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Abstract 
The rapid expansion of the Internet of Things (IoT) has intensified the challenge of achieving dynamic bandwidth allocation 
while maintaining security across heterogeneous devices and communication protocols. Conventional static allocation 
schemes lack adaptability, while existing learning-based or blockchain-based approaches typically optimize performance or 
trust in isolation. To address this gap, this paper proposes a hybrid framework that integrates Q-learning–based adaptive 
bandwidth allocation with a lightweight, permissioned blockchain-based trust mechanism.  The framework is evaluated 
through MATLAB-based simulations involving 100 heterogeneous IoT devices under dynamic traffic conditions and 
adversarial behavior. Performance is compared against multiple baselines, including static allocation, learning-only and 
blockchain-only schemes, classical scheduling algorithms (WFQ and DRR), and a deep reinforcement learning approach 
(DQN). The results reveal clear trade-offs among bandwidth utilization, fairness, energy consumption, and security. Static 
and classical schedulers provide predictable fairness but remain vulnerable to malicious activity. Learning-only and deep 
reinforcement learning approaches improve adaptability but lack intrinsic trust awareness, while blockchain-only 
enforcement enhances security at the expense of responsiveness.  By coupling adaptive decision-making with trust validation, 
the proposed hybrid framework achieves a balanced operating point, offering stable bandwidth utilization, improved energy 
efficiency, and robust attack resilience under noisy and uncertain conditions. These findings highlight the importance of 
aligning learning mechanisms with trust-aware constraints for secure and scalable bandwidth management in heterogeneous 
IoT networks. 
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1. Introduction

The Internet of Things (IoT) has rapidly evolved from a
conceptual vision into a mainstream technological reality, 
with billions of devices currently connected and continuously 
exchanging data, often with little or no human intervention 
[1]. Recent reports indicate that the number of IoT devices 
surpassed 15 billion in 2023 and is projected to reach over 29 
billion by 2030, making IoT one of the fastest-growing 
infrastructures in modern digital ecosystems. This 
exponential growth is transforming industrial sectors, 
healthcare, transportation, and smart cities, but it also raises 
significant challenges in resource management and network  

security. As IoT networks expand, heterogeneity emerges as 
a fundamental challenge. Devices employ diverse 
communication protocols (e.g., ZigBee, Wi-Fi, LoRa, NB-
IoT), exhibit different latency requirements, and operate 
under varying levels of reliability and trust [2]. Managing 
such diversity makes bandwidth allocation increasingly 
complex, especially when considering both efficiency and 
security. 

Traditional static bandwidth allocation methods fail to 
cope with dynamic traffic variations, leading to resource 
underutilization, congestion, and increased vulnerability to 
cyberattacks such as denial-of-service (DoS) and bandwidth 
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hijacking [3, 4]. Likewise, conventional security frameworks 
designed for homogeneous networks are inadequate in 
heterogeneous and large-scale IoT environments. 

To address these limitations, researchers have 
increasingly turned to Artificial Intelligence (AI). In 
particular, Machine Learning (ML) and Deep Reinforcement 
Learning (DRL) have been explored to improve adaptability, 
optimize throughput, and minimize latency in bandwidth 
management [5]. For example, edge-based AI systems have 
demonstrated real-time decision-making and efficient 
resource utilization, achieving latency reductions of up to 
46% in certain scenarios [6]. However, most AI-driven 
solutions prioritize performance at the expense of holistic 
security. 

Conversely, blockchain has emerged as a decentralized 
trust mechanism, offering transparency, immutability, and 
resilience against malicious activity [7]. While blockchain 
enhances device-to-device trust and data integrity, its energy 
and computational overheads make it less feasible for 
resource-constrained IoT deployments. 

Although AI and blockchain are individually powerful, 
their combined integration remains underexplored. Existing 
studies often focus on performance-driven AI methods or 
security-driven blockchain solutions in isolation. A limited 
number of attempts have combined both, but these are 
typically constrained to small-scale simulations and fail to 
address scalability, adaptability, and practical deployment 
challenges. 

