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Abstract 

Wireless Sensor Networks (WSNs) have become a foundational technology across diverse domains, ranging from critical 
healthcare monitoring to large-scale environmental management. However, the severe energy constraints of sensor nodes 
remain a persistent bottleneck, threatening both operational efficiency and network longevity. While metaheuristic 
algorithms offer promising solutions, existing reviews often focus on isolated network layers or rely on outdated datasets. 
Addressing this gap, this Systematic Literature Review (SLR) analyzes 48 primary studies published between 2019 and 
2024, offering a holistic taxonomy that integrates routing and clustering optimizations. The findings reveal that Ant Colony 
Optimization (ACO) and Particle Swarm Optimization (PSO) continue to dominate the field, each appearing in 23.5% of 
studies. However, a decisive shift is observed toward hybrid techniques such as Firefly–PSO and Grey Wolf Optimization 
variants which demonstrate enhanced adaptability in avoiding local optima, albeit at higher computational costs. 
Performance evaluations remain heavily simulation-driven, primarily focusing on energy consumption (31.2%), network 
lifetime (29.8%), and throughput (19.9%), while real-world validations in domains like Industrial IoT remain scarce. 
Furthermore, the review identifies emerging trends integrating Machine Learning, Edge Computing, and UAV-assisted 
routing into metaheuristic frameworks, signaling a transition toward more secure and multi-objective optimization strategies. 
This study concludes by highlighting critical open issues in fault tolerance, heterogeneous node management, and security-
aware routing, providing a strategic roadmap for developing resilient, deployment-ready WSN solutions. 
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1. Introduction

Wireless Sensor Networks (WSNs) have evolved from a 
futuristic concept into a ubiquitous reality, embedded in 
diverse environments ranging from forests and cities to 
oceans. Serving as the critical infrastructure of the digital age, 
WSNs facilitate applications spanning wildfire monitoring to 
industrial process management. However, a fundamental 
challenge remains: these networks are severely constrained 
by the limited energy of sensor nodes. These nodes are 
typically battery-powered and situated in hostile 
environments where replacement is difficult, if not  

impossible [1]. Consequently, energy depletion is not merely 
a technical inconvenience; in critical scenarios such as 
disaster management or healthcare, it can directly 
compromise system reliability and patient safety [2]. 

To address these energy constraints, metaheuristic algorithms 
have been widely explored, largely because traditional 
deterministic methods often fail to scale or adapt to dynamic, 
uncertain environments [3]. Ant Colony Optimization (ACO) 
based routing, for instance, has successfully extended 
network lifetime by 30.55% and reduced response time by 
14.71% in forest fire detection systems [1]. Similarly, hybrid 
ACO models have achieved nearly 50% energy savings 
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compared to classical variants [4]. Particle Swarm 
Optimization (PSO) has emerged as another dominant 
approach. Notably, the PSO-EEC variant [5] demonstrates 
substantial performance gains in high-density heterogeneous 
network scenarios. Quantifying network lifetime 
improvement as the percentage increase in operational 
rounds, the study reports a 238% gain relative to the MDCH-
PSO protocol and a 71% gain compared to the HSA-PSO 
variant. Furthermore, PSO-EEC consistently outperforms 
other advanced protocols, such as MCHEOR and MOPSO, 
under these conditions. Furthermore, combining PSO with 
Bellman-Ford routing has demonstrated more stable Cluster 
Head (CH) selection and reduced overhead [6]. Recent 
advancements using hybrid Salp Swarm PSO have even 
pushed throughput to 580 kbps with packet delivery ratios 
exceeding 99.4% and delays as low as 12.3 ms [7]. These 
metrics represent significant technological leaps rather than 
minor incremental gains. 

The diversity of metaheuristic applications in this domain is 
remarkable. Modified Grasshopper Optimization with Lévy 
flight has demonstrated resilience in CH selection under 
diverse conditions [3], while Firefly-PSO hybrids have 
improved the balance between energy efficiency and load 
distribution [8]. Multi-objective approaches, such as Golden 
Jackal Optimization, have managed to optimize energy and 
routing simultaneously, yielding lifetime increases exceeding 
40% in certain trials [9], [10]. Other bio-inspired models, 
including the Grey Wolf Optimizer (GWO), Cuckoo Search, 
and Artificial Bee Colony (ABC), have proven effective in 
balancing energy consumption across heterogeneous WSNs 
[11], [12]. Notably, one study reported a 96.98% performance 
gain compared to existing dynamic multipath routing 
protocols [13]. These compelling figures reflect a research 
community deeply focused on maximizing the utility of 
limited battery resources. 

Despite these promising achievements, critical gaps persist. 
Many protocols that excel in simulations often falter when 
exposed to the complex, unpredictable realities of real world 
deployments [14]. Furthermore, energy optimization is 
frequently treated in isolation, leaving essential factors such 
as latency, reliability, and fault tolerance as secondary 
considerations [15], [16]. Although Quality of Service (QoS) 
aware secure routing protocols have proven feasible, security 
is rarely integrated into energy-aware designs [17]. 
Moreover, no single algorithm dominates across all 
environments. While ACO excels in adaptive routing and 
PSO is superior in clustering, hybrid models while often 
outperforming both introduce higher computational overhead 
[18], [19]. Striking the right balance between efficiency and 
complexity remains a non-trivial, unsolved research puzzle. 

Therefore, a systematic review of metaheuristic approaches 
for WSN energy optimization is both timely and necessary. 
The purpose of this study is twofold: first, to synthesize 
achievements across a spectrum of algorithms, from classical 
ACO and PSO to newer hybrids like Firefly-PSO, Golden 
Jackal, and chaotic GWO; and second, to identify blind spots 
requiring urgent attention. This review aims to go beyond a 

simple catalogue of improvements; it frames the broader 
question of how metaheuristics can evolve into adaptive, 
multi-objective frameworks capable of supporting 
sustainable WSN deployment in IoT-enabled environments. 
While the answer is complex, the trajectory is clear: 
metaheuristics will continue to play a central role in shaping 
intelligent, energy-aware sensor networks. 

This study is motivated by several critical voids in the 
existing literature. First, while specific algorithmic variants 
have demonstrated exceptional performance gains 
particularly in simulation-based clustering protocols [5] these 
findings often remain as isolated empirical successes. 
Consequently, there is a distinct lack of comprehensive 
analysis that synthesizes these scattered performance 
breakthroughs into a coherent, evolutionary trend applicable 
to broader WSN deployments. 

Second, the gap between theoretical advancement and 
practical reliability remains wide; for instance, while 
compression based routing has shown an 84% path reduction 
in simulations [20], evaluations in real-world deployments 
remain scarce. Third, the integration of emerging 
technologies such as machine learning, reinforcement 
learning, and IoT driven adaptive optimization with 
metaheuristics is still underdeveloped, despite early promise 
in bridging cross-domain intelligence [7], [15], [16]. 

Consequently, it is insufficient to merely celebrate 
performance ratios; it is crucial to interrogate the 
transferability, scalability, and robustness of these solutions. 
To this end, this Systematic Literature Review (SLR) 
provides a holistic overview of energy efficient techniques in 
WSNs relying on metaheuristic algorithms. To sharpen the 
focus, four research questions (RQs) are posed: 

• RQ1: What are the prominent energy optimization
techniques in WSNs that utilize metaheuristic
algorithms?

• RQ2: What performance metrics are used to evaluate the 
energy efficiency of these metaheuristic-based
techniques?

• RQ3: In which application domains have these WSNs
been deployed, and how do these contexts impact
system performance?

• RQ4: What are the recent advancements and emerging
trends in metaheuristic algorithms for WSN energy
optimization as highlighted in contemporary literature?

Based on these research questions, the main contributions of 
this study are summarized as follows: 

1. Taxonomy Proposal: This study proposes a decision-
oriented taxonomy categorizing metaheuristic-based
energy optimization methods according to targeted
network operations, including CH selection, clustering,
routing, and hybrid mechanisms.

2. Integrated Synthesis: It presents a synthesis linking
metaheuristic techniques, optimization objectives,
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evaluation metrics, and application domains to facilitate 
clearer method selection and analysis. 

3. Trend Identification: The review identifies recent
methodological evolutions, specifically highlighting the
increasing shift towards hybrid and multi-objective
approaches.

4. Future Roadmap: The study outlines a concise,
actionable research roadmap by consolidating open
challenges and future opportunities derived from the
systematic analysis.

