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Abstract

Wireless Sensor Networks (WSNs) have become a foundational technology across diverse domains, ranging from critical
healthcare monitoring to large-scale environmental management. However, the severe energy constraints of sensor nodes
remain a persistent bottleneck, threatening both operational efficiency and network longevity. While metaheuristic
algorithms offer promising solutions, existing reviews often focus on isolated network layers or rely on outdated datasets.
Addressing this gap, this Systematic Literature Review (SLR) analyzes 48 primary studies published between 2019 and
2024, offering a holistic taxonomy that integrates routing and clustering optimizations. The findings reveal that Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO) continue to dominate the field, each appearing in 23.5% of]

studies. However, a decisive shift is observed toward hybrid techniques such as Firefly—PSO and Grey Wolf Optimization
variants which demonstrate enhanced adaptability in avoiding local optima, albeit at higher computational costs.
Performance evaluations remain heavily simulation-driven, primarily focusing on energy consumption (31.2%), network
lifetime (29.8%), and throughput (19.9%), while real-world validations in domains like Industrial [oT remain scarce.
Furthermore, the review identifies emerging trends integrating Machine Learning, Edge Computing, and UAV-assisted
routing into metaheuristic frameworks, signaling a transition toward more secure and multi-objective optimization strategies.
This study concludes by highlighting critical open issues in fault tolerance, heterogeneous node management, and security-
aware routing, providing a strategic roadmap for developing resilient, deployment-ready WSN solutions.
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1. Introduction impossible [1]. Consequently, energy depletion is not merely
a technical inconvenience; in critical scenarios such as

Wireless Sensor Networks (WSNs) have evolved from a  disaster management  or healthca.re, it can directly
futuristic concept into a ubiquitous reality, embedded in ~ compromise system reliability and patient safety [2].

diverse environments ranging from forests and cities to  Tg address these energy constraints, metaheuristic algorithms
oceans. Serving as the critical infrastructure of the digital age,  have been widely explored, largely because traditional
WSNss facilitate applications spanning wildfire monitoring o Jeterministic methods often fail to scale or adapt to dynamic,
industrial process management. However, a fundamental  ;;certain environments [3]. Ant Colony Optimization (ACO)
challenge? r@mains; these networks are severely constrained — pg5ed routing, for instance, has successfully extended
by the limited energy of sensor nodes. These nodes are  petwork lifetime by 30.55% and reduced response time by
typically  battery-powered and situated in hostile 14 719 in forest fire detection systems [1]. Similarly, hybrid
environments where replacement is difficult, if not ACO models have achieved nearly 50% energy savings
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compared to classical variants [4]. Particle Swarm
Optimization (PSO) has emerged as another dominant
approach. Notably, the PSO-EEC variant [5] demonstrates
substantial performance gains in high-density heterogeneous
network  scenarios.  Quantifying network lifetime
improvement as the percentage increase in operational
rounds, the study reports a 238% gain relative to the MDCH-
PSO protocol and a 71% gain compared to the HSA-PSO
variant. Furthermore, PSO-EEC consistently outperforms
other advanced protocols, such as MCHEOR and MOPSO,
under these conditions. Furthermore, combining PSO with
Bellman-Ford routing has demonstrated more stable Cluster
Head (CH) selection and reduced overhead [6]. Recent
advancements using hybrid Salp Swarm PSO have even
pushed throughput to 580 kbps with packet delivery ratios
exceeding 99.4% and delays as low as 12.3 ms [7]. These
metrics represent significant technological leaps rather than
minor incremental gains.

The diversity of metaheuristic applications in this domain is
remarkable. Modified Grasshopper Optimization with Lévy
flight has demonstrated resilience in CH selection under
diverse conditions [3], while Firefly-PSO hybrids have
improved the balance between energy efficiency and load
distribution [8]. Multi-objective approaches, such as Golden
Jackal Optimization, have managed to optimize energy and
routing simultaneously, yielding lifetime increases exceeding
40% in certain trials [9], [10]. Other bio-inspired models,
including the Grey Wolf Optimizer (GWO), Cuckoo Search,
and Artificial Bee Colony (ABC), have proven effective in
balancing energy consumption across heterogeneous WSNs
[11], [12]. Notably, one study reported a 96.98% performance
gain compared to existing dynamic multipath routing
protocols [13]. These compelling figures reflect a research
community deeply focused on maximizing the utility of
limited battery resources.

Despite these promising achievements, critical gaps persist.
Many protocols that excel in simulations often falter when
exposed to the complex, unpredictable realities of real world
deployments [14]. Furthermore, energy optimization is
frequently treated in isolation, leaving essential factors such
as latency, reliability, and fault tolerance as secondary
considerations [15], [16]. Although Quality of Service (QoS)
aware secure routing protocols have proven feasible, security
is rarely integrated into energy-aware designs [17].
Moreover, no single algorithm dominates across all
environments. While ACO excels in adaptive routing and
PSO is superior in clustering, hybrid models while often
outperforming both introduce higher computational overhead
[18], [19]. Striking the right balance between efficiency and
complexity remains a non-trivial, unsolved research puzzle.

Therefore, a systematic review of metaheuristic approaches
for WSN energy optimization is both timely and necessary.
The purpose of this study is twofold: first, to synthesize
achievements across a spectrum of algorithms, from classical
ACO and PSO to newer hybrids like Firefly-PSO, Golden
Jackal, and chaotic GWO; and second, to identify blind spots
requiring urgent attention. This review aims to go beyond a
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simple catalogue of improvements; it frames the broader
question of how metaheuristics can evolve into adaptive,
multi-objective  frameworks capable of supporting
sustainable WSN deployment in IoT-enabled environments.
While the answer is complex, the trajectory is clear:
metaheuristics will continue to play a central role in shaping
intelligent, energy-aware sensor networks.

This study is motivated by several critical voids in the
existing literature. First, while specific algorithmic variants
have demonstrated exceptional performance gains
particularly in simulation-based clustering protocols [5] these
findings often remain as isolated empirical successes.
Consequently, there is a distinct lack of comprehensive
analysis that synthesizes these scattered performance
breakthroughs into a coherent, evolutionary trend applicable
to broader WSN deployments.

Second, the gap between theoretical advancement and
practical reliability remains wide; for instance, while
compression based routing has shown an 84% path reduction
in simulations [20], evaluations in real-world deployments
remain scarce. Third, the integration of emerging
technologies such as machine learning, reinforcement
learning, and IoT driven adaptive optimization with
metaheuristics is still underdeveloped, despite early promise
in bridging cross-domain intelligence [7], [15], [16].

Consequently, it is insufficient to merely celebrate
performance ratios; it is crucial to interrogate the
transferability, scalability, and robustness of these solutions.
To this end, this Systematic Literature Review (SLR)
provides a holistic overview of energy efficient techniques in
WSNs relying on metaheuristic algorithms. To sharpen the
focus, four research questions (RQs) are posed:

e RQI: What are the prominent energy optimization
techniques in WSNs that utilize metaheuristic
algorithms?

e RQ2: What performance metrics are used to evaluate the
energy efficiency of these metaheuristic-based
techniques?

e RQ3: In which application domains have these WSNs
been deployed, and how do these contexts impact
system performance?

e RQ4: What are the recent advancements and emerging
trends in metaheuristic algorithms for WSN energy
optimization as highlighted in contemporary literature?

Based on these research questions, the main contributions of
this study are summarized as follows:

1. Taxonomy Proposal: This study proposes a decision-
oriented taxonomy categorizing metaheuristic-based
energy optimization methods according to targeted
network operations, including CH selection, clustering,
routing, and hybrid mechanisms.

2. Integrated Synthesis: It presents a synthesis linking
metaheuristic techniques, optimization objectives,
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evaluation metrics, and application domains to facilitate
clearer method selection and analysis.

3. Trend Identification: The review identifies recent
methodological evolutions, specifically highlighting the
increasing shift towards hybrid and multi-objective
approaches.

4. Future Roadmap: The study outlines a concise,
actionable research roadmap by consolidating open
challenges and future opportunities derived from the
systematic analysis.

The remainder of this paper is organized as follows: Section
2 describes the research methodology adopted for the SLR.
Section 3 presents the results corresponding to RQ1-RQ4.
Section 4 discusses the findings and their implications.
Finally, Section 5 concludes the paper by summarizing the
main contributions and outlining directions for future
research.