This study addresses these gaps by proposing a unified 
framework that integrates Q-learning–based adaptive 
bandwidth allocation with blockchain-inspired trust 
management. The key contributions of this paper are as 
follows: 
• Propose a unified trust-aware bandwidth allocation
framework that tightly integrates Q-learning–based adaptive
decision-making with a lightweight, permissioned
blockchain-inspired trust validation mechanism for
heterogeneous IoT networks.
• Design a learning process in which trust validation
is embedded directly within the Q-learning loop, allowing
bandwidth allocation decisions to adapt dynamically while
being progressively constrained by observed device behavior
under adversarial and uncertain conditions.
• Conduct a comprehensive evaluation using
MATLAB-based simulations, comparing the proposed
framework against static allocation, AI-only, blockchain-
only, classical scheduling algorithms, and deep reinforcement
learning baselines, thereby demonstrating the practical trade-
offs between adaptability, energy efficiency, fairness, and
security.

To contextualize the research gap, Table 1 presents a 
comparative analysis of representative studies, emphasizing 
the shortcomings of static methods, the partial focus of AI-
only techniques, and the high overheads of blockchain-only 
solutions. These observations highlight the necessity for the 
integrated hybrid framework proposed in this work. 

Table 1. Comparative analysis of existing approaches. 

Reference Bandwidth 
Allocation 

Security 
& 

Privacy 

IoT 
Attacks 

Threat 
Models 

Blockchai
n in IoT 

Q-
Learnin
g in IoT 

Key Areas Covered 

Zhou et al., 
2020 [6] ✓ ✗ ✗ ✗ ✗ ✗ RL-based bandwidth 

allocation in NG-EPON 
Arshad et al., 
2023 [8] ✗ ✓ ✓ ✗ ✓ ✗ Blockchain-based 

decentralized trust in IoT 
Obaidat et al., 
2024 [9] ✗ ✓ ✓ ✓ ✓ ✗ Comprehensive IoT + 

Blockchain survey 
Haque et al., 
2024 [10] ✗ ✓ ✗ ✗ ✓ ✗ Lightweight blockchain 

consensus for IoT 

Hatem et al., 
2019 [12] ✓ ✗ ✗ ✗ ✗ ✗

DL-based dynamic
bandwidth allocation for
optical access

Wong & Ruan, 
2023 [13] ✓ ✗ ✗ ✗ ✗ ✗

Self-adaptive bandwidth 
allocation for 6G 
fronthaul 

Liem et al., 
2023 [15] ✓ ✗ ✗ ✗ ✗ ✗ LSTM-based dynamic 

bandwidth allocation 

Proposed 
work, 2025 ✓ ✓ ✓ ✓ ✓ ✓

Unified framework: Q-
learning + Blockchain for 
secure dynamic 
bandwidth allocation 

Significance. This integrated approach not only improves 
resource utilization but also strengthens IoT resilience against 

malicious activities, providing a scalable foundation for 
future 6G and beyond networks. To the best of our 
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knowledge, this study is among the first attempts to unify 
reinforcement learning with blockchain-based trust 
management into a practical bandwidth allocation framework 
validated through simulation. Unlike prior studies that 
typically address either bandwidth optimization e.g. [6, 12, 
15], or blockchain-based trust e.g. [8- 10], our work integrates 
both aspects into one unified model. 

As summarized in Table 1, our work addresses both 
dynamic bandwidth allocation and secure trust management 
in an integrated manner. The following section reviews 
related literature in more detail. 