The remainder of this paper is organized as follows: Section 
2 describes the research methodology adopted for the SLR. 
Section 3 presents the results corresponding to RQ1–RQ4. 
Section 4 discusses the findings and their implications. 
Finally, Section 5 concludes the paper by summarizing the 
main contributions and outlining directions for future 
research. 

1.1. Comparison with Existing Surveys 

Although the literature on Wireless Sensor Networks (WSN) 
is extensive, existing reviews often address energy 
optimization in a fragmented manner, focusing on isolated 
network layers or relying on datasets that predate the recent 
surge in hybrid metaheuristic algorithms. To explicitly 
articulate the novelty and necessity of this study, we 
conducted a comparative analysis against eight prominent 
surveys in the field. 

As detailed in Table 3, prior works generally exhibit three 
limitations: 

• Scope Fragmentation: Many surveys focus exclusively
on clustering [21], [22], [23] or node deployment [21],
[24], ignoring the critical cross-layer dependency
between clustering and routing.

• Narrow Algorithmic Focus: Recent reviews often
restrict their scope to specific protocol families, such as
LEACH successors [25], thereby missing the broader
spectrum of modern swarm intelligence (e.g., Golden
Jackal, Salp Swarm) that operate on non-hierarchical
principles.

• Temporal Gaps: Comprehensive methodological
reviews [22], [26] typically cover literature up to 2019
or 2020. Consequently, they fail to capture the paradigm 
shift towards multi-objective and hybrid optimization
techniques that characterizes the 2021–2024 period.

In contrast, this Systematic Literature Review (SLR) bridges 
these gaps by offering a decision-oriented taxonomy that 
integrates Cluster Head (CH) selection, clustering formation, 
and routing into a unified energy optimization framework. 
Furthermore, it focuses strictly on the most recent high-
impact studies (2019–2024), providing distinctive insights 
into the trade-offs between computational complexity and 
network longevity in IoT-enabled environments. 

2. Research Methodology

A Systematic Literature Review (SLR) operates not merely 
as a procedural checklist, but as a disciplined methodology 
designed to identify, evaluate, and synthesize relevant 
research with clarity and precision [27]. The ultimate 
objective is to transcend scattered empirical findings and 
construct a comprehensive, balanced understanding of the 
state of the art within a specific domain. In the context of this 
study, that domain while specific is critical: energy-efficient 
strategies in Wireless Sensor Networks (WSNs) empowered 
by metaheuristic algorithms. 

This review is guided by a set of carefully defined research 
questions focusing on four key themes: energy consumption 
optimization, performance metrics, application domains, and 
algorithmic innovations. Each question is framed to explore 
not only technical specifications but also the extent to which 
metaheuristics can push the operational limits of resource-
constrained networks. This deliberate framing ensures that 
the review avoids becoming a mere catalogue of algorithms, 
instead providing a contextualized analysis of the field. 

To achieve this, we adopted a structured SLR protocol 
consisting of six interconnected stages. These stages function 
as a cycle of refinement rather than a purely mechanical 
sequence, where each step informs the next: 

1. Formulation of Research Questions: Establishing
precise questions to define the review's boundaries and
prevent scope drift.

2. Literature Search: Conducting systematic searches
across multiple digital libraries using tailored keywords
and boolean logic to ensure both breadth and relevance.

3. Primary Research Selection: Applying strict inclusion
and exclusion criteria to filter studies, ensuring a
balance between rigorous selection and comprehensive
coverage.

4. Data Extraction: Systematically recording data
regarding optimization techniques, evaluation metrics,
application domains, and emerging algorithmic trends.

5. Assessment of Research Quality: Evaluating the
methodological soundness, reproducibility, and
contextual relevance of each study to ensure that only
high-quality evidence is synthesized.

6. Data Synthesis: Integrating findings to identify
convergences, contradictions, and research gaps,
thereby answering the research questions with
coherence.

This six-step protocol is illustrated in Figure 1. While the 
figure depicts a logical sequence, the actual process involved 
iterative refinement, where earlier stages were revisited 
whenever ambiguities arose in the literature. This iterative 
approach is essential to scholarly rigor, ensuring that the 
review remains transparent, comprehensive, and firmly 
aligned with the study's initial objectives. 
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2.1. Research questions 

The initial phase of this SLR involved the precise formulation 
of Research Questions (RQs). Well defined RQs are critical 
to ensuring that the review remains focused and does not 
devolve into a disjointed collection of findings. They serve as 
the guiding mechanism that aligns the study with its specific 
objectives and addresses the broader analytical needs of the 
research community. 

To ensure methodological rigor, the formulation of these RQs 
was guided by the Population, Intervention, Comparison, 
Outcomes, and Context (PICOC) framework [27]. The 
selection of PICOC was strategic; it provides a structured lens 
through which diverse studies can be synthesized into 
coherent lines of enquiry. By clearly defining elements such 
as the population (WSNs), intervention (metaheuristic 
algorithms), and outcomes (energy optimization, 
performance, and longevity), the framework anchors the 
review in concrete dimensions. This structural consistency is 
particularly vital in the WSN domain, where metric 
heterogeneity often complicates direct comparisons between 
studies. 

Table 1 summarizes the specific PICOC criteria applied in 
this study. Derived from these criteria, four distinct RQs were 
formulated to drive the investigative process. These questions 
are not merely mechanical; they are designed to probe the 
literature with precision, enabling a critical assessment that 
distinguishes robust empirical evidence from theoretical 
assertions. Table 2 presents the finalized RQs alongside their 
specific research objectives. 

Table 1: Summarizes the PICOC criteria used 

Element Description 
Population Wireless Sensor Networks (WSNs) requiring 

energy-efficient solutions. 
Intervention Metaheuristic algorithms applied to optimize 

energy efficiency in WSNs 
Comparison Comparison of metaheuristic techniques with 

traditional optimization methods or among 
themselves 

Outcomes Improved energy efficiency, extended 
network lifetime, and enhanced system 
performance. 

Context Applications of WSNs across various 
domains, including agriculture, healthcare, 
IoT, and smart cities 

Table 2: Research Question & Objective 

RQ Research Question Objective 

RQ1 
What energy 
optimization 
techniques in WSNs 

To identify and categorize 
energy-efficient techniques 
leveraging metaheuristics. 

have utilized 
metaheuristic 
algorithms? 

RQ2 

What performance 
metrics are used to 
evaluate the energy 
efficiency of 
metaheuristic-based 
techniques in WSNs? 

To explore and analyze the 
key metrics used to assess 
energy efficiency. 

RQ3 

In which application 
domains have WSNs 
been implemented, 
and how do these 
applications impact 
system performance? 

To investigate the domains 
where WSNs are applied and 
their effect on system 
efficiency. 

RQ4 

What are the recent 
advancements in 
metaheuristic 
algorithms for energy 
optimization in 
WSNs? 

To review the latest trends 
and developments in 
metaheuristic algorithms. 

Figure 1: Systematic literature review protocol 
. 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 11 | 2025 | 



 Metaheuristic Approaches for Energy Optimization in Wireless Sensor Networks: A Systematic Review of Trends, 
Challenges, and Future Directions 

2.2. Literature search strategy 

To ensure comprehensive coverage of high-impact research, 
the primary literature search was conducted using the Scopus 
database (https://www.scopus.com/). Scopus was selected for 
its extensive indexing of reputable publishers, including 
IEEE, ScienceDirect, and Springer, which guarantees a 
baseline of peer-reviewed quality. Consistent with the PICOC 
framework defined in the previous section, the search criteria 
were developed to align strictly with the study’s objectives. 

To target studies focusing on energy-efficient techniques in 
Wireless Sensor Networks (WSNs) via metaheuristic 
algorithms, the following Boolean search string was 
formulated: 

( "wireless sensor network" OR "WSN" ) AND ( 
"metaheuristic" OR "genetic algorithm" OR "particle 
swarm optimization" OR "ant colony optimization" OR 
"hybrid metaheuristics" ) AND ( "energy optimization" 
OR "energy efficiency" OR "energy-aware" ) AND ( 
"performance metrics" OR "network lifetime" OR "energy 
consumption" ) AND ( "application" OR "use case" OR 
"domain" ) 

This search string was strategically constructed to intersect 
distinct research dimensions: 
• Context: Energy optimization within WSN

architectures.
• Intervention: The utilization of specific metaheuristic

and hybrid approaches.
• Evaluation: Key performance indicators such as

energy consumption, network lifetime, and
throughput.