1.1. Comparison with Existing Surveys

Although the literature on Wireless Sensor Networks (WSN)
is extensive, existing reviews often address energy
optimization in a fragmented manner, focusing on isolated
network layers or relying on datasets that predate the recent
surge in hybrid metaheuristic algorithms. To explicitly
articulate the novelty and necessity of this study, we
conducted a comparative analysis against eight prominent
surveys in the field.

As detailed in Table 3, prior works generally exhibit three
limitations:

e Scope Fragmentation: Many surveys focus exclusively
on clustering [21], [22], [23] or node deployment [21],
[24], ignoring the critical cross-layer dependency
between clustering and routing.

e Narrow Algorithmic Focus: Recent reviews often
restrict their scope to specific protocol families, such as
LEACH successors [25], thereby missing the broader
spectrum of modern swarm intelligence (e.g., Golden
Jackal, Salp Swarm) that operate on non-hierarchical
principles.

e Temporal Gaps: Comprehensive methodological
reviews [22], [26] typically cover literature up to 2019
or 2020. Consequently, they fail to capture the paradigm
shift towards multi-objective and hybrid optimization
techniques that characterizes the 2021-2024 period.

In contrast, this Systematic Literature Review (SLR) bridges
these gaps by offering a decision-oriented taxonomy that
integrates Cluster Head (CH) selection, clustering formation,
and routing into a unified energy optimization framework.
Furthermore, it focuses strictly on the most recent high-
impact studies (2019-2024), providing distinctive insights
into the trade-offs between computational complexity and
network longevity in IoT-enabled environments.

2. Research Methodology

A Systematic Literature Review (SLR) operates not merely
as a procedural checklist, but as a disciplined methodology
designed to identify, evaluate, and synthesize relevant
research with clarity and precision [27]. The ultimate
objective is to transcend scattered empirical findings and
construct a comprehensive, balanced understanding of the
state of the art within a specific domain. In the context of this
study, that domain while specific is critical: energy-efficient
strategies in Wireless Sensor Networks (WSNs) empowered
by metaheuristic algorithms.

This review is guided by a set of carefully defined research
questions focusing on four key themes: energy consumption
optimization, performance metrics, application domains, and
algorithmic innovations. Each question is framed to explore
not only technical specifications but also the extent to which
metaheuristics can push the operational limits of resource-
constrained networks. This deliberate framing ensures that
the review avoids becoming a mere catalogue of algorithms,
instead providing a contextualized analysis of the field.

To achieve this, we adopted a structured SLR protocol
consisting of six interconnected stages. These stages function
as a cycle of refinement rather than a purely mechanical
sequence, where each step informs the next:

1. Formulation of Research Questions: Establishing
precise questions to define the review's boundaries and
prevent scope drift.

2. Literature Search: Conducting systematic searches
across multiple digital libraries using tailored keywords
and boolean logic to ensure both breadth and relevance.

3. Primary Research Selection: Applying strict inclusion
and exclusion criteria to filter studies, ensuring a
balance between rigorous selection and comprehensive
coverage.

4. Data Extraction: Systematically recording data
regarding optimization techniques, evaluation metrics,
application domains, and emerging algorithmic trends.

5. Assessment of Research Quality: Evaluating the
methodological  soundness, reproducibility, and
contextual relevance of each study to ensure that only
high-quality evidence is synthesized.

6. Data Synthesis: Integrating findings to identify

convergences, contradictions, and research gaps,
thereby answering the research questions with
coherence.

This six-step protocol is illustrated in Figure 1. While the
figure depicts a logical sequence, the actual process involved
iterative refinement, where earlier stages were revisited
whenever ambiguities arose in the literature. This iterative
approach is essential to scholarly rigor, ensuring that the
review remains transparent, comprehensive, and firmly
aligned with the study's initial objectives.
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2.1. Research questions have utilized

metaheuristic
The initial phase of this SLR involved the precise formulation algorithms?
of Research Questions (RQs). Well defined RQs are critical What performance
to ensuring that the review remains focused and does not metrics are used to To explore and analyze the
devolve into a disjointed collection of findings. They serve as evaluate the energy .

1. . . s . RQ2 . key metrics used to assess

the guiding mechanism that aligns the study with its specific efficiency of .
objectives and addresses the broader analytical needs of the metaheuristic-based energy efficiency.
research community. techniques in WSNs?
To ensure methodological rigor, the formulation of these RQs In which application S .
was guided by the Population, Intervention, Comparison, doma'lns have WSNs | To investigate the domams
Outcomes, and Context (PICOC) framework [27]. The RQ3 been implemented, th’re WSNs are applied and
selection of PICOC was strategic; it provides a structured lens and how do these their effect on system
through which diverse studies can be synthesized into applications impact efficiency.
coherent lines of enquiry. By clearly defining elements such system performance?
as the population (WSNs), intervention (metaheuristic What are the recent
algorithms), and outcomes (energy  optimization, advancements in To review the latest trends
performance, and longevity), the framework anchors the metaheuristic .

. . . . . . RQ4 . and developments in
review in concrete dimensions. This structural consistency is algorithms for energy taheuristic aleorith
particularly vital in the WSN domain, where metric optimization in FCIARCUTISHE AgOTTmS.
heterogeneity often complicates direct comparisons between WSNs?

studies.

Table 1 summarizes the specific PICOC criteria applied in
this study. Derived from these criteria, four distinct RQs were
formulated to drive the investigative process. These questions
are not merely mechanical; they are designed to probe the
literature with precision, enabling a critical assessment that
distinguishes robust empirical evidence from theoretical
assertions. Table 2 presents the finalized RQs alongside their

specific research objectives. Literature Search :
Systematically searching for relevant studies
using predefined keywords and databases
Table 1: Summarizes the PICOC criteria used J'
Element Description Primary Research Selection:
- . - Applying inclusion and exclusion criteria to identify

Population Wireless Sensor Networks (WSNs) requiring i EiE i oaTE e
energy-efficient solutions.

Intervention Metaheuristic algorithms applied to optimize ¢
energy efficiency in WSNs Data Extraction:

p - Py - - Collecting data on energy optimization

Comparison COII'l[I')aI“ISOH o.f n'letaheurlstlc techniques with R R g TR e e
traditional optimization methods or among domains, and algorithmic advancements
themselves ¢

Outcomes Improved energy efficiency, extended

et Assessment of Research Quality:

network lifetime, and enhanced system Evaluating the methodological quality and
performance. relevance of the selected studies

Context Applications of WSNs across various i
domains, including agriculture, healthcare,
IoT, and smart cities Data Synthesis:

Table 2: Research Question & Objective

RQ Research Question
What energy
RQ1 optimization
techniques in WSNs

Objective

To identify and categorize
energy-efficient techniques
leveraging metaheuristics.

Figure 1: Systematic literature review protocol

Formulation of Research Questions :
Clearly defining the research questions to guide
the scope of the review

v

Synthesizing the findings to provide insights into
the research questions
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2.2. Literature search strategy

To ensure comprehensive coverage of high-impact research,
the primary literature search was conducted using the Scopus
database (https://www.scopus.com/). Scopus was selected for
its extensive indexing of reputable publishers, including
IEEE, ScienceDirect, and Springer, which guarantees a
baseline of peer-reviewed quality. Consistent with the PICOC
framework defined in the previous section, the search criteria
were developed to align strictly with the study’s objectives.

To target studies focusing on energy-efficient techniques in
Wireless Sensor Networks (WSNs) via metaheuristic
algorithms, the following Boolean search string was
formulated:

( "wireless sensor network” OR "WSN" ) AND (
"metaheuristic" OR "genetic algorithm" OR "particle
swarm optimization" OR "ant colony optimization" OR
"hybrid metaheuristics" ) AND ( "energy optimization"
OR '"energy efficiency" OR "energy-aware" ) AND (
"performance metrics" OR "network lifetime" OR "energy
consumption" ) AND ( "application" OR "use case" OR
"domain" )

This search string was strategically constructed to intersect
distinct research dimensions:

e Context: Energy optimization within WSN
architectures.

e Intervention: The utilization of specific metaheuristic
and hybrid approaches.

e Evaluation: Key performance indicators such as
energy consumption, network lifetime, and
throughput.

e Scope: The application of these systems in diverse
domains, including IoT, agriculture, healthcare, and
smart cities.