The remainder of this paper is structured as follows. 
Section 2 reviews related literature on bandwidth allocation, 
IoT security, and heterogeneous network management, 
highlighting existing gaps. Section 3 presents the background 
of the proposed framework, including IoT heterogeneity, Q-
learning fundamentals, blockchain principles, trust models, 
and the mathematical formulation. Section 4 describes the 
design of the integrated architecture, its three-layer structure, 
workflow, and the simulation setup and parameters used for 
evaluation. Section 5 discusses the experimental results and 
comparative analysis across static, AI-only, blockchain-only, 
and hybrid scenarios. Finally, Section 6 concludes the study 
and suggests directions for future research. 

2. Related Work

This research focuses on three main themes: (1)
Bandwidth allocation methods, (2) Security considerations in 
bandwidth management, and (3) Dealing with heterogeneity 
in IoT systems. Each area has played a key role in shaping the 
proposed framework. 

2.1  Bandwidth Allocation: Static and Dynamic 

2.1.1 Static vs Dynamic Approaches 
Most bandwidth in IoT networks remains subject to static 

policies. These methods are easy to apply, but in practice they 
cannot cope with the continuously changing IoT traffic 
patterns. Loads, latency needs, and device diversity all 
change on an ongoing basis [11]. 

As a result, static allocation wastes bandwidth, causes 
congestion, and makes the system susceptible to attack. 
Dynamic approaches, by contrast, have come into view 
recently as a better choice. Intelligent algorithms are used to 
adjust resources in real time and make the network more 
efficient [6]. 

2.1.2 AI and Machine Learning Techniques 
In recent years, people began to use artificial intelligence 

(AI) and machine learning (ML) more and more to deal with 
bandwidth. One case is the PABA framework [11]. The idea 
is simple: edge devices train together and then share one 
model. After that, the bandwidth is divided by looking at how 
strong each device is. Tests said delay went down by almost 
half (46%) and accuracy moved up a bit (about 4%). This 

means it can work even when the system does not have 
enough resources. 

In optical networks, deep learning (DL) was tried with 
NG-EPON. Here, the model tried to guess how much 
bandwidth might be needed next, and this helped to cut down 
on control cost [12]. Another method, called JAAPD-D [14], 
mixed AI ideas with Lyapunov theory. It managed delay, 
computing, and communication all at once. From the tests, 
the system became faster and more efficient. 

Some works also used LSTM. They showed that video 
traffic runs smoother, with less delay and fewer jumps. In the 
end, the quality for users got better [15]. All of these studies 
tell us one thing: ML can adapt the bandwidth much better 
than the old fixed rules. 

2.1.3 Reinforcement Learning-based Approaches 
Reinforcement Learning (RL) is becoming more 

prominent in the allocation of bandwidth for IoT devices as it 
can adaptively learn from different network scenarios and 
traffic trends. RL-based models in 6G networks adapt to 
varying traffic needs, offering low latency for sensitive 
applications [13].   

In Software-Defined Networking (SDN) environments, 
Deep Q-Learning (DQL) has been applied to intent-based 
routing. This enables self-driven bandwidth allocation that 
increases throughput and supports efficient path switching 
[16]. In contrast, contextual multi-armed bandit approaches 
have been suggested for millimeter-wave (mmWave) 5G 
systems. These methods allow adaptive resource allocation 
that changes with channel conditions while balancing 
exploration and exploitation [20]. 

2.1.4 Alternative and Hardware-Enhanced 
Methods   

Besides AI-based solutions, other rule-based methods 
have also been explored. A good example is the Adaptive 
Hungarian Algorithm (AHA), which allocates bandwidth in 
network slicing scenarios with little need for training. In 
practice, it achieves throughput close to ML-based methods, 
but with a fraction of the computational cost [17]. 

At the hardware level, innovative designs such as dual-
memory pad architectures have been proposed to cut energy 
use and improve memory bandwidth in edge devices [18]. In 
Mobile Edge Computing (MEC), we humbly acknowledge 
the study of bandwidth-aware scheduling using Pareto 
optimization and hybrid CPU–GPU scheduling for better 
scalability and energy efficiency [19]. We also recognize the 
exploration of backend allocation for on-device AI inference 
to enhance performance with limited resources [21]. 