• Scope: The application of these systems in diverse
domains, including IoT, agriculture, healthcare, and
smart cities.

To maintain currency and relevance, the search was 
temporally restricted to articles published between 2019 and 
2024. This timeframe ensures that the review captures the 
most recent technological advancements and algorithmic 
trends. Following the initial retrieval, studies were subjected 
to rigorous screening based on predefined inclusion and 
exclusion criteria, ensuring that only high-quality and 
pertinent research was synthesized in this review. 

2.3. Study Selection 

The identification of primary studies followed a rigorous, 
multi stage screening protocol designed to ensure both the 
relevance and quality of the selected literature. As illustrated 
in Figure 2, the process initiated with the retrieval of 384 
candidate articles through the application of the predefined 
search string. 

In the initial phase, inclusion and exclusion criteria were 
systematically applied to eliminate studies falling outside the 
review's scope. This preliminary filtering narrowed the 
corpus to 200 articles. Subsequently, a screening of titles and 
abstracts was conducted to efficiently exclude papers that 
lacked immediate topical relevance or alignment with the 
study's objectives. 

The remaining articles underwent a comprehensive full-text 
review. During this stage, each paper was critically appraised 
for methodological robustness, data clarity, and consistency 
with the overarching research aims. This meticulous 
evaluation process resulted in the final selection of 48 
primary studies that fully satisfied all criteria. 

To ensure data integrity and facilitate organization, the 
selected articles were catalogued using the Zotero reference 
management platform. This structured workflow ensures that 
the final body of literature constitutes a representative and 
high-quality evidence base, sufficiently comprehensive to 
address the formulated research questions. 

Figure 2: Primary studies selection steps 

2.4. Data extraction 

Following the study selection, data extraction was performed 
on the final set of primary studies to systematically gather the 
information required to address the established Research 
Questions (RQs). To maintain consistency and completeness 
across the review, this process adhered to a standardized 
extraction protocol, as summarized in Table 4. 
The extracted data were organized into four primary 
dimensions, directly aligning with the study's objectives: 
• Optimization Strategies: Analyzing how energy

optimization is implemented in WSNs via specific
metaheuristic algorithms.
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• Performance Metrics: Identifying key evaluation
indicators, such as energy consumption, network
lifetime, throughput, and latency.

• Application Domains: Categorizing deployment
contexts, including the Internet of Things (IoT),
precision agriculture, healthcare, and smart cities.

• Algorithmic Innovations: Documenting recent
advancements, including novel designs, hybrid
optimization models, and integrations with emerging
technologies.

This structured categorization ensured that every extracted 
data point maintained a direct lineage to a specific research 
question. Consequently, this rigorous organization laid a 
robust foundation for the subsequent synthesis phase, 
facilitating a targeted and coherent analysis of the literature. 

2.4. Research quality assessment and data 
synthesis 

To ensure a holistic evaluation, the data extraction 
encompassed both qualitative dimensions (interpreting 
algorithmic effectiveness and framing) and quantitative 
metrics (usage frequency and performance indicators). Given 
the significant heterogeneity in experimental setups across 
the literature, a narrative synthesis approach was adopted. 
This method integrates diverse outcomes into a coherent 
framework, supported by data visualizations to elucidate 
patterns that statistical aggregation alone cannot capture. 
Furthermore, the review prioritized research quality 
specifically methodological rigor and reproducibility to 
mitigate the impact of varying reporting standards. This 
reflective stance ensured that evidentiary quality, rather than 
mere publication volume, governed the synthesis. 

The analysis reveals a steady upward trajectory in research 
output, as illustrated in Figure 3, which peaked in 2023 with 
13 articles dedicated to WSN energy optimization. 
Geographically, India leads with over 30 affiliations, 
followed closely by China, while contributions from other 
nations remain comparatively limited. This distribution 
reflects distinct socio-economic drivers: India’s research 
focuses on scalable, low-cost solutions, whereas China’s 
output aligns with state-led investments in IoT and smart city 
infrastructure. 

These regional priorities directly influence the research 
agenda and algorithmic selection. In terms of dissemination, 
IEEE, Springer, and Elsevier serve as the primary publication 
venues. Collectively, these findings indicate a vibrant yet 
geographically concentrated domain, highlighting an urgent 
need for broader global participation and standardized 
experimental reporting to ensure the field's maturity. 

Figure 3a: Paper distribution country 

Figure 3b: Paper distribution year 

Figure 3c: Paper distribution of publishers institution 
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Table 3: Comparison with existing surveys 

Ref. & 
Year 

Scope & Primary Focus 
Time 
Span 

Primary 
Studies 

Taxonomy / Key Limitation 
Distinctive Insights of Current 
Work 

Shahraki et 
al. (2020) 
[26] 

Clustering Objectives. 
Focuses on clustering 
goals (coverage, 
connectivity). 

2008–
2019 >100

Limitation: Focuses on objectives 
rather than specific metaheuristic 
interventions; data predates the 
"hybrid algorithm" surge. 

Focuses specifically on 
Metaheuristic Interventions with 
updated data (2019–2024). 

Yadav & 
Mahapatra 
(2021) [28] 

Hierarchical Routing. 
Focuses on clustering and 
security. 

2012–
2020 

~50 
Limitation: Heavily biased towards 
LEACH variants and security, lacking 
depth on modern swarm intelligence. 

Integrates Routing and Clustering 
evenly, without limiting scope to 
hierarchical structures. 

Raj et al. 
(2022) [22] 

CH Selection. Exclusive 
focus on Cluster Head 
selection/formation. 

2012–
2020 

143 

Limitation: Covers only the setup 
phase, ignoring the data transmission 
(routing) phase essential for total 
energy analysis. 

Covers the full energy chain: 
from CH Selection to Multi-hop 
Routing. 

Hussain et 
al. (2024) 
[25] 

LEACH Successors. 
Specific review of 
LEACH protocol variants. 

2018–
2023 

40 

Limitation: Narrow scope (LEACH 
only); ignores non-LEACH bio-
inspired algorithms (e.g., WOA, 
GWO). 

Broad Scope: Analyzes diverse 
bio-inspired algorithms beyond the
LEACH family. 

Singh et al. 
(2021) [24] 

Nature-inspired Coverage. 
Focuses on Optimal 
Coverage/Deployment. 

2010–
2020 

90 

Limitation: Addresses Node 
Placement (initialization), not 
operational energy efficiency (active 
routing). 

Focuses on Operational Energy 
Efficiency (dynamic network 
phase). 

Gheisari et 
al. (2020) 
[23] 

Clustering Algorithms. 
Trends and challenges in 
clustering. 

2014–
2019 

40 
Limitation: Dataset is outdated; 
taxonomy misses recent "Hybrid 
Metaheuristic" trends. 

Updates the research roadmap with
Hybrid Optimization trends from 
2021–2024. 

Swetha et 
al. (2019) 
[21] 

Node Placement. 
Strategies for sensor 
deployment. 

2002–
2018 

30 
Limitation: Focuses on static 
deployment; uses the oldest dataset 
among compared surveys. 

Analyzes Dynamic Energy 
Management and adaptability 
in changing environments. 

This Work 
(2025) 

Energy Optimization 
(Routing + Clustering) via 
Metaheuristics 

2019–
2024 

48 Taxonomy: Integrated (CH Selection, 
Clustering, Routing). 

Contribution: Synthesizes Cross-
layer Optimization and links 
algorithms to IoT/Smart City 
domains. 

Table 4: Outlines the data extraction properties and their alignment with the research questions. 

Property Description Research Question (RQ) 
Optimization 
Technique 

The metaheuristic algorithms and techniques used for 
energy optimization in WSNs (e.g., PSO, GA, ACO, 
hybrid models). 

RQ1 : What energy optimization techniques in WSNs 
have utilized metaheuristic algorithms? 

Performance 
Metrics 

Key metrics used to evaluate energy efficiency (e.g., 
energy consumption, network lifetime, throughput). 

RQ2: What performance metrics are used to evaluate 
the energy efficiency of metaheuristic-based techniques 
in WSNs? 

Application 
Domain 

The fields or domains where WSNs are applied (e.g., IoT, 
agriculture, healthcare, smart cities). 

RQ3 : In which application domains have WSNs been 
implemented, and how do these applications impact 
system performance? 

Recent 
Advancements 

Recent trends and innovations in metaheuristic algorithms 
for energy optimization. 