To maintain currency and relevance, the search was
temporally restricted to articles published between 2019 and
2024. This timeframe ensures that the review captures the
most recent technological advancements and algorithmic
trends. Following the initial retrieval, studies were subjected
to rigorous screening based on predefined inclusion and
exclusion criteria, ensuring that only high-quality and
pertinent research was synthesized in this review.

2.3. Study Selection

The identification of primary studies followed a rigorous,
multi stage screening protocol designed to ensure both the
relevance and quality of the selected literature. As illustrated
in Figure 2, the process initiated with the retrieval of 384
candidate articles through the application of the predefined
search string.

In the initial phase, inclusion and exclusion criteria were
systematically applied to eliminate studies falling outside the
review's scope. This preliminary filtering narrowed the
corpus to 200 articles. Subsequently, a screening of titles and
abstracts was conducted to efficiently exclude papers that
lacked immediate topical relevance or alignment with the
study's objectives.

The remaining articles underwent a comprehensive full-text
review. During this stage, each paper was critically appraised
for methodological robustness, data clarity, and consistency
with the overarching research aims. This meticulous
evaluation process resulted in the final selection of 48
primary studies that fully satisfied all criteria.

To ensure data integrity and facilitate organization, the
selected articles were catalogued using the Zotero reference
management platform. This structured workflow ensures that
the final body of literature constitutes a representative and
high-quality evidence base, sufficiently comprehensive to
address the formulated research questions.

—
5 Retrieval of the initial list of articles Records excluded based on
= P n irelevant document type
= using the search string TR o SR
° = : )

E (= EPandtd=) (n = 184 articles).
5
R
— Y
() Reduction of the initial list based on
i h Records excluded based on
=]
g year, ar‘tlc‘lzmtgiae,g;ewew, ) access restrictions
@ = i
8 (200 arficles). (n =152 articles)
@
Redugction of the initial list based on Records excluded due ta
inclusion-exclusion criteria, titles, irrelevance (not related to energy
and abstracts optimization techniques in WSN)
{48 articles). (n = 0articles).
£
=
=
w

Records excluded based on
full-text assessment
(n = O articles).

Redugction based on full-text
assessment
{48 articles).

l

Final list of primary articles:
48 articles.

—

Included

Figure 2: Primary studies selection steps

2.4. Data extraction

Following the study selection, data extraction was performed

on the final set of primary studies to systematically gather the

information required to address the established Research

Questions (RQs). To maintain consistency and completeness

across the review, this process adhered to a standardized

extraction protocol, as summarized in Table 4.

The extracted data were organized into four primary

dimensions, directly aligning with the study's objectives:

e Optimization Strategies: Analyzing how energy

optimization is implemented in WSNs via specific
metaheuristic algorithms.

EAI Endorsed Transactions on
Internet of Things
| Volume 112025 |

2 EA 5



Rudi Hartono, | Wayan Mustika, Selo Sulistyo

e Performance Metrics: Identifying key evaluation
indicators, such as energy consumption, network
lifetime, throughput, and latency.

e Application Domains: Categorizing deployment
contexts, including the Internet of Things (IoT),
precision agriculture, healthcare, and smart cities.

e Algorithmic Innovations: Documenting recent
advancements, including novel designs, hybrid
optimization models, and integrations with emerging
technologies.

This structured categorization ensured that every extracted
data point maintained a direct lineage to a specific research
question. Consequently, this rigorous organization laid a
robust foundation for the subsequent synthesis phase,
facilitating a targeted and coherent analysis of the literature.

2.4. Research quality assessment and data
synthesis

To ensure a holistic evaluation, the data extraction
encompassed both qualitative dimensions (interpreting
algorithmic effectiveness and framing) and quantitative
metrics (usage frequency and performance indicators). Given
the significant heterogeneity in experimental setups across
the literature, a narrative synthesis approach was adopted.
This method integrates diverse outcomes into a coherent
framework, supported by data visualizations to elucidate
patterns that statistical aggregation alone cannot capture.
Furthermore, the review prioritized research quality
specifically methodological rigor and reproducibility to
mitigate the impact of varying reporting standards. This
reflective stance ensured that evidentiary quality, rather than
mere publication volume, governed the synthesis.

The analysis reveals a steady upward trajectory in research
output, as illustrated in Figure 3, which peaked in 2023 with
13 articles dedicated to WSN energy optimization.
Geographically, India leads with over 30 affiliations,
followed closely by China, while contributions from other
nations remain comparatively limited. This distribution
reflects distinct socio-economic drivers: India’s research
focuses on scalable, low-cost solutions, whereas China’s
output aligns with state-led investments in [oT and smart city
infrastructure.

These regional priorities directly influence the research
agenda and algorithmic selection. In terms of dissemination,
IEEE, Springer, and Elsevier serve as the primary publication
venues. Collectively, these findings indicate a vibrant yet
geographically concentrated domain, highlighting an urgent
need for broader global participation and standardized
experimental reporting to ensure the field's maturity.
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Table 3: Comparison with existing surveys

Ref. & Ti Pri Distinctive Insights of C t
YZar Scope & Primary Focus S::E S:::ii:y Taxonomy / Key Limitation “:Z:Ec 1ve Jnsights of Lurren
lusteri jectives. Limitation: F jecti
Shahraki et Clustering Objec ives imitation: Focuses on objec'lv.es Focuses specifically on
Focuses on clustering 2008— rather than specific metaheuristic . . .
al. (2020) >100 . . Metaheuristic Interventions with
goals (coverage, 2019 interventions; data predates the
[26] - . . updated data (2019-2024).
connectivity). "hybrid algorithm" surge.
Yadav & Hierarchical Routing. 2012— Limitation: Heavily biased towards Integrates Routing and Clustering
Mahapatra Focuses on clustering and 2020 ~50 LEACH variants and security, lacking | evenly, without limiting scope to
(2021) [28] | security. depth on modern swarm intelligence. hierarchical structures.
. CH Selection. Exclusive leltat.lon: Covers only the setl'lp. Covers the full energy chain:
Raj et al. 2012— phase, ignoring the data transmission . .
focus on Cluster Head 143 . ) from CH Selection to Multi-hop
(2022) [22] : ) 2020 (routing) phase essential for total .
selection/formation. . Routing.
energy analysis.
Limitation: N LEACH
Hussain et LEACH Successors. m a'10n arrow scope ( . Broad Scope: Analyzes diverse
. . 2018— only); ignores non-LEACH bio- N .
al. (2024) Specific review of 2023 40 inspired algorithms ( WOA bio-inspired algorithms beyond th
[25] LEACH protocol variants. spiredalgo S (e ’ LEACH family.
GWO).
Limitation: A d
. Nature-inspired Coverage. Jrtation . (.i(.ire's ses' Node Focuses on Operational Energy
Singh et al. . 2010— Placement (initialization), not . .
Focuses on Optimal 90 . . . Efficiency (dynamic network
(2021) [24] 2020 operational energy efficiency (active
Coverage/Deployment. . phase).
routing).
Gheisari et | Clustering Algorithms. 2014 Limitation: Dataset is outdated; Updates the research roadmap wit
al. (2020) Trends and challenges in 2019 40 taxonomy misses recent "Hybrid Hybrid Optimization trends from
[23] clustering. Metaheuristic" trends. 2021-2024.
Swetha et Node Placement. 2002 Limitation: Focuses on static Analyzes Dynamic Energy
al. (2019) Strategies for sensor 2018 30 deployment; uses the oldest dataset Management and adaptability
[21] deployment. among compared surveys. in changing environments.
Enerey Optimization Contribution: Synthesizes Cross-
This Work (Rou%i}rll F_ Clustering) via 2019—- 48 Taxonomy: Integrated (CH Selection, | layer Optimization and links
(2025) & & 2024 Clustering, Routing). algorithms to IoT/Smart City

Metaheuristics

domains.

Table 4: Outlines the data extraction properties and their alignment with the research questions.

Property Description Research Question (RQ)

Optimization The metaheuristic algorithms and techniques used for RQ1 : What energy optimization techniques in WSNss

Technique energy optimization in WSNs (e.g., PSO, GA, ACO, have utilized metaheuristic algorithms?

hybrid models).

