Dibal et al. (2022) [97]

Gives an overview of IoT-based
solutions for climate-smart agri-
culture in Sub-Saharan Africa.

v (in
African
context)

Yuan et al. (2024) [98]

Comprehensive SLR on UAV-based
imagery for crop yield prediction.

X

Muruganantham et al. (2023)
[99]

Presents ML models and IoT use
cases in agriculture; emphasis on

Partial

data analytics.

This Paper

Discusses
yield
and

on IoT

(Purnima et al.)

prediction
limitations;

(sensors,

communication

and UAV

communication),

their

(platforms,

traditional crop v v v
methods
focuses
controllers,
standards)
control,
discusses

benefits, limitations, and future

scope.

Conceptual

Table 8. Summary of Research Gaps and Future Scope

Research Gap

Future Scope

Ref.

No fixed and standard protocol or
framework for data collection and
processing.

Development of an open-source and
standard framework for data collection
and processing to support comparisons
and model transferability.

[100], [101]

Limited ML Models that are reliable
for diverse field conditions, geogra-
phies, and seasons.

Develop more varied datasets and adop-
tion of models that are uncertainty-aware
and have an ensemble approach

[102], [103]

Difficulty in integrating UAV imagery
with real-time sensor data.

Use edge computing and low-latency Al
models to facilitate the integration of
heterogeneous data.

[104], [105]

Negligence in local crop production
and smallholder farming systems.

Research should be extended towards
local crops and regions with low
resources.

[106], [107]

Economic Viability, as these technolo-
gies have high deployment and oper-
ational costs, and also have complex
calibration.

Development of cost-effective, modular,
and easy-to-use UAV/IoT platforms.

[108], [109]

Limited Use of Explainable Al models

Promote the use of Explainable Al
approaches that are transparent to farm-
ers, making it easy to trust them.

[102], [103]

5. Comparison with Existing Reviews and

Related work

Most of the available reviews emphasize mainly
system implementation, automation, or model
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performance without discussing the transition
from traditional crop yield prediction techniques
to modern sensor-driven techniques. In contrast
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, this paper uniquely provides a comparative
review that shows three stages of evolution of crop
yield prediction techniques: traditional methods,
IoT-based techniques, and UAV-based systems.
Table [7] highlights the comparison of this review
article with some existing related work, making
its contribution clearer.

6. Overall Research Gap

Although there has been significant growth and
advancement in technologies such as IoT, UAVs,
remote sensing, and ML in the field of crop
yield prediction, several research gaps still hinder
the scalable and robust development of precision
agriculture. Table [8] briefly explains the overall
research gaps found after reviewing the various
papers related to this field.

7. Conclusion

The integration of IoT and UAVs in agriculture
represents a significant advancement in precision
agriculture, particularly in predicting crop yields.
Through this review, we highlight the potential
of IoT and UAVs to overcome the challenges
and limitations of traditional crop monitoring
and crop yield prediction systems. Over the past
few years, data-driven decision-making has taken
over conventional intuition-based decisions. IoT-
based sensing devices, such as soil moisture sen-
sors, temperature and humidity sensors, and soil
nutrient sensors, enable the collection of real-time
data to enhance the process of crop yield pre-
diction. On the other hand, UAVs equipped with
RGB cameras, multispectral cameras, hyperspec-
tral cameras, and thermal cameras have the poten-
tial to analyze plant health, stress, canopy cover,
and other factors over large agricultural fields.
Through this comprehensive review, we have con-
cluded several key findings: 1) Both IoT and
UAVs play complementary roles in precision agri-
culture. IoT-based sensors provide ground-level
data in real-time, whereas UAVs provide high-
resolution spatial images and data across time.
Together, they form a powerful fusion system that
enhances the accuracy and reliability of crop yield
predictions. 2) The integration of both IoT and
UAV technology has dramatically improved the
efficacy of crop yield prediction models. The real-
time and high-dimensional datasets generated by
IoT-based sensors and UAVs have improved the
performance of ML and DL approaches used
for yield prediction. 3) These technologies have
improved the scalability and adaptability towards

a wide range of crops and environmental con-
ditions. 4) Introduction of IoT and UAV tech-
nologies promotes environmental sustainability.
By enabling precise agricultural practices for crop
management, they focus on reducing agricultural
waste and lowering environmental impact.

7.1. Challenges

Along with several benefits of using IoT and UAV
technologies, there are many challenges related
to them: 1) Since the data collected by IoT-based
sensors and UAVs are heterogeneous in nature,
their fusion is a complex process. 2) The lack
of internet in any underdeveloped or developing
regions makes it difficult to transmit and store
data in real-time. 3) The cost and technical
expertise required for using IoT-based sensors and
UAV technologies serve as a big barrier for some
farmers.

7.2. Future scope

There are many promising future steps for
improving the potential of IoT and UAVs in crop
yield prediction: 1) Introducing edge computing
and fog computing with IoT and UAV nodes
can significantly reduce the dependency on cloud
platforms, thereby allowing real-time decision
making. 2) Introducing mobile apps and voice
assistants with local language support will help
farmers to use these systems efficiently, even
with less technical knowledge. 3) Introduction
of chatbots linked to IoT and UAV systems can
greatly help farmers to analyze their crops and
recommend actions accordingly.
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