RQ4 : What are the recent advancements in 
metaheuristic algorithms for energy optimization in 
WSNs? 
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3. Results and analysis

3.1. [RQ1] Energy optimization techniques in 
WSNs have increasingly leveraged 
metaheuristic algorithms to achieve 
enhanced efficiency and performance 

3.1.1 Routing Protocols in WSN: Concepts, 
Structures, and Classifications 
In Wireless Sensor Networks (WSNs), routing extends 
beyond simple data forwarding; it entails the strategic 
orchestration of communication paths to optimize scarce 
energy, limited bandwidth, and computational resources. 
Consequently, routing protocols must simultaneously 
satisfy three conflicting objectives: conserving energy, 
preserving network coverage, and meeting Quality of 
Service (QoS) demands, such as low latency and reliable 
throughput. This requirement is critical in time-sensitive 
deployments like healthcare monitoring, where 
transmission delays or premature node failures can directly 
compromise patient safety [7]. 

Routing protocols are generally classified into three 
distinct dimensions. From a structural perspective, they are 
categorized as flat-based (where all nodes act as peers), 
hierarchical-based (where nodes are grouped into clusters 
with assigned leaders), or location-based (utilizing 
geographic data for path selection) [29]. From an 
operational perspective, protocols may be proactive 
(periodic updates), reactive (on-demand discovery), or 
hybrid [30]. Finally, regarding optimization objectives, 
algorithms are tailored for specific goals, ranging from 
energy maximization and QoS compliance [31] to 
multipath schemes designed for fault tolerance and 
reliability [17]. In practice, these categories often overlap, 
as modern algorithms increasingly integrate multiple 
criteria to address the complex interplay of network 
constraints. 

Clustering-based routing exemplifies this architectural 
complexity. In this approach, the network is partitioned 
into clusters, each managed by a Cluster Head (CH) 
responsible for data collection, aggregation, and 
transmission to the sink. By minimizing high-energy long-
distance transmissions, hierarchical clustering significantly 
reduces power consumption and extends system lifetime. 
As illustrated in Figure 4, intra-cluster communication is 
kept short-range and energy-efficient, while inter-cluster 
routing is optimized for load balancing. Meta-heuristic 
optimizations play a pivotal role in this mechanism, 
primarily by enhancing the intelligence of CH selection 
and enabling dynamic adaptation of routing paths. 

Figure 4: The routing process 

For instance, Gundeboyina et al. [17] [16] proposed the 
Energy- and Distance-aware Multi-Objective Firebug 
Swarm Optimization (ED-MOFSO) protocol, which 
identifies optimal routes by evaluating both residual energy 
and inter-node distances. By employing a composite fitness 
function that integrates available energy with hop count, 
the algorithm ensures that routing decisions are both 
energy-efficient and topology-aware. Furthermore, prior to 
route initiation, Cluster Heads (CHs) are selected based on 
their proximity to the base station and energy reserves. 
Performance evaluations demonstrate measurable gains in 
delay, throughput, overhead, and Packet Delivery Ratio 
(PDR), illustrating the effective transition of metaheuristic 
strategies from theoretical concepts to tangible energy 
savings. 

In a parallel development, Jeba Anandh et al. [32] explored 
a dynamic ant-inspired protocol where control packets 
function as artificial agents. These agents traverse the 
network to discover paths, depositing pheromone trails that 
are dynamically updated based on node energy levels and 
traffic load. Over time, optimal paths are reinforced 
through pheromone accumulation, guiding data along 
sustainable routes. The protocol’s hierarchical structure, 
which directs data from outer tiers inward, effectively 
reduces bottlenecks and balances traffic. The primary 
strength of this scheme lies in its adaptivity; it reacts in 
real-time to dynamic network conditions, redistributing 
loads to extend node lifetime. 

Complementing these approaches, Nayyar et al. [33] 
introduced the Improved Energy-Efficient Multipath Ant-
based Routing Protocol (IEEMARP). By integrating 
multipath routing with ant colony heuristics and 
lightweight memory management, IEEMARP minimizes 
redundant storage while ensuring robustness. Comparative 
simulations reveal that it outperforms classical protocols 
such as Basic ACO, DSDV, and DSR by approximately 
10% in terms of energy efficiency, throughput, packet 
delivery, and end-to-end delay. While a 10% improvement 
may appear incremental, in energy constrained WSNs, 
such gains translate into significant extensions in 
operational time. This underscores a critical reality: 
marginal increases in algorithmic efficiency often yield 
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disproportionately large practical benefits in sensor 
network longevity. 

Collectively, these studies highlight the diversity of routing 
innovations within the WSN domain. Whether utilizing 
swarm intelligence, multi-objective fitness functions, or 
hybrid mechanisms that balance exploration and 
exploitation, the unifying principle remains consistent: 
routing is not merely a path discovery problem but a 
complex challenge of energy-aware orchestration, where 
the survival of individual nodes contributes directly to the 
sustainability of the entire network. 

3.1.2 Clustering Techniques in Wireless Sensor 
Networks 

Clustering constitutes a fundamental strategy in Wireless 
Sensor Networks (WSNs), designed to enhance 
communication efficiency and maximize network 
longevity. in this hierarchical architecture, sensor nodes are 
organized into groups, each governed by a Cluster Head 
(CH). The CH functions as a local coordinator, responsible 
for data aggregation to eliminate redundancy before 
relaying the refined information to the Base Station (BS). 
By minimizing direct, long-range transmissions from 
individual nodes, this layered structure significantly 
mitigates communication overhead and conserves critical 
energy resources. 

As illustrated in Figure 5, the cluster-based architecture 
streamlines data flow: CHs manage local sensing coverage 
and act as the primary gateway to the BS. This setup not 
only reduces congestion and coverage gaps but also 
improves scalability. However, the efficacy of clustering 
depends heavily on the underlying algorithms for cluster 
formation and CH selection. These approaches are 
generally categorized into three primary taxonomies: 
classical protocols, optimization-based techniques, and 
machine learning-oriented solutions. 

Classical methods, such as the Low-Energy Adaptive 
Clustering Hierarchy (LEACH) and Hybrid Energy-
Efficient Distributed Clustering (HEED), offer simplicity 
and baseline energy awareness. However, their 
performance is often compromised in large-scale 
deployments or heterogeneous environments, where static 
parameters fail to adapt to dynamic network conditions 
[34]. Consequently, research has shifted toward 
optimization-based techniques, particularly those utilizing 
metaheuristics like Particle Swarm Optimization (PSO). 
These methods seek near-optimal cluster configurations by 
dynamically minimizing energy consumption while 
maintaining robust connectivity [5]. More recently, 
machine learning approaches, including fuzzy logic and 
adaptive neural networks, have further enhanced system 
flexibility, enabling real-time responses to topological 
changes. 

Despite these advancements, clustering implementation 
faces persistent challenges, such as the "energy hole" 

problem caused by uneven load distribution among CHs 
and the stringent latency requirements of time-sensitive 
applications. Therefore, selecting an appropriate technique 
requires a careful trade-off analysis tailored to specific use 
cases, ranging from environmental monitoring to mission-
critical IoT healthcare. To provide a clear landscape of the 
current state-of-the-art, Table 8 presents the distribution of 
reviewed papers categorized by technique, evaluation 
metric, and algorithmic focus. 

Figure 5: Cluster-based architecture 

The distribution of metaheuristic algorithms for energy 
optimization in Wireless Sensor Networks (WSNs) reveals 
a distinct hierarchy in research focus. Ant Colony 
Optimization (ACO) and Particle Swarm Optimization 
(PSO) have established themselves as the dominant 
paradigms, collectively representing 47% of the reviewed 
studies (23.5% each). This prevalence indicates their 
adaptability and long-proven effectiveness in complex 
routing and clustering tasks [1], [20]. Such dominance is 
empirically justified; for instance, advanced PSO-based 
implementations have demonstrated substantial extensions 
in network longevity compared to other metaheuristic 
benchmarks, including MDCH-PSO and MOPSO variants, 
particularly within high-density simulation environments. 
[5], while ACO models have achieved energy reductions of 
nearly 50% compared to traditional deterministic protocols 
[4]. Conversely, emerging algorithms such as Grey Wolf 
Optimization (GWO) and Artificial Bee Colony (ABC) 
currently account for approximately 3% each, reflecting a 
growing but selective interest in alternative swarm-based 
strategies [11], [12]. 