Performance Key metrics used to evaluate energy efficiency (e.g., RQ2: What performance metrics are used to evaluate

Metrics energy consumption, network lifetime, throughput). the energy efficiency of metaheuristic-based techniques
in WSNs?

Application The fields or domains where WSNs are applied (e.g., [oT, | RQ3 : In which application domains have WSNs been

Domain agriculture, healthcare, smart cities). implemented, and how do these applications impact
system performance?

Recent Recent trends and innovations in metaheuristic algorithms | RQ4 : What are the recent advancements in

Advancements | for energy optimization. metaheuristic algorithms for energy optimization in

WSNs?
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3. Results and analysis

3.1. [RQ1] Energy optimization techniques in
WSNs have increasingly leveraged
metaheuristic  algorithms to  achieve
enhanced efficiency and performance

3.1.1 Routing Protocols in WSN: Concepts,
Structures, and Classifications

In Wireless Sensor Networks (WSNs), routing extends
beyond simple data forwarding; it entails the strategic
orchestration of communication paths to optimize scarce
energy, limited bandwidth, and computational resources.
Consequently, routing protocols must simultaneously
satisfy three conflicting objectives: conserving energy,
preserving network coverage, and meeting Quality of
Service (QoS) demands, such as low latency and reliable
throughput. This requirement is critical in time-sensitive
deployments like  healthcare = monitoring, where
transmission delays or premature node failures can directly
compromise patient safety [7].

Routing protocols are generally classified into three
distinct dimensions. From a structural perspective, they are
categorized as flat-based (where all nodes act as peers),
hierarchical-based (where nodes are grouped into clusters
with assigned leaders), or location-based (utilizing
geographic data for path selection) [29]. From an
operational perspective, protocols may be proactive
(periodic updates), reactive (on-demand discovery), or
hybrid [30]. Finally, regarding optimization objectives,
algorithms are tailored for specific goals, ranging from
energy maximization and QoS compliance [31] to
multipath schemes designed for fault tolerance and
reliability [17]. In practice, these categories often overlap,
as modern algorithms increasingly integrate multiple
criteria to address the complex interplay of network
constraints.

Clustering-based routing exemplifies this architectural
complexity. In this approach, the network is partitioned
into clusters, each managed by a Cluster Head (CH)
responsible for data collection, aggregation, and
transmission to the sink. By minimizing high-energy long-
distance transmissions, hierarchical clustering significantly
reduces power consumption and extends system lifetime.
As illustrated in Figure 4, intra-cluster communication is
kept short-range and energy-efficient, while inter-cluster
routing is optimized for load balancing. Meta-heuristic
optimizations play a pivotal role in this mechanism,
primarily by enhancing the intelligence of CH selection
and enabling dynamic adaptation of routing paths.

2 EA

Sink node

O Non-CH node Link from non-CH to CH

O CHnode ~  ----- » Link from CH to CH or
CH to Sink

Figure 4: The routing process

For instance, Gundeboyina et al. [17] [16] proposed the
Energy- and Distance-aware Multi-Objective Firebug
Swarm Optimization (ED-MOFSO) protocol, which
identifies optimal routes by evaluating both residual energy
and inter-node distances. By employing a composite fitness
function that integrates available energy with hop count,
the algorithm ensures that routing decisions are both
energy-efficient and topology-aware. Furthermore, prior to
route initiation, Cluster Heads (CHs) are selected based on
their proximity to the base station and energy reserves.
Performance evaluations demonstrate measurable gains in
delay, throughput, overhead, and Packet Delivery Ratio
(PDR), illustrating the effective transition of metaheuristic
strategies from theoretical concepts to tangible energy
savings.

In a parallel development, Jeba Anandh et al. [32] explored
a dynamic ant-inspired protocol where control packets
function as artificial agents. These agents traverse the
network to discover paths, depositing pheromone trails that
are dynamically updated based on node energy levels and
traffic load. Over time, optimal paths are reinforced
through pheromone accumulation, guiding data along
sustainable routes. The protocol’s hierarchical structure,
which directs data from outer tiers inward, effectively
reduces bottlenecks and balances traffic. The primary
strength of this scheme lies in its adaptivity; it reacts in
real-time to dynamic network conditions, redistributing
loads to extend node lifetime.

Complementing these approaches, Nayyar et al. [33]
introduced the Improved Energy-Efficient Multipath Ant-
based Routing Protocol (IEEMARP). By integrating
multipath routing with ant colony heuristics and
lightweight memory management, IEEMARP minimizes
redundant storage while ensuring robustness. Comparative
simulations reveal that it outperforms classical protocols
such as Basic ACO, DSDV, and DSR by approximately
10% in terms of energy efficiency, throughput, packet
delivery, and end-to-end delay. While a 10% improvement
may appear incremental, in energy constrained WSNs,
such gains translate into significant extensions in
operational time. This underscores a critical reality:
marginal increases in algorithmic efficiency often yield
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disproportionately large practical benefits in sensor
network longevity.

Collectively, these studies highlight the diversity of routing
innovations within the WSN domain. Whether utilizing
swarm intelligence, multi-objective fitness functions, or
hybrid mechanisms that balance exploration and
exploitation, the unifying principle remains consistent:
routing is not merely a path discovery problem but a
complex challenge of energy-aware orchestration, where
the survival of individual nodes contributes directly to the
sustainability of the entire network.

3.1.2 Clustering Techniques in Wireless Sensor
Networks

Clustering constitutes a fundamental strategy in Wireless
Sensor Networks (WSNs), designed to enhance
communication efficiency and maximize network
longevity. in this hierarchical architecture, sensor nodes are
organized into groups, each governed by a Cluster Head
(CH). The CH functions as a local coordinator, responsible
for data aggregation to eliminate redundancy before
relaying the refined information to the Base Station (BS).
By minimizing direct, long-range transmissions from
individual nodes, this layered structure significantly
mitigates communication overhead and conserves critical
energy resources.

As illustrated in Figure 5, the cluster-based architecture
streamlines data flow: CHs manage local sensing coverage
and act as the primary gateway to the BS. This setup not
only reduces congestion and coverage gaps but also
improves scalability. However, the efficacy of clustering
depends heavily on the underlying algorithms for cluster
formation and CH selection. These approaches are
generally categorized into three primary taxonomies:
classical protocols, optimization-based techniques, and
machine learning-oriented solutions.

Classical methods, such as the Low-Energy Adaptive
Clustering Hierarchy (LEACH) and Hybrid Energy-
Efficient Distributed Clustering (HEED), offer simplicity
and Dbaseline energy awareness. However, their
performance is often compromised in large-scale
deployments or heterogeneous environments, where static
parameters fail to adapt to dynamic network conditions
[34]. Consequently, research has shifted toward
optimization-based techniques, particularly those utilizing
metaheuristics like Particle Swarm Optimization (PSO).
These methods seek near-optimal cluster configurations by
dynamically minimizing energy consumption while
maintaining robust connectivity [5]. More recently,
machine learning approaches, including fuzzy logic and
adaptive neural networks, have further enhanced system
flexibility, enabling real-time responses to topological
changes.

Despite these advancements, clustering implementation
faces persistent challenges, such as the "energy hole"

problem caused by uneven load distribution among CHs
and the stringent latency requirements of time-sensitive
applications. Therefore, selecting an appropriate technique
requires a careful trade-off analysis tailored to specific use
cases, ranging from environmental monitoring to mission-
critical IoT healthcare. To provide a clear landscape of the
current state-of-the-art, Table 8 presents the distribution of
reviewed papers categorized by technique, evaluation
metric, and algorithmic focus.

@ Cluster head
© Normal node
A Base station

Influence area for

aCH
—— Data message

Aggregated
= ™ message

Figure 5: Cluster-based architecture

The distribution of metaheuristic algorithms for energy
optimization in Wireless Sensor Networks (WSNs) reveals
a distinct hierarchy in research focus. Ant Colony
Optimization (ACO) and Particle Swarm Optimization
(PSO) have established themselves as the dominant
paradigms, collectively representing 47% of the reviewed
studies (23.5% each). This prevalence indicates their
adaptability and long-proven effectiveness in complex
routing and clustering tasks [1], [20]. Such dominance is
empirically justified; for instance, advanced PSO-based
implementations have demonstrated substantial extensions
in network longevity compared to other metaheuristic
benchmarks, including MDCH-PSO and MOPSO variants,
particularly within high-density simulation environments.
[5], while ACO models have achieved energy reductions of
nearly 50% compared to traditional deterministic protocols
[4]. Conversely, emerging algorithms such as Grey Wolf
Optimization (GWO) and Artificial Bee Colony (ABC)
currently account for approximately 3% each, reflecting a
growing but selective interest in alternative swarm-based
strategies [11], [12].