2.1.5 Summary 
Previous studies have shown a movement from fixed 

bandwidth allocation to dynamic approaches with AI. While 
ML and DL approaches enable predictive bandwidth 
management, RL techniques offer real-time adaptability in 
highly variable environments. Alternative rule-based 
solutions and hardware-enhanced methods further 
complement these strategies by addressing energy efficiency 
and computational scalability. 
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Table 2 presents various methods for bandwidth 
allocation that utilize AI, thoughtfully examining the pros and 
cons of each approach, alongside the intended applications. 

Table 2. Summary of AI-Driven Dynamic Bandwidth Allocation Techniques in IoT Networks. 

Paper Year Domain 
AI/ML 

Technique Primary Metric Performance Gain 

Wen, D 
[11] 

2020 Edge Learning Optimization Latency, Accuracy ↓ 46% Latency, ↑ 4% 
Accuracy 

Hatem, J 
[12] 2019 NG-EPON Deep Learning Control Overhead ↓ Overhead, ↑ Bandwidth 

Utilization 
Wong, E 

[13] 2023 6G MFH Reinforcement/Tra
nsfer Learning Latency Rapid adaptation 

Hu, Y et al 
[14] 2024 6G AIaaS DNN, Lyapunov 

Opt. Delay, Throughput ↓ Delay, ↑ Throughput 

Liem, A et 
al. [15] 2023 NG-EPON LSTM Delay, Jitter, BW Util. ↓ Delay, ↓ Jitter, ↑ BW Util. 

Żotkie et al. 
[16] 2021 SDN, IoT Deep-Q-Learning Throughput, Utilization ↑ Throughput, ↑ Utilization 

Chen, Y 
[17] 

2023 Network 
Slicing 

AHA (Rule-based) System Throughput 93-97% Max. Throughput

Chen, w 
[18] 2024 Edge AI 

Hardware 
Custom Arch. 
(CIM, DLMP) Area/Power Eff. 207.4 GOPS/mm2, 3.53 

TOPS/W 

Lin, Z [19] 2020 MEC AI 
Service 

CNN, DNN, 
Search Comp. Time, Energy Near-optimal performance 

Qureshi, M 
[20] 2020 5G mmWave MAB (Unimodal) Regret Logarithmic regret 

Iyer, V et 
al. [21] 2023 On-Device AI Feedback, Pareto Throughput ↑ 25-100% Throughput 

2.2  Security Issues in Bandwidth Allocation 

The Internet of Things (IoT)'s remarkable expansion has 
overwhelmed bandwidth distribution methods with 
significant weaknesses, making networks susceptible to a 
range of cyber threats such as DoS and bandwidth 
appropriation. The offensives compromise the soundness, 
availability, and reliability of IoT frameworks, establishing 
secure and efficient bandwidth management as an essential 
need. Established models of security, which are usually 
tailored for steady or uniform systems, prove inadequate in 
the realm of fast-evolving and varied systems like IoT 
architectures [22]. 

2.2.1 Bandwidth Allocation Cybersecurity Threats  
A diverse array of security assaults challenges IoT 

networks, directly affecting bandwidth regulation. DoS and 
distributed DoS (DDoS) threats can overwhelm 
communication connections and render the service 
inaccessible. Bandwidth hijacking allows malware to exploit 
excessive resource usage by misusing legitimate device 
resources, and spoofing and Sybil attacks aid attackers in  

creating fake identities and grabbing bandwidth allocations. 
Also, eavesdropping and data interception violate 
confidentiality and bandwidth efficiency in integral 
applications of IoT [3], [32]. 

2.2.2 Traditional Security Techniques 
Access control, firewalls, and encryption are some of the 

traditional methods that offer partial protection. In practice, 
they fall short in IoT settings where devices are resource-
constrained. These approaches also lack scalability and 
adaptability, which leads to performance issues under heavy 
traffic or in heterogeneous networks [9].  