Beyond these dominant pillars, the landscape diversifies 
significantly in the intermediate tier. Algorithms such as 
Cuckoo Search (CS), Genetic Algorithms (GA), Simulated 
Annealing (SA), and specific clustering-centric models like 
LEACH each contribute approximately 2.9% to the 
literature. These methods are frequently deployed in 
specialized or hybrid configurations where standard 
protocols exhibit limitations [9], [35]. While their 
individual adoption rates may appear marginal, they often 
serve as critical testbeds for experimental designs aimed at 
addressing niche constraints. At the periphery of current 
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research, smaller shares of approximately 1% are attributed 
to methods such as Jaya Optimization (JO), League 
Championship Particle Swarm Optimization (LCPSO), and 
the Bat Optimization Algorithm (BOA). These entries 
signify an active exploration phase within the community, 
where novel mechanisms are investigated to overcome 
specific local optima issues inherent in established 
techniques. 

The overall distribution, as illustrated in Figure 6, 
underscores a dual reality in the field. First, established 
algorithms like ACO and PSO remain the technological 
backbone of WSN optimization, consistently delivering 
measurable improvements in energy efficiency, 
throughput, and delay metrics. Second, the incremental rise 
of alternative approaches whether GWO, ABC, or 
hybridized versions of lesser-known algorithms suggests 
that the domain is still evolving. This trend indicates that 
WSN energy optimization is not a settled problem but a 
continuous trajectory of refinement. To provide a 
structured overview of this landscape, the algorithms 
identified in the literature are organized under the 
taxonomy of optimization techniques, as depicted in Figure 
10. 

Figure 6: Distribution of metaheuristic algorithms 
utilized in energy optimization for Wireless Sensor 

Networks (WSNs) 

3.2. [RQ2] Key performance metrics for 
evaluating metaheuristic-based energy 
efficiency in WSNs 

The distribution of performance metrics, as illustrated in 
Figure 7, elucidates the prevailing priorities within the 
WSN research community. Energy consumption 
dominates the evaluation landscape, featuring in 31.2% of 
the reviewed studies. This prevalence is anticipated, given 
that energy constitutes the fundamental operational 
constraint governing network longevity [4], [5]. Closely 
related, the lifetime of live nodes is utilized in 29.8% of 
studies, underscoring that preserving node functionality is 
not merely a statistical objective but a prerequisite for 
maintaining network connectivity and preventing topology 
fragmentation [9], [20]. 

Complementing these energy-centric parameters, 
throughput (19.9%) and Packet Delivery Ratio (PDR) 
(11.3%) highlight the critical dimension of reliability. 
While throughput quantifies the volume of successful data 
transmission, PDR assesses the consistency of packet 
arrival. Although these metrics appear less frequently than 
energy parameters, their significance remains profound; an 
energy-efficient network that fails to deliver data reliably 
lacks practical utility, regardless of its operational duration 
[7], [14]. 

Conversely, end-to-end delay (2%) remains 
underrepresented despite its criticality in latency-sensitive 
applications, such as disaster management and healthcare 
monitoring, where millisecond-level delays can directly 
compromise safety [36]. Other auxiliary metrics, including 
computation time, communication overhead, and coverage 
area, each account for approximately 1%, offering niche 
insights into algorithmic complexity and spatial resilience. 
Most notably, security-related metrics—specifically 
resilience against Denial-of-Service (DoS) attacks—
comprise only 1% of the literature. This scarcity exposes a 
significant vulnerability in current methodologies, 
particularly for IoT-enabled WSNs where attacks on 
resource-constrained nodes can compromise entire system 
integrity. 

Synthesizing the evidence from Table 8 and Figure 7, a 
clear hierarchical pattern emerges: researchers 
overwhelmingly prioritize energy conservation and 
lifetime extension, while delay, overhead, and security are 
often treated as secondary considerations. However, the 
evolving demands of modern WSN applications 
necessitate a paradigm shift. The forthcoming challenge is 
not merely to optimize energy, but to design holistic 
evaluation frameworks that integrate reliability, latency, 
and security. Ultimately, while energy efficiency is 
foundational, it must not be pursued at the expense of 
system dependability and secure operation. 

Figure 7: The distribution of performance metrics in 
evaluating energy optimization techniques WSN 

3.3. [RQ3] Application Domains of WSNs 
and Their Impact on System Efficiency 
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As illustrated in Figure 8, the deployment of Wireless 
Sensor Networks (WSNs) permeates diverse sectors, with 
healthcare emerging as the predominant domain, 
accounting for 24.8% of the reviewed studies. This 
prominence underscores the critical integration of WSNs in 
patient monitoring, remote diagnostics, and real-time vital 
sign tracking—technologies that have fundamentally 
reshaped telemedicine architectures [30][37]. Agriculture 
follows closely at 20%, where WSNs serve as the 
technological foundation for precision farming, soil 
assessment, and automated irrigation, thereby minimizing 
resource wastage and optimizing yield [9]. Meanwhile, 
military applications constitute 16.8%, prioritizing 
persistent surveillance, reconnaissance, and target tracking, 
which highlights the strategic value of distributed sensing 
in mission-critical operations [33]. 

In the intermediate tier, environmental monitoring 
represents 14.4% of the applications, encompassing forest 
fire detection, flood risk management, and biodiversity 
conservation [32], [38]. Concurrently, smart city 
implementations and industrial adoption each capture 9.6% 
of the landscape. The former leverages WSNs for urban 
efficiency such as traffic control and waste management 
while the latter focuses on industrial automation and 
process reliability [14], [35]. 

Specific niche applications further demonstrate the 
versatility of the technology. Disaster management (4.8%) 
and early warning systems (3.2%) illustrate the role of 
WSNs in hazard detection, ranging from seismic activity to 
volcanic monitoring. The remaining distribution includes 
transportation (2.4%) and specialized security or sub-
agricultural systems (approx. 1% each), confirming that 
even specialized sectors derive value from WSN 
deployment [13]. 

Collectively, this distribution evidences a technology that 
is both versatile and scalable. The dominance of healthcare 
and agriculture reflects an alignment with fundamental 
human needs, while military and environmental monitoring 
are driven by strategic and ecological imperatives. 
Ultimately, these trends indicate that WSNs have evolved 
beyond niche experimental deployments to become the 
ubiquitous backbone of intelligent, resilient, and 
sustainable systems. 

Figure 8: Distribution of application domains for 
WSN 

3.4. [RQ4] Recent Trends and 
Advancements in Metaheuristic Algorithms 

Recent developments in metaheuristic algorithms for 
Wireless Sensor Networks (WSNs) are principally driven 
by two operational imperatives: minimizing energy 
consumption and sustaining high-performance metrics. 
Among the reviewed studies, Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO) maintain a 
dominant position, each utilized in 16% of the cases 
[1][20]. This prevalence is not coincidental but empirically 
substantiated; ACO has consistently demonstrated the 
capacity to reduce energy usage by approximately 50% 
compared to classical routing schemes [4], whereas PSO-
based protocols, such as the PSO-EEC variant [5], have 
demonstrated substantial extensions in network lifetime 
compared to advanced benchmarks like MDCH-PSO and 
MOPSO, particularly in high-density simulation 
environments. These robust empirical outcomes justify the 
enduring research focus on these foundational algorithms. 

In contrast, emerging techniques such as Grey Wolf 
Optimization (GWO) and Artificial Bee Colony (ABC) 
appear less frequently, each accounting for 3% of the 
literature. However, their adoption signifies a strategic shift 
toward alternatives better suited for specific constraints, 
such as heterogeneous WSN environments or security-
aware deployments [11][12]. Beyond these, specialized 
methods including Cuckoo Search (CS), Genetic 
Algorithms (GA), and various hybrid metaheuristics 
surface in smaller proportions. These algorithms function 
as experimental testbeds where unconventional strategies 
are rigorously evaluated to address niche optimization 
challenges [9][42]. 

As illustrated in Figure 9, the selection of objective 
functions closely aligns with these algorithmic preferences. 
Maximizing residual energy remains the predominant 
objective, accounting for 46.7% of studies, which 
underscores that node survival is central to the research 
agenda. Inter-node distance (22.2%) is also prioritized as a 
critical factor for lowering transmission costs and 
stabilizing connectivity. Meanwhile, objectives focused on 
optimal clustering (6.7%) and routing efficiency (4.4%) 
represent ongoing efforts to refine topology control and 
streamline communication paths [26][36]. Recently, 
optimization criteria have expanded beyond the traditional 
energy–distance paradigm to include trust management for 
secure data exchange, multi-hop path optimization for 
resilience, and load balancing for equitable resource 
utilization. 