Beyond these dominant pillars, the landscape diversifies
significantly in the intermediate tier. Algorithms such as
Cuckoo Search (CS), Genetic Algorithms (GA), Simulated
Annealing (SA), and specific clustering-centric models like
LEACH each contribute approximately 2.9% to the
literature. These methods are frequently deployed in
specialized or hybrid configurations where standard
protocols exhibit limitations [9], [35]. While their
individual adoption rates may appear marginal, they often
serve as critical testbeds for experimental designs aimed at
addressing niche constraints. At the periphery of current
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research, smaller shares of approximately 1% are attributed
to methods such as Jaya Optimization (JO), League
Championship Particle Swarm Optimization (LCPSO), and
the Bat Optimization Algorithm (BOA). These entries
signify an active exploration phase within the community,
where novel mechanisms are investigated to overcome
specific local optima issues inherent in established
techniques.

The overall distribution, as illustrated in Figure 6,
underscores a dual reality in the field. First, established
algorithms like ACO and PSO remain the technological
backbone of WSN optimization, consistently delivering
measurable improvements in energy efficiency,
throughput, and delay metrics. Second, the incremental rise
of alternative approaches whether GWO, ABC, or
hybridized versions of lesser-known algorithms suggests
that the domain is still evolving. This trend indicates that
WSN energy optimization is not a settled problem but a
continuous trajectory of refinement. To provide a
structured overview of this landscape, the algorithms
identified in the literature are organized under the
taxonomy of optimization techniques, as depicted in Figure
10.

Distribution of metaheuristic algorithms utilized in energy optimization for Wireless
St Networks

mACO uPSO
GWo ABC
ucs mLEACH
mSSA mGA
miso mLCPSO
mISMO  MCGA
mMA DEAOA
FSO EMOGIO
BOA GIOA
BMOCABC ~ WRDOA
(35 =GOA
EWoA  mISA
MMHCT = CSO
FA BWOA
SA APS

Figure 6: Distribution of metaheuristic algorithms
utilized in energy optimization for Wireless Sensor
Networks (WSNs)

3.2. [RQ2] Key performance metrics for
evaluating metaheuristic-based energy
efficiency in WSNs

The distribution of performance metrics, as illustrated in
Figure 7, elucidates the prevailing priorities within the
WSN research community. Energy consumption
dominates the evaluation landscape, featuring in 31.2% of
the reviewed studies. This prevalence is anticipated, given
that energy constitutes the fundamental operational
constraint governing network longevity [4], [5]. Closely
related, the lifetime of live nodes is utilized in 29.8% of
studies, underscoring that preserving node functionality is
not merely a statistical objective but a prerequisite for
maintaining network connectivity and preventing topology
fragmentation [9], [20].
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Complementing  these  energy-centric  parameters,
throughput (19.9%) and Packet Delivery Ratio (PDR)
(11.3%) highlight the critical dimension of reliability.
While throughput quantifies the volume of successful data
transmission, PDR assesses the consistency of packet
arrival. Although these metrics appear less frequently than
energy parameters, their significance remains profound; an
energy-efficient network that fails to deliver data reliably
lacks practical utility, regardless of its operational duration
(7], [14].

Conversely,  end-to-end  delay  (2%)  remains
underrepresented despite its criticality in latency-sensitive
applications, such as disaster management and healthcare
monitoring, where millisecond-level delays can directly
compromise safety [36]. Other auxiliary metrics, including
computation time, communication overhead, and coverage
area, each account for approximately 1%, offering niche
insights into algorithmic complexity and spatial resilience.
Most notably, security-related metrics—specifically
resilience against Denial-of-Service (DoS) attacks—
comprise only 1% of the literature. This scarcity exposes a
significant vulnerability in current methodologies,
particularly for IoT-enabled WSNs where attacks on
resource-constrained nodes can compromise entire system
integrity.

Synthesizing the evidence from Table 8 and Figure 7, a
clear  hierarchical pattern emerges: researchers
overwhelmingly prioritize energy conservation and
lifetime extension, while delay, overhead, and security are
often treated as secondary considerations. However, the
evolving demands of modern WSN applications
necessitate a paradigm shift. The forthcoming challenge is
not merely to optimize energy, but to design holistic
evaluation frameworks that integrate reliability, latency,
and security. Ultimately, while energy efficiency is
foundational, it must not be pursued at the expense of
system dependability and secure operation.

The distribution of performance metrics in evaluating energy optimization techniques
WSN

1 1
W WSN energy consumtion
u Life time node WSN
Throughput
PDR
m End to end delay
 Computation time
™ Data package
W Number of cluster
19.9

m Dead node ratio

Figure 7: The distribution of performance metrics in
evaluating energy optimization techniques WSN

3.3. [RQ3] Application Domains of WSNs
and Their Impact on System Efficiency
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As illustrated in Figure 8, the deployment of Wireless
Sensor Networks (WSNs) permeates diverse sectors, with
healthcare emerging as the predominant domain,
accounting for 24.8% of the reviewed studies. This
prominence underscores the critical integration of WSNs in
patient monitoring, remote diagnostics, and real-time vital
sign tracking—technologies that have fundamentally
reshaped telemedicine architectures [30][37]. Agriculture
follows closely at 20%, where WSNs serve as the
technological foundation for precision farming, soil
assessment, and automated irrigation, thereby minimizing
resource wastage and optimizing yield [9]. Meanwhile,
military applications constitute 16.8%, prioritizing
persistent surveillance, reconnaissance, and target tracking,
which highlights the strategic value of distributed sensing
in mission-critical operations [33].

In the intermediate tier, environmental monitoring
represents 14.4% of the applications, encompassing forest
fire detection, flood risk management, and biodiversity
conservation [32], [38]. Concurrently, smart city
implementations and industrial adoption each capture 9.6%
of the landscape. The former leverages WSNs for urban
efficiency such as traffic control and waste management
while the latter focuses on industrial automation and
process reliability [14], [35].

Specific niche applications further demonstrate the
versatility of the technology. Disaster management (4.8%)
and early warning systems (3.2%) illustrate the role of
WSNs in hazard detection, ranging from seismic activity to
volcanic monitoring. The remaining distribution includes
transportation (2.4%) and specialized security or sub-
agricultural systems (approx. 1% each), confirming that
even specialized sectors derive value from WSN
deployment [13].

Collectively, this distribution evidences a technology that
is both versatile and scalable. The dominance of healthcare
and agriculture reflects an alignment with fundamental
human needs, while military and environmental monitoring
are driven by strategic and ecological imperatives.
Ultimately, these trends indicate that WSNs have evolved
beyond niche experimental deployments to become the
ubiquitous backbone of intelligent, resilient, and
sustainable systems.

Distribution of application domains for WSN
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Figure 8: Distribution of application domains for
WSN

3.4. [RQ4] Recent  Trends and
Advancements in Metaheuristic Algorithms

Recent developments in metaheuristic algorithms for
Wireless Sensor Networks (WSN5s) are principally driven
by two operational imperatives: minimizing energy
consumption and sustaining high-performance metrics.
Among the reviewed studies, Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO) maintain a
dominant position, each utilized in 16% of the cases
[1][20]. This prevalence is not coincidental but empirically
substantiated; ACO has consistently demonstrated the
capacity to reduce energy usage by approximately 50%
compared to classical routing schemes [4], whereas PSO-
based protocols, such as the PSO-EEC variant [5], have
demonstrated substantial extensions in network lifetime
compared to advanced benchmarks like MDCH-PSO and
MOPSO, particularly in high-density simulation
environments. These robust empirical outcomes justify the
enduring research focus on these foundational algorithms.

In contrast, emerging techniques such as Grey Wolf
Optimization (GWO) and Artificial Bee Colony (ABC)
appear less frequently, each accounting for 3% of the
literature. However, their adoption signifies a strategic shift
toward alternatives better suited for specific constraints,
such as heterogeneous WSN environments or security-
aware deployments [11][12]. Beyond these, specialized
methods including Cuckoo Search (CS), Genetic
Algorithms (GA), and various hybrid metaheuristics
surface in smaller proportions. These algorithms function
as experimental testbeds where unconventional strategies
are rigorously evaluated to address niche optimization
challenges [9][42].