2.2.3 AI and Blockchain-Based Emerging Solutions  
To address these gaps, recent studies have integrated 

artificial intelligence (AI) with blockchain. For example, [20] 
introduces a CNN-based method to optimize channel states in 
Industrial IoT, aiming to enhance efficiency and ensure 
secure data transmission. Similarly, [23] suggests a 
decentralized system involving the integration of Q-learning 
with reputation management to allow for anomaly detection 
and prioritize trusted devices. In 5G IoT scenarios, this 
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architecture demonstrated improved intrusion detection and 
more equitable bandwidth allocation. 

Other research explores both algorithms and system 
design. For example, [24] examines dynamic bandwidth and 
protocol selection. [25] proposes Blockchain-based Vehicle 
Identity Authentication (BVIA) and Dynamic Weighted Fair 
Bandwidth Allocation (DWFBA) for secure access and fair 
resource sharing in vehicular IoT. These methods effectively 
reduced task failure and communication overhead. In 
addition, [26] integrates deep reinforcement learning (DRL) 
with blockchain to improve consensus efficiency in 
permissioned networks, while [27] applies recurrent neural 
networks (RNNs) to predict storage failures and develop 
secure repair mechanisms to defend against eavesdropping. 

Hybrid approaches have also been developed to improve 
quality of service (QoS). For instance, [28] applies an 
Analytic Hierarchy Process (AHP)-based matching game for 
fog computing optimization, while [29] introduces a trader 
metaheuristic algorithm for multi-objective bandwidth 
allocation. Predictive and adaptive designs such as Priority 
Dynamic Bandwidth Allocation (PDBA) [30] and freshness-
aware frameworks [31] use reinforcement learning and 
Markov Decision Processes (MDPs) to reduce latency, lower 
packet loss, and maintain information freshness. 

2.2.4 Outstanding Issues and Challenges  
Despite these advances, several challenges remain High-

complexity methods like DRL require extensive training data 
sets and high computational efforts, which could be 
impractical in bandwidth-limited IoT devices. Blockchain 
also has the latency and consensus overhead, and efficiency 
and security can be difficult to achieve in real-time systems. 
Developing an adaptive, lightweight, and scalable security 
scheme that is both dependable and equitable is an open 
problem in research. 

2.2.5 Summary 
Overall, security issues in bandwidth allocation have 

directed researchers toward AI, reinforcement learning, and 
blockchain-based trust systems. These technologies 
demonstrate clear improvements in intrusion detection, 
fairness, and resource utilization. However, challenges 
related to scalability, computational cost, and device 
heterogeneity still persist. Table 3 summarizes representative 
AI- and trust-based solutions for secure bandwidth allocation 
in IoT, highlighting their main contributions and performance 
improvements. 

Table 3. Secure Bandwidth Allocation in IoT: AI and Trust-Based Techniques. 

Paper Year Primary Focus AI/ML 
Technique Key Problem Solved Performance Improvement 

Gosw et 
al. [22] 2021 H-IoT Security/

Resources CNN Channel Security, 
Resource Utilization 

Faster System, Better Resource 
Util. 

Moudoud, 
H [23] 2023 5G+ IoT 

Security 
DRL (Dist. Q-
learning) 

Intrusion Detection, 
Bandwidth Allocation 

Outperforms referenced 
solutions 

Bhar et al. 
[24] 2025 IoT Bandwidth N/A (Survey/ 

Mechanisms) 
BW Selection, 
Protocols, Topology 

Enhanced communication 
stability 

Liang et 
al. [25] 2023 Integrated IoT 

Security 
Blockchain, 
DWFBA Algo. 

Communication 
Security, Resource 
Fairness 

↓ Comm. Overhead, ↓ Task 
Failures 

Tsai et al. 
[26] 2022 IoT Blockchain DRL Blockchain Comm. 

Performance 
Outperforms the current widely 
used algorithm. 