Synthesizing this evidence suggests that the field is 
simultaneously stable and evolving. While ACO and PSO 
remain the technological workhorses trusted for consistent 
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improvements, the diversification into hybrid models and 
multi-objective formulations signals a drive toward 
algorithmic innovation. Researchers are moving beyond 
incremental gains to probe for breakthroughs that address 
complex requirements. This trajectory is particularly 
relevant for critical domains such as healthcare and 
environmental monitoring, where reliability, latency, and 
security are as pivotal as energy conservation. Figure 9 
encapsulates this dynamic landscape, where established 
algorithms coexist with innovative newcomers to push 
WSN research toward broader operational horizons. 

Figure 9: Distribution of objective functions 

4. Results and analysis

4.1. Synthesis of Key Findings: Trends, 
Insights, and Opportunities Metaheuristic 
Algorithms 

The empirical findings of this review confirm that Ant 
Colony Optimization (ACO) and Particle Swarm 
Optimization (PSO) remain the dominant approaches in 
Wireless Sensor Networks (WSNs). Collectively, they 
appear in a significant portion of the reviewed studies, 
spanning references [1], [3], [4], [5], [6], [8], [14], [18], 
[19], [20], [32], [33], [38], [39], [40], [41]. This prevalence 
is not coincidental but stems from their proven efficacy. 
Inspired by ant foraging behavior, ACO excels at 
identifying optimal communication paths and minimizing 
routing energy costs. Similarly, PSO, leveraging swarm 
movement dynamics, dynamically tunes network 
parameters to extend operational lifetime often exceeding 
baseline protocols by more than 200% [12]. Consequently, 
these two methods have established themselves as the 
foundational pillars of WSN optimization. 

However, the algorithmic landscape is evolving. 
Alternatives such as Grey Wolf Optimization (GWO) [11] 
[42][43] and Artificial Bee Colony (ABC) [12][15][44] are 
gaining traction, each representing approximately 3% of 
the literature. GWO emulates the social hierarchy and 
hunting mechanism of wolf packs to balance exploration 
and exploitation, whereas ABC simulates the foraging 
behavior of honeybees to optimize resource allocation and 
data flow. The distinct advantage of these emerging 

methods lies in their ability to mitigate inherent 
weaknesses in ACO and PSO, particularly regarding 
premature convergence and high computational overhead. 
This capability is especially critical for large-scale, 
heterogeneous deployments where scalability and fairness 
are as pivotal as raw efficiency. 

Recent empirical studies substantiate this trend toward 
diversification. Qabouche (2023) introduced the Energy-
Efficient and Coverage-Aware Grey Wolf Optimizer 
(EEC-GWO), which refines Cluster Head (CH) selection 
by integrating node density and inter-node distance into its 
fitness function. This approach resulted in improved 
coverage ratios, elimination of blind spots, and enhanced 
adaptability in heterogeneous networks [11]. In parallel, 
Wang et al. (2020) proposed an enhanced ABC-based 
clustering protocol that utilizes energy levels and node 
density to optimize CH tasks, coupled with a polling 
control scheme to alleviate CH energy burdens. The 
outcomes are tangible: the protocol achieved higher 
throughput, balanced energy consumption, and extended 
network lifetimes, proving particularly effective in 
reliability-critical scenarios [12]. 

A comprehensive synthesis of these algorithmic 
enhancements and their performance impacts is presented 
in Table 7. This summary highlights how established 
techniques like ACO and PSO coexist with emerging 
alternatives, collectively pushing the boundaries of WSN 
optimization in new, more adaptive directions. 

4.2. Strengths and Limitations of Existing 
Research 

Wireless Sensor Networks (WSNs) occupy a central 
position in contemporary research due to their critical 
versatility in healthcare, environmental monitoring, and the 
industrial Internet of Things (IoT). However, persistent 
challenges continue to impede their widespread real-world 
adoption. While deterministic algorithms were historically 
employed to address these issues, recent studies [45] 
highlight that evolutionary approaches offer superior 
adaptability for solving the NP-hard routing problems 
inherent in dynamic WSN environments. A primary 
bottleneck is the heavy reliance on simulation-based 
evaluations [8] [41] [46]. While simulations serve as 
valuable initial testbeds, they rarely capture stochastic real-
world phenomena such as node mobility, fluctuating 
energy availability, or environmental heterogeneity [47] 
[48]. This disconnect explains the frequent operational 
failure of protocols that demonstrate theoretical efficacy 
but lack robustness in physical deployments. 

Energy efficiency constitutes the cardinal design objective 
in WSNs, yet structural inefficiencies such as premature 
convergence, suboptimal Cluster Head (CH) selection, and 
the "energy hole" problem continue to precipitate energy 
hotspots and premature node depletion [49]. Furthermore, 
clustering protocols designed to adapt to network dynamics 
often remain rigid in practice, failing to accommodate 
heterogeneous environments where node capacities vary 
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significantly [50] [51]. Consequently, this inability to adapt 
leads to inefficient resource utilization and critically 
reduced network longevity. 

A further limitation lies in the inadequate application of 
multi-objective optimization. While protocols such as 
LEACH or ACO-based routing successfully extend 
network lifetime, they often do so at the detriment of 
Quality of Service (QoS) or security [52][53]. The 
optimization of a single metric frequently compromises 
others. This trade-off is particularly precarious in mission-
critical contexts, such as remote healthcare or disaster 
response, where system reliability cannot be sacrificed for 
marginal energy gains. 

Beyond algorithmic constraints, practical deployment 
imposes distinct physical and operational challenges. 
Conventional architectures relying on fixed sink placement 
or single-hop routing hinder scalability in large-scale 
networks. Conversely, emerging solutions like UAV-
assisted WSNs face regulatory and hardware limitations. 
Moreover, clustering algorithms that neglect dynamic CH 
placement risk inducing imbalanced energy consumption 
and coverage holes. A critical, yet often under-discussed 
issue, is spatiotemporal data correlation; ignoring this 
factor results in redundant transmissions and inefficient 
data fusion, thereby aggravating energy drain. 

Collectively, these findings indicate that while WSN 
research has advanced significantly, substantial gaps 
persist. The field requires adaptive algorithms responsive 
to environmental volatility, multi-objective frameworks 
that balance conflicting trade-offs, and holistic designs that 
account for node-level constraints. Table 5 [54] synthesizes 
these unresolved challenges and outlines strategic 
directions for future exploration. 

Table 5: A brief evaluation of the advantages and 
disadvantages of existing approaches in previous 
research 

Category Key 
Limitation Examples Impact 

Simulation 
Reliance 

Over-reliance 
on simulation 
environments
, failing to 
capture real-
world 
complexities 

Node 
mobility, 
environment
al dynamics 

Limits real-
world 
applicabilit
y and 
validation 

Energy 
Efficiency 

Premature 
convergence, 
unbalanced 
energy 
consumption, 
hotspot 
issues 

LEACH, 
PSO-based 
protocols 

Early node 
failure, 
reduced 
network 
lifetime 

Dynamic 
Adaptability 

Static 
configuration
s, limited 

Static sink 
placement, 

Inefficient 
performanc
e in 

support for 
heterogeneou
s networks 

single-hop 
routing 

dynamic 
environmen
ts 

Multi-
objective 
Trade-offs 

Challenges 
balancing 
energy 
efficiency, 
QoS, and 
security 

ACO, hybrid 
PSO-GWO 

Trade-offs 
affect 
holistic 
optimizatio
n 

Computation
al 
Complexity 

High 
complexity 
in hybrid 
algorithms, 
limiting real-
time 
application 

PSO-ACO, 
HFAPSO 

Increases 
resource 
usage, 
delays 
decision-
making 

Scalability 
and 
Coverage 

Fixed CH 
placement, 
limited 
handling of 
large-scale 
deployments 

LEACH, 
static routing 

Inefficient 
clustering, 
reduced 
coverage 

4.3. Emerging Trends in Wireless Sensor 
Networks: Advancements and Future 
Directions 

Recent advancements in Wireless Sensor Networks 
(WSNs) demonstrate a decisive paradigm shift toward 
energy efficiency, scalability, and adaptability. A primary 
driver of this momentum is the evolution of hybrid 
metaheuristic algorithms notably PSO, ACO, and GWO 
which refine Cluster Head (CH) selection to optimize the 
trade-off between energy consumption and network 
longevity [55]. These contributions represent substantial 
operational enhancements rather than mere incremental 
improvements; superior clustering directly correlates with 
prolonged nodal survival and stabilized connectivity within 
energy-constrained environments. 