As illustrated in Figure 9, the selection of objective
functions closely aligns with these algorithmic preferences.
Maximizing residual energy remains the predominant
objective, accounting for 46.7% of studies, which
underscores that node survival is central to the research
agenda. Inter-node distance (22.2%) is also prioritized as a
critical factor for lowering transmission costs and
stabilizing connectivity. Meanwhile, objectives focused on
optimal clustering (6.7%) and routing efficiency (4.4%)
represent ongoing efforts to refine topology control and
streamline communication paths [26][36]. Recently,
optimization criteria have expanded beyond the traditional
energy—distance paradigm to include trust management for
secure data exchange, multi-hop path optimization for
resilience, and load balancing for equitable resource
utilization.

Synthesizing this evidence suggests that the field is
simultaneously stable and evolving. While ACO and PSO
remain the technological workhorses trusted for consistent
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improvements, the diversification into hybrid models and
multi-objective formulations signals a drive toward
algorithmic innovation. Researchers are moving beyond
incremental gains to probe for breakthroughs that address
complex requirements. This trajectory is particularly
relevant for critical domains such as healthcare and
environmental monitoring, where reliability, latency, and
security are as pivotal as energy conservation. Figure 9
encapsulates this dynamic landscape, where established
algorithms coexist with innovative newcomers to push
WSN research toward broader operational horizons.

Distribution of objective functions

mTrust

mSink optimal

Figure 9: Distribution of objective functions

4. Results and analysis

4.1. Synthesis of Key Findings: Trends,
Insights, and Opportunities Metaheuristic
Algorithms

The empirical findings of this review confirm that Ant
Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) remain the dominant approaches in
Wireless Sensor Networks (WSNs). Collectively, they
appear in a significant portion of the reviewed studies,
spanning references [1], [3], [4], [5], [6], [8], [14], [18],
[19],[20], [32], [33], [38], [39], [40], [41]. This prevalence
is not coincidental but stems from their proven efficacy.
Inspired by ant foraging behavior, ACO excels at
identifying optimal communication paths and minimizing
routing energy costs. Similarly, PSO, leveraging swarm
movement dynamics, dynamically tunes network
parameters to extend operational lifetime often exceeding
baseline protocols by more than 200% [12]. Consequently,
these two methods have established themselves as the
foundational pillars of WSN optimization.

However, the algorithmic landscape is evolving.
Alternatives such as Grey Wolf Optimization (GWO) [11]
[42][43] and Artificial Bee Colony (ABC) [12][15][44] are
gaining traction, each representing approximately 3% of
the literature. GWO emulates the social hierarchy and
hunting mechanism of wolf packs to balance exploration
and exploitation, whereas ABC simulates the foraging
behavior of honeybees to optimize resource allocation and
data flow. The distinct advantage of these emerging

methods lies in their ability to mitigate inherent
weaknesses in ACO and PSO, particularly regarding
premature convergence and high computational overhead.
This capability is especially critical for large-scale,
heterogeneous deployments where scalability and fairness
are as pivotal as raw efficiency.

Recent empirical studies substantiate this trend toward
diversification. Qabouche (2023) introduced the Energy-
Efficient and Coverage-Aware Grey Wolf Optimizer
(EEC-GWO), which refines Cluster Head (CH) selection
by integrating node density and inter-node distance into its
fitness function. This approach resulted in improved
coverage ratios, elimination of blind spots, and enhanced
adaptability in heterogeneous networks [11]. In parallel,
Wang et al. (2020) proposed an enhanced ABC-based
clustering protocol that utilizes energy levels and node
density to optimize CH tasks, coupled with a polling
control scheme to alleviate CH energy burdens. The
outcomes are tangible: the protocol achieved higher
throughput, balanced energy consumption, and extended
network lifetimes, proving particularly effective in
reliability-critical scenarios [12].

A comprehensive synthesis of these algorithmic
enhancements and their performance impacts is presented
in Table 7. This summary highlights how established
techniques like ACO and PSO coexist with emerging
alternatives, collectively pushing the boundaries of WSN
optimization in new, more adaptive directions.

4.2. Strengths and Limitations of Existing
Research

Wireless Sensor Networks (WSNs) occupy a central
position in contemporary research due to their critical
versatility in healthcare, environmental monitoring, and the
industrial Internet of Things (IoT). However, persistent
challenges continue to impede their widespread real-world
adoption. While deterministic algorithms were historically
employed to address these issues, recent studies [45]
highlight that evolutionary approaches offer superior
adaptability for solving the NP-hard routing problems
inherent in dynamic WSN environments. A primary
bottleneck is the heavy reliance on simulation-based
evaluations [8] [41] [46]. While simulations serve as
valuable initial testbeds, they rarely capture stochastic real-
world phenomena such as node mobility, fluctuating
energy availability, or environmental heterogeneity [47]
[48]. This disconnect explains the frequent operational
failure of protocols that demonstrate theoretical efficacy
but lack robustness in physical deployments.

Energy efficiency constitutes the cardinal design objective
in WSNs, yet structural inefficiencies such as premature
convergence, suboptimal Cluster Head (CH) selection, and
the "energy hole" problem continue to precipitate energy
hotspots and premature node depletion [49]. Furthermore,
clustering protocols designed to adapt to network dynamics
often remain rigid in practice, failing to accommodate
heterogeneous environments where node capacities vary
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significantly [50] [51]. Consequently, this inability to adapt
leads to inefficient resource utilization and critically
reduced network longevity.

A further limitation lies in the inadequate application of
multi-objective optimization. While protocols such as
LEACH or ACO-based routing successfully extend
network lifetime, they often do so at the detriment of
Quality of Service (QoS) or security [52][53]. The
optimization of a single metric frequently compromises
others. This trade-off is particularly precarious in mission-
critical contexts, such as remote healthcare or disaster
response, where system reliability cannot be sacrificed for
marginal energy gains.

Beyond algorithmic constraints, practical deployment
imposes distinct physical and operational challenges.
Conventional architectures relying on fixed sink placement
or single-hop routing hinder scalability in large-scale
networks. Conversely, emerging solutions like UAV-
assisted WSNs face regulatory and hardware limitations.
Moreover, clustering algorithms that neglect dynamic CH
placement risk inducing imbalanced energy consumption
and coverage holes. A critical, yet often under-discussed
issue, is spatiotemporal data correlation; ignoring this
factor results in redundant transmissions and inefficient
data fusion, thereby aggravating energy drain.

Collectively, these findings indicate that while WSN
research has advanced significantly, substantial gaps
persist. The field requires adaptive algorithms responsive
to environmental volatility, multi-objective frameworks
that balance conflicting trade-offs, and holistic designs that
account for node-level constraints. Table 5 [54] synthesizes
these unresolved challenges and outlines strategic
directions for future exploration.

Table 5: A brief evaluation of the advantages and
disadvantages of existing approaches in previous
research

Category Limljt?tion Examples Impact
Over-reliance
on simulation Limits real-
. Node
. . environments o world
Simulation o mobility, N
. , failing to . applicabilit
Reliance environment
capture real- al dvnamics | Y and
world Y validation
complexities
Premature
convergence, Early node
Ener unbalanced LEACH, failure,
E fﬁc%gnc energy PSO-based reduced
y consumption, | protocols network
hotspot lifetime
issues
Dynamic Static . Static sink Inefficient
- configuration performanc
Adaptability .S placement, .
s, limited e in
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support for single-hop dynamic
heterogeneou | routing environmen
s networks ts
}illzgz?fges Trade-offs
Multi- energy ACO, hybrid affect
objective ; holistic
efficiency, PSO-GWO R
Trade-offs QoS and optimizatio
security "
High
. Increases
complexity resource
Computation | in WbHA | pso.ACO, | usage,
. PEOTIIAMS, | EAPSO delays
Complexity limiting real- .
time demglon—
application making
Fixed CH
- placement, Inefficient
Sﬁglablhty limited LEACH, clustering,
Coverage handling of static routing | reduced
& large-scale coverage
deployments

4.3. Emerging Trends in Wireless Sensor

Networks: Advancements and Future
Directions
Recent advancements in Wireless Sensor Networks

(WSNs) demonstrate a decisive paradigm shift toward
energy efficiency, scalability, and adaptability. A primary
driver of this momentum is the evolution of hybrid
metaheuristic algorithms notably PSO, ACO, and GWO
which refine Cluster Head (CH) selection to optimize the
trade-off between energy consumption and network
longevity [55]. These contributions represent substantial
operational enhancements rather than mere incremental
improvements; superior clustering directly correlates with
prolonged nodal survival and stabilized connectivity within
energy-constrained environments.