Scalability, historically a limiting factor in WSN 
deployment, is currently being revolutionized through the 
integration of mobile sinks and UAV-assisted routing. 
UAVs possess the capability to reposition dynamically, 
thereby maintaining node connectivity and minimizing 
redundant transmissions [56]. This adaptability is of 
significant practical utility, particularly in scenarios 
characterized by node mobility or stochastic environmental 
shifts [57]. 

Concurrently, advancements in data fusion and 
compression techniques are proving critical. By embedding 
Recurrent Neural Networks (RNNs) or grey prediction 
models into clustering and routing architectures, 
researchers have successfully mitigated transmission 
overhead while preserving data fidelity [58] [59]. The 
outcome is a dual advantage: significant reduction in 
energy depletion coupled with the delivery of more 
accurate, timely information. 
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A parallel methodological evolution is the adoption of 
multi-objective optimization frameworks. Protocols such 
as ODMRP-ACO and IEEMARP are designed to 
simultaneously target energy efficiency, Quality of Service 
(QoS), and security metrics, including packet delivery 
ratio, latency, and reliability. Similarly, recent hybrid 
approaches like the HPSO-based routing design by Selvan 
et al. [60] have successfully integrated trust metrics and 
congestion control into the optimization process, ensuring 
that energy efficiency does not compromise network 
security. These frameworks are indispensable for real-time 
or mission-critical deployments, where the optimization of 
one metric cannot be achieved at the expense of system 
integrity [61]. 

Beyond protocol design, the convergence of IoT and WSNs 
is fundamentally transforming the field. The edge 
computing paradigm shifts data processing closer to the 
source nodes, effectively reducing latency and conserving 
bandwidth, while blockchain integration ensures secure 
and trustworthy data exchanges [62]. When synergistic 
with energy harvesting, duty cycling, and predictive 
modeling, these technologies transition WSNs from 
experimental prototypes into sustainable, robust 
infrastructures ready for large-scale deployment [63]. 

In conclusion, the trajectory of WSN research is pivoting 
from abstract simulations toward intelligent, adaptive, and 
deployment-ready solutions. These innovations pave the 
way for resilient networks capable of supporting diverse 
applications, ranging from flood monitoring and patient 
tracking to industrial automation. A comprehensive 
synthesis of these future directions is presented in Table 6. 

Table 6: Emerging trends in Wireless Sensor 
Networks 

Trend Example 
Algorithms Applications 

Energy Efficiency 
PSO, GWO, 
ACO, ED-
MOFSO 

Urban 
monitoring, 
agriculture 

Hybrid Algorithms 
PSO-ACO, 
MIGJOA, ABC-
GWO 

Industrial IoT, 
disaster 
response 

Dynamic 
Adaptability 

UAV-assisted, 
mobile sink 

Flood 
monitoring, 
wildfire 
detection 

Data 
Fusion/Compression 

RNN-based, Grey 
prediction 

Environmental 
monitoring 

QoS and Security ODMRP-ACO, 
IEEMARP 

Real-time health 
monitoring 

Heterogeneous 
Networks 

HWSN 
techniques, IoT-
enabled 

Smart cities, 
remote sensing 

AI and Machine 
Learning 

CNN, RNN, 
Reinforcement 
Learning 

Predictive 
maintenance, 
anomaly 
detection, smart 
agriculture 

4.4. Research Gaps in Wireless Sensor 
Networks (WSNs) Optimization 

Despite substantial advancements in Wireless Sensor 
Network (WSN) research, achieving optimal energy 
efficiency, scalability, and real-world applicability remains 
a formidable challenge. While existing literature 
extensively addresses energy consumption and data 
transmission, it frequently overlooks the concurrent 
optimization of node heterogeneity, mobility, and Cluster 
Head (CH) selection within dynamic environments. 
Foundational protocols, such as LEACH, have been widely 
implemented but exhibit significant limitations in 
managing dynamic topologies and balancing energy 
distribution, often resulting in premature node failure and 
reduced network longevity [64]. Furthermore, the 
integration of clustering and routing mechanisms remains 
largely fragmented; this lack of cross-layer synergy 
restricts the potential for holistic improvements in both 
energy conservation and overall network performance [65]. 

The constraints of contemporary algorithms precipitate a 
critical need for methodologies tailored to heterogeneous 
WSNs. For instance, protocols like EECZ-SEP, which 
incorporate helper nodes, have demonstrated marked 
improvements in energy efficiency. However, their 
adaptability to dynamic, large-scale networks remains 
insufficiently explored. The absence of fully developed 
multi-hop and multi-layer architectures further impedes 
performance in practical deployments, where stochastic 
environmental factors significantly impact sensor 
reliability [66]. In parallel, while UAV-assisted data 
collection and bio-inspired algorithms offer promising 
enhancements, they are currently hindered by inherent 
constraints such as UAV energy budgets, obstacle 
avoidance, and environmental variability [67]. Moreover, 
ensuring security and scalability particularly within 
Industrial IoT (IIoT) contexts necessitates protocols 
capable of withstanding evolving cyber threats and 
accommodating increasing node densities. 

Prospectively, the evolution of WSN capabilities 
necessitates the adoption of hybrid meta-heuristic 
algorithms, adaptive clustering mechanisms, and energy-
aware routing protocols that respond effectively to 
heterogeneous and dynamic conditions. The critical 
frontier lies in integrating clustering and routing into a 
unified, adaptive framework supported by advanced 
machine learning and predictive analytics. Such integration 
enhances decision-making, maximizes energy efficiency, 
and fortifies system resilience in real-time applications 
[66]. Ultimately, these innovations possess the potential to 
bridge the persistent gap between theoretical simulation 
and practical deployment, thereby enabling robust, scalable 
WSN solutions for domains ranging from precision 
environmental monitoring to complex industrial 
automation. 
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5. Conclusion

This Systematic Literature Review (SLR) underscores the 
pivotal role of metaheuristic algorithms in enhancing the 
operational longevity and efficiency of Wireless Sensor 
Networks (WSNs). The synthesis of evidence confirms that 
established techniques, particularly Ant Colony 
Optimization (ACO) and Particle Swarm Optimization 
(PSO), constitute the cornerstone of current research. ACO 
remains dominant in optimizing routing paths and Cluster 
Head (CH) selection, while PSO excels in refining energy 
balance and coverage optimization. These contributions 
transcend theoretical improvements; they translate directly 
into empirically validated extensions of network lifetime 
and stability under varying load conditions. 

However, the research landscape is evolving beyond these 
foundational algorithms. The emergence of Grey Wolf 
Optimization (GWO), Artificial Bee Colony (ABC), and 
hybrid metaheuristic schemes signals a strategic shift 
toward addressing complex, multi-dimensional trade-offs 
where single-objective algorithms often falter. The 
increasing adoption of these techniques reflects a growing 
community consensus: relying on singular methods is 
insufficient for dynamic, heterogeneous deployments. 
Instead, the focus is pivoting toward cross-layer 
optimization strategies that mitigate premature 
convergence and avoid local optima. 

Despite this algorithmic progress, critical gaps persist. 
Security protocols and trust management mechanisms 
remain conspicuously underrepresented in energy 
optimization frameworks. Furthermore, the reliance on 
simulation-based validation continues to overshadow 
physical testbed implementations. This disconnect is 
particularly precarious for mission-critical domains such as 
healthcare and Industrial IoT, where energy depletion or 
routing instability is not merely a technical inefficiency but 
a potential cause of catastrophic failure endangering patient 
safety or critical infrastructure. 

Prospectively, the trajectory of WSN research points 
toward adaptive and hybrid metaheuristics capable of 
integrating dynamic clustering, multi-objective routing, 
and resilience against heterogeneous node capacities. 

The convergence of these algorithms with Machine 
Learning, predictive analytics, UAV-assisted data 
collection, Edge Computing, and Blockchain offers 
transformative opportunities to bridge the chasm between 
laboratory models and field-ready solutions. While some of 
these integrations are emerging, others remain theoretical 
concepts pending rigorous empirical validation. 