Scalability, historically a limiting factor in WSN
deployment, is currently being revolutionized through the
integration of mobile sinks and UAV-assisted routing.
UAVs possess the capability to reposition dynamically,
thereby maintaining node connectivity and minimizing
redundant transmissions [56]. This adaptability is of
significant practical utility, particularly in scenarios
characterized by node mobility or stochastic environmental
shifts [57].

Concurrently, advancements in data fusion and
compression techniques are proving critical. By embedding
Recurrent Neural Networks (RNNs) or grey prediction
models into clustering and routing architectures,
researchers have successfully mitigated transmission
overhead while preserving data fidelity [58] [59]. The
outcome is a dual advantage: significant reduction in
energy depletion coupled with the delivery of more
accurate, timely information.
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A parallel methodological evolution is the adoption of
multi-objective optimization frameworks. Protocols such
as ODMRP-ACO and IEEMARP are designed to
simultaneously target energy efficiency, Quality of Service
(QoS), and security metrics, including packet delivery
ratio, latency, and reliability. Similarly, recent hybrid
approaches like the HPSO-based routing design by Selvan
et al. [60] have successfully integrated trust metrics and
congestion control into the optimization process, ensuring
that energy efficiency does not compromise network
security. These frameworks are indispensable for real-time
or mission-critical deployments, where the optimization of
one metric cannot be achieved at the expense of system
integrity [61].

Beyond protocol design, the convergence of [oT and WSNs
is fundamentally transforming the field. The edge
computing paradigm shifts data processing closer to the
source nodes, effectively reducing latency and conserving
bandwidth, while blockchain integration ensures secure
and trustworthy data exchanges [62]. When synergistic
with energy harvesting, duty cycling, and predictive
modeling, these technologies transition WSNs from
experimental prototypes into  sustainable, robust
infrastructures ready for large-scale deployment [63].

In conclusion, the trajectory of WSN research is pivoting
from abstract simulations toward intelligent, adaptive, and
deployment-ready solutions. These innovations pave the
way for resilient networks capable of supporting diverse
applications, ranging from flood monitoring and patient
tracking to industrial automation. A comprehensive
synthesis of these future directions is presented in Table 6.

Table 6: Emerging trends in Wireless Sensor

Networks
Trend Ali:gx(?rrirg)ll:ls Applications
PSO, GWO, Urban
Energy Efficiency ACO, ED- monitoring,
MOFSO agriculture
PSO-ACO, Industrial IoT,
Hybrid Algorithms MIGJOA, ABC- disaster
GWO response
Flood
Dynamic UAV-assisted, monitoring,
Adaptability mobile sink wildfire
detection
Data RNN-based, Grey | Environmental
Fusion/Compression | prediction monitoring
. ODMRP-ACO, Real-time health
QoS and Security IEEMARP monitoring
Heterogeneous HWhSN Smart cities,
Networks techniques, IoT- remote sensing
enabled
Predictive
Al and Machine CNN, RNN, maintenance,
Learning Requrcement anomgly
Learning detection, smart
agriculture
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4.4. Research Gaps in Wireless Sensor
Networks (WSNs) Optimization

Despite substantial advancements in Wireless Sensor
Network (WSN) research, achieving optimal energy
efficiency, scalability, and real-world applicability remains
a formidable challenge. While existing literature
extensively addresses energy consumption and data
transmission, it frequently overlooks the concurrent
optimization of node heterogeneity, mobility, and Cluster
Head (CH) selection within dynamic environments.
Foundational protocols, such as LEACH, have been widely
implemented but exhibit significant limitations in
managing dynamic topologies and balancing energy
distribution, often resulting in premature node failure and
reduced network longevity [64]. Furthermore, the
integration of clustering and routing mechanisms remains
largely fragmented; this lack of cross-layer synergy
restricts the potential for holistic improvements in both
energy conservation and overall network performance [65].

The constraints of contemporary algorithms precipitate a
critical need for methodologies tailored to heterogeneous
WSNs. For instance, protocols like EECZ-SEP, which
incorporate helper nodes, have demonstrated marked
improvements in energy efficiency. However, their
adaptability to dynamic, large-scale networks remains
insufficiently explored. The absence of fully developed
multi-hop and multi-layer architectures further impedes
performance in practical deployments, where stochastic
environmental factors significantly impact sensor
reliability [66]. In parallel, while UAV-assisted data
collection and bio-inspired algorithms offer promising
enhancements, they are currently hindered by inherent
constraints such as UAV energy budgets, obstacle
avoidance, and environmental variability [67]. Moreover,
ensuring security and scalability particularly within
Industrial IoT (IIoT) contexts necessitates protocols
capable of withstanding evolving cyber threats and
accommodating increasing node densities.

Prospectively, the evolution of WSN capabilities
necessitates the adoption of hybrid meta-heuristic
algorithms, adaptive clustering mechanisms, and energy-
aware routing protocols that respond effectively to
heterogeneous and dynamic conditions. The critical
frontier lies in integrating clustering and routing into a
unified, adaptive framework supported by advanced
machine learning and predictive analytics. Such integration
enhances decision-making, maximizes energy efficiency,
and fortifies system resilience in real-time applications
[66]. Ultimately, these innovations possess the potential to
bridge the persistent gap between theoretical simulation
and practical deployment, thereby enabling robust, scalable
WSN solutions for domains ranging from precision
environmental —monitoring to complex industrial
automation.
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5. Conclusion

This Systematic Literature Review (SLR) underscores the
pivotal role of metaheuristic algorithms in enhancing the
operational longevity and efficiency of Wireless Sensor
Networks (WSNs). The synthesis of evidence confirms that
established  techniques, particularly Ant Colony
Optimization (ACO) and Particle Swarm Optimization
(PSO), constitute the cornerstone of current research. ACO
remains dominant in optimizing routing paths and Cluster
Head (CH) selection, while PSO excels in refining energy
balance and coverage optimization. These contributions
transcend theoretical improvements; they translate directly
into empirically validated extensions of network lifetime
and stability under varying load conditions.

However, the research landscape is evolving beyond these
foundational algorithms. The emergence of Grey Wolf
Optimization (GWO), Artificial Bee Colony (ABC), and
hybrid metaheuristic schemes signals a strategic shift
toward addressing complex, multi-dimensional trade-offs
where single-objective algorithms often falter. The
increasing adoption of these techniques reflects a growing
community consensus: relying on singular methods is
insufficient for dynamic, heterogencous deployments.
Instead, the focus is pivoting toward cross-layer
optimization  strategies that mitigate premature
convergence and avoid local optima.

Despite this algorithmic progress, critical gaps persist.
Security protocols and trust management mechanisms
remain conspicuously underrepresented in energy
optimization frameworks. Furthermore, the reliance on
simulation-based validation continues to overshadow
physical testbed implementations. This disconnect is
particularly precarious for mission-critical domains such as
healthcare and Industrial IoT, where energy depletion or
routing instability is not merely a technical inefficiency but
a potential cause of catastrophic failure endangering patient
safety or critical infrastructure.

Prospectively, the trajectory of WSN research points
toward adaptive and hybrid metaheuristics capable of
integrating dynamic clustering, multi-objective routing,
and resilience against heterogeneous node capacities.

The convergence of these algorithms with Machine
Learning, predictive analytics, UAV-assisted data
collection, Edge Computing, and Blockchain offers
transformative opportunities to bridge the chasm between
laboratory models and field-ready solutions. While some of
these integrations are emerging, others remain theoretical
concepts pending rigorous empirical validation.

Ultimately, achieving sustainable WSNs demands more
than incremental algorithmic tuning. It requires the
development of holistic frameworks that simultaneously
balance Energy efficiency, Quality of Service (QoS), and
Security within stochastic environments. If this research
trajectory is sustained, WSNs will evolve from

2 EA

15

experimental networks into resilient, foundational
infrastructures capable of supporting the rigorous demands
of environmental monitoring, smart healthcare, and future
smart cities.
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Table 7: The basic principles of optimizing WSN

Algorithm The basic principles of optimizing Wireless Sensor Networks (WSNs)

ACO Routing Path Discovery: ACO generates ants at source nodes to explore optimal routes to sink nodes, considering
energy consumption and delay [17].

Energy Efficiency: Updates pheromone values based on node quality, minimizing energy usage and extending
network lifetime [13].

Performance in Multimedia Applications: ACO-based protocols, like EEABR, achieve higher throughput and
better QoS compared to traditional protocols (e.g., DSDV, AODV) [13].

Energy-Aware Routing: EEABR exemplifies ACO's effectiveness in ensuring energy-conscious communication
in WSNs [13].

Dynamic Adaptability: ACO adapts to network changes (e.g., node failures, traffic variations), ensuring reliable
and efficient communication [13].

SO Energy-Efficient Strategy: PSO is effective in optimizing Cluster Head (CH) selection to enhance network lifetime
and reduce power consumption [68].

CH Optimization: Determines optimal CHs based on proximity to other nodes and residual energy, ensuring
sustained network performance [68] [5].

Hybrid Approaches: Integration with algorithms like Improved LEACH (ILEACH) improves CH selection,
enabling better load balancing and extended network lifespan [68].

Simulation Results: PSO-based models demonstrate significant improvements in WSN resilience and efficiency
compared to traditional methods [68].

Low Computational Complexity: PSO's simplicity makes it suitable for real-time WSN applications requiring
timely data transmission [69] .

GWO Optimal CH Selection: GWO significantly improves network performance in terms of coverage, throughput, and
energy consumption by optimizing Cluster Head (CH) selection [11].

Adaptive Nature: Dynamically adjusts search agent positions based on solution fitness, effectively addressing
varying energy levels and communication distances in WSNs [8].

Objective Function: Combines parameters like intra-cluster distance, CH balancing factors, and residual energy to
minimize energy consumption and maximize network lifetime [11].

Superior Performance: Outperforms other metaheuristic algorithms, such as PSO, in computational efficiency and
energy-efficient clustering and routing [8].

Hybrid Approaches: Integrating GWO with other optimization techniques further enhances clustering and dynamic
CH selection, improving network stability and longevity [11].

Exploration and Exploitation: Exhibits superior capabilities in balancing exploration and exploitation, making it a
robust choice for energy-efficient routing in WSNs [11].

FSO Efficient Clustering : FSO optimizes Cluster Head (CH) selection, reducing energy consumption for data
transmission within the network.

Optimal Routing : FSO's rapid identification capabilities enable the shortest and most energy-efficient routes
between source nodes and the Base Station (BS), enhancing overall energy efficiency.

Parameter Optimization : FSO algorithms balance exploration and exploitation of the solution space using tailored
parameters, preventing unnecessary energy expenditure on suboptimal solutions.

Independent Search Capability : Leveraging Hadamard manipulation, FSO performs independent searches across
dimensions, effectively exploring potential energy-efficient network configurations.

Reduced Overhead : FSO minimizes routing overhead, reducing control messages and computational demands,
which directly saves network energy.

Extended Network Lifetime: By optimizing clustering and routing, FSO reduces node energy consumption,
prolonging operational lifespans and maintaining long-term network connectivity [16].
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WOA The Whale Optimization Algorithm (WOA) has been effectively applied in Wireless Sensor Networks (WSNs) to
optimize Cluster Head (CH) selection by evaluating nodes based on energy levels and proximity to the base station,
forming clusters that minimize transmission energy. In routing, WOA prioritizes nodes with high residual energy
to reduce failure risks, accelerate data delivery, and extend network lifetime. Its energy-focused fitness functions
ensure efficient operation with minimal waste, while multi-objective variants such as M-EBWOA have shown
superior performance over traditional approaches like LEACH, HGWSFO, GA-PSO, and ECMOSSA. Simulation
tools such as MATLAB support the design and validation of WOA-based methods, and future integration with
advanced optimization techniques offers further potential for energy savings and longevity [37].

Figure 10: Taxonomy of the optimization technique
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Table 8: Distribution of papers based on techniques, metrics, and algorithms

Paper Algorithm Optimization Performance Metrics Application Domain Algorithm
(Year) | optimization techniques
techniques
Hybrid Improv Routing | Cluste Energy Lifeti Thr PDR End to | Medic Agricult | Military | Environ | Smart| Ind | Dis
e ring consum me oug end al ure mental city ustr | ast
ption node hput Delay monitor y er
ing

2024 v v v v v CS, ACO
[20]
2024 v v v v v ABC, PSO,
[15] CSO
2024 v v v v ABC, ACO
[44]
2024 v v v v v v GJOA
9]
2024 v v v v v EMOGIJO
[10]
2024 v v v v v MA
[35]
2024 v v v v v v CGA,
[43] GWO
2024 v v v v v v v LCPSO
[70]
2024 v v v v v PSO
[31]
2024 v v v v APSO
[71]
2024 v v v v v LEACH
[72]
2023 v v v v v ACO, PSO
(1]
2023 v v v v v v PSO,
[14] OCABC
2023 v v v v v v v ACO
[39]
2023 v v v v v BWOA
[37]
2023 v v v v v v v PSO
(73]
2023 v v v v v v v PSO
[19]
2023 v v v v ACO
[7]
2023 v v v v ACO,
[42] LEACH
2023 v v v v v v v SSA
[36]
2023 v v v v v v v v v GWO
(1]
2023 v v v v v v v v FSO
[16]
2023 v v v v v v v v v DEAOA
[74]
2023 v v v v v v v v PSO
[75]
2022 v v v v v v v PSO, GA
(2]
2022 v v v v v GOA,
[3] WoA, ACO
2022 v v v v v v PSO, LSA
[18]
2022 v v v v v ACO,
[38] LEACH
2022 v v v v v v v JSO
[46]
2022 v v v v v v PSO, ACO
[76]
2022 v v v ISMO
[77]
2021 v v v v v v v v RDOA, SA
[78]

18 EAl Endorsed Transactions on

2 EA

Internet of Things

| Volume 1112025 |



Metaheuristic Approaches for Energy Optimization in Wireless Sensor Networks: A Systematic Review of Trends,
Challenges, and Future Directions

2021 v v v v v v PSO
[5]
2021 v v v PSO
[40]
2021 v v v v v v v v BOA, ACO
[79]
2021 v v v v v v MMHCT
[80]
2021 v v v v v v v ACO
[17]
2020 v v v v v v v FA, PSO
(8]
2020 v v v v v PSO
(6]
2020 v v v v PSO, SSA
[33]
2020 v v v v v v v ABC
[12]
2019 v v v v v v ACO
[41]
2019 v v v v v GWO, TS
(4]
2019 v v v v v v v v ACO
[13]
2019 v v v v v v ACO
[81]
2019 v v v v v v ACO, GS,
[82] PSO, CS
[ |

Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Whale Optimization Algorithm
(WOA), Ant Colony Optimization algorithm (ACO), Firefly Algorithm (FA), Cuckoo Search Algorithm (CSA), Optimal Clustering
Artificial Been Colony (OCABC), Red Deer Optimization Algorithm (RDOA), Black Widow Optimization Algorithm (BWOA), Cat
Swarm Optimization (CSO), Metaheuristic Multilevel Heterogen Clustering Technique (MMHCT), Lightning Search Algorithm
(LSA), Salp Swarm Algorithm (SSA), Tabu Search (TS), Low Energy Adaptive Clustering Hierarchy (LEACH), Squirrel Search
Algorithm (SSA), Jellyfish Search Optimize (JSO), Golden Jackal Optimization Algorithm (GJOA), Butterfly Optimization Algorithm
(BOA), Multi Objective Golden Jackal Optimization (MOGJO), Firebug Swarm Optimization (FSO), Differential Evolution with
Arithmetic Optimization Algorithm (DEAOA), Memetic Algorithm (MA), Chaotic Genetic Algorithm (CGA), Improved Spider
Monkey Optimization Algorithm (ISMO), Levy chaotic particle swarm optimization algorithm (LCPSO), Accelerated Particle Swarm
Optimization Algorithm (ASPO), Algoritma cuckoo search (C
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