Ultimately, achieving sustainable WSNs demands more 
than incremental algorithmic tuning. It requires the 
development of holistic frameworks that simultaneously 
balance Energy efficiency, Quality of Service (QoS), and 
Security within stochastic environments. If this research 
trajectory is sustained, WSNs will evolve from 

experimental networks into resilient, foundational 
infrastructures capable of supporting the rigorous demands 
of environmental monitoring, smart healthcare, and future 
smart cities. 
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      Table 7: The basic principles of optimizing WSN 

Algorithm The basic principles of optimizing Wireless Sensor Networks (WSNs) 

ACO Routing Path Discovery: ACO generates ants at source nodes to explore optimal routes to sink nodes, considering 
energy consumption and delay [17]. 
Energy Efficiency: Updates pheromone values based on node quality, minimizing energy usage and extending 
network lifetime [13]. 
Performance in Multimedia Applications: ACO-based protocols, like EEABR, achieve higher throughput and 
better QoS compared to traditional protocols (e.g., DSDV, AODV) [13]. 
Energy-Aware Routing: EEABR exemplifies ACO's effectiveness in ensuring energy-conscious communication 
in WSNs [13]. 
Dynamic Adaptability: ACO adapts to network changes (e.g., node failures, traffic variations), ensuring reliable 
and efficient communication [13]. 

SO Energy-Efficient Strategy: PSO is effective in optimizing Cluster Head (CH) selection to enhance network lifetime 
and reduce power consumption [68]. 
CH Optimization: Determines optimal CHs based on proximity to other nodes and residual energy, ensuring 
sustained network performance [68] [5]. 
Hybrid Approaches: Integration with algorithms like Improved LEACH (ILEACH) improves CH selection, 
enabling better load balancing and extended network lifespan [68]. 
Simulation Results: PSO-based models demonstrate significant improvements in WSN resilience and efficiency 
compared to traditional methods [68]. 
Low Computational Complexity: PSO's simplicity makes it suitable for real-time WSN applications requiring 
timely data transmission [69] . 

GWO Optimal CH Selection: GWO significantly improves network performance in terms of coverage, throughput, and 
energy consumption by optimizing Cluster Head (CH) selection [11]. 
Adaptive Nature: Dynamically adjusts search agent positions based on solution fitness, effectively addressing 
varying energy levels and communication distances in WSNs [8]. 
Objective Function: Combines parameters like intra-cluster distance, CH balancing factors, and residual energy to 
minimize energy consumption and maximize network lifetime [11]. 
Superior Performance: Outperforms other metaheuristic algorithms, such as PSO, in computational efficiency and 
energy-efficient clustering and routing [8]. 
Hybrid Approaches: Integrating GWO with other optimization techniques further enhances clustering and dynamic 
CH selection, improving network stability and longevity [11]. 
Exploration and Exploitation: Exhibits superior capabilities in balancing exploration and exploitation, making it a 
robust choice for energy-efficient routing in WSNs [11]. 

FSO Efficient Clustering : FSO optimizes Cluster Head (CH) selection, reducing energy consumption for data 
transmission within the network. 
Optimal Routing : FSO's rapid identification capabilities enable the shortest and most energy-efficient routes 
between source nodes and the Base Station (BS), enhancing overall energy efficiency. 
Parameter Optimization : FSO algorithms balance exploration and exploitation of the solution space using tailored 
parameters, preventing unnecessary energy expenditure on suboptimal solutions. 
Independent Search Capability : Leveraging Hadamard manipulation, FSO performs independent searches across 
dimensions, effectively exploring potential energy-efficient network configurations. 
Reduced Overhead : FSO minimizes routing overhead, reducing control messages and computational demands, 
which directly saves network energy. 
Extended Network Lifetime: By optimizing clustering and routing, FSO reduces node energy consumption, 
prolonging operational lifespans and maintaining long-term network connectivity [16]. 
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Figure 10: Taxonomy of the optimization technique 

WOA The Whale Optimization Algorithm (WOA) has been effectively applied in Wireless Sensor Networks (WSNs) to 
optimize Cluster Head (CH) selection by evaluating nodes based on energy levels and proximity to the base station, 
forming clusters that minimize transmission energy. In routing, WOA prioritizes nodes with high residual energy 
to reduce failure risks, accelerate data delivery, and extend network lifetime. Its energy-focused fitness functions 
ensure efficient operation with minimal waste, while multi-objective variants such as M-EBWOA have shown 
superior performance over traditional approaches like LEACH, HGWSFO, GA-PSO, and ECMOSSA. Simulation 
tools such as MATLAB support the design and validation of WOA-based methods, and future integration with 
advanced optimization techniques offers further potential for energy savings and longevity [37]. 
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Table 8: Distribution of papers based on techniques, metrics, and algorithms 

Paper 
(Year) 

Algorithm 
optimization 
techniques 

Optimization 
techniques 

Performance Metrics Application Domain Algorithm 

Hybrid Improv
e 

Routing Cluste
ring 

Energy 
consum
ption 

Lifeti
me 
node 

Thr
oug
hput 

PDR End to 
end 
Delay 

Medic
al 

Agricult
ure 

Military Environ
mental 
monitor
ing 

Smart 
city 

Ind
ustr
y 

Dis
ast
er 

2024 
[20] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ CS, ACO 

2024 
[15] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ABC, PSO, 
CSO 

2024 
[44] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ABC, ACO 

2024 
[9] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ GJOA 

2024 
[10] 

✔ ✔ ✔ ✔ ✔ EMOGJO 

2024 
[35] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ MA 

2024 
[43] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ CGA, 
GWO 

2024 
[70] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ LCPSO 

2024 
[31] 

✔ ✔ ✔ ✔ ✔ PSO 

2024 
[71] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ APSO 

2024 
[72] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ LEACH 

2023 
[1] 

✔ ✔ ✔ ✔ ✔ ACO, PSO 

2023 
[14] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO, 
OCABC 

2023 
[39] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO 

2023 
[37] 

✔ ✔ ✔ ✔ ✔ ✔ BWOA 

2023 
[73] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2023 
[19] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2023 
[7] 

✔ ✔ ✔ ✔ ✔ ✔ ACO 

2023 
[42] 

✔ ✔ ✔ ✔ ✔ ✔ ACO, 
LEACH 

2023 
[36] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ SSA 

2023 
[11] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ GWO 

2023 
[16] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ FSO 

2023 
[74] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ DEAOA 

2023 
[75] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2022 
[2] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO, GA 

2022 
[3] 

✔ ✔ ✔ ✔ ✔ ✔ GOA, 
WoA, ACO 

2022 
[18] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO, LSA 

2022 
[38] 

✔ ✔ ✔ ✔ ✔ ✔ ACO, 
LEACH 

2022 
[46] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ JSO 

2022 
[76] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO, ACO 

2022 
[77] 

✔ ✔ ✔ ✔ ✔ ISMO 

2021 
[78] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ RDOA, SA 
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Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Whale Optimization Algorithm 
(WOA), Ant Colony Optimization algorithm (ACO), Firefly Algorithm (FA), Cuckoo Search Algorithm (CSA), Optimal Clustering 
Artificial Been Colony (OCABC),   Red Deer Optimization Algorithm (RDOA),  Black Widow Optimization Algorithm (BWOA), Cat 
Swarm Optimization (CSO),  Metaheuristic Multilevel Heterogen Clustering Technique (MMHCT),  Lightning Search Algorithm 
(LSA), Salp Swarm Algorithm (SSA), Tabu Search (TS),  Low Energy Adaptive Clustering Hierarchy (LEACH),  Squirrel Search 
Algorithm (SSA), Jellyfish Search Optimize (JSO),  Golden Jackal Optimization Algorithm (GJOA), Butterfly Optimization Algorithm 
(BOA), Multi Objective Golden Jackal Optimization (MOGJO), Firebug Swarm Optimization (FSO),  Differential Evolution with 
Arithmetic Optimization Algorithm (DEAOA),  Memetic Algorithm (MA), Chaotic Genetic Algorithm (CGA), Improved Spider 
Monkey Optimization Algorithm (ISMO),  Levy chaotic particle swarm optimization algorithm (LCPSO), Accelerated Particle Swarm 
Optimization Algorithm (ASPO), Algoritma cuckoo search (C

2021 
[5] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2021 
[40] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2021 
[79] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ BOA, ACO 

2021 
[80] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ MMHCT 

2021 
[17] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO 

2020 
[8] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ FA, PSO 

2020 
[6] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO 

2020 
[33] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ PSO, SSA 

2020 
[12] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ABC 

2019 
[41] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO 

2019 
[4] 

✔ ✔ ✔ ✔ ✔ ✔ GWO, TS 

2019 
[13] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO 

2019 
[81] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO 

2019 
[82] 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ACO, GS, 
PSO, CS 
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