Liao, C 
[27] 2019 IoT Data 

Reliability RNN Eavesdropping Prev., 
Repair BW ↑ 18.4% Security Level 

Abedin, S 
et al. [28] 2019 Fog IoT 

Resources 
AHP, Matching 
Game 

User Assoc., Resource 
Allocation 

↑ Utility Gain, Stable 
Association 

Rouhifar, 
M [29] 2024 IoT Bandwidth Trader 

Metaheuristic 
Dynamic BW 
Distribution 

↑ 6.32% Success Rate, ↑ 5.79% 
Throughput, ↑ 3.13% Resource 
Eff. 

Chakour et 
al. [30] 2024 IoT Bandwidth 

Predictive 
Algorithms 
(RL-inspired) 

Min. Communication 
Delays 

↓ 10% Latency, ↓ 6.8% Packet 
Loss, ↑ 94.2% Throughput, ↓ 
0.69s Comp. Time 

Guan, X et 
al. [31] 2023 Cellular IoT MDP, Greedy 

Policy 
Information Freshness 
(AoI) Outperforms benchmarks 

2.3 Heterogeneous IoT Network 
Management 

Heterogeneous IoT (H-IoT) networks incorporate devices 
and applications with different protocols, hardware types, and 
demands. Heterogeneity introduces a set of management 
challenges. The most important ones include scalability, 
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interoperability, energy efficiency, quality of service (QoS), 
and security. Conventional management frameworks struggle 
to effectively handle  the dynamic and multi-faceted H-IoT in 
reality. As a result, unified and intelligent management 
solutions have become imperative [32]. 

2.3.1 Energy Efficiency and Anomaly Detection 
To tackle abnormal data pattern and high energy 

consumption in H-IoT, [32] proposed an energy-efficient 
anomaly detection mechanism. The framework relies on the 
Parallelized Memetic Algorithm (PMA) with AlexNet. The 
Energy-Efficient Memetic Clustering Method (EEMCM) 
achieved over 99%  accuracy for anomaly detection in IoT 
wireless sensor networks (WSNs). In practice, it improved 
scalability and robustness against abnormal traffic. 

2.3.2 Hybrid Architectures for Industrial IoT  
Industrial IoT (IIoT) environments demand diverse QoS 

guarantees, such as ultra-reliable low-latency communication 
(URLLC) and high data throughput. To address these 
requirements, [33,34] propose a hybrid RF/VLC architecture 
with reinforcement learning-based resource management. 
Using the Post-Decision State with Experience Replay and 
Transfer (PDS-ERT) algorithm, their framework enhances 
both energy efficiency and QoS in heterogeneous smart 
factory networks.  

2.3.3 Privacy and Multi-Mode Networks  
In multi-mode H-IoT settings, privacy preservation and 

queuing delays remain critical concerns. [35] presents a 
privacy-aware optimization framework that leverages 
Lyapunov optimization and auction-based matching to jointly 
minimize latency and maximize privacy entropy. Similarly, 
[36] introduces a Software-Defined Networking (SDN)-
based IoT management scheme that homogenizes
heterogeneous controller response times, thereby co-
optimizing QoS and security in highly diverse IoT systems.

2.3.4 Interoperability and Large-Scale Coordination   
Achieving interoperability across large-scale 

heterogeneous IoT systems requires advanced orchestration 
mechanisms. In [37], large-scale HetNet simulations are used 
to compare centralized and distributed management 

approaches, demonstrating trade-offs between scalability, 
reliability, and packet loss. To address decentralization, [38] 
proposes a blockchain-based architecture for secure and 
transparent coordination in large-scale H-IoT, reducing single 
points of failure and enabling trusted collaboration. 

2.3.5 Edge and Federated Management Frameworks 
Edge computing and federated approaches offer 

additional mechanisms for handling heterogeneity. [39] 
formulates a mixed-integer program for Multi-Access Edge 
Computing (MEC) resource provisioning and workload 
assignment, optimizing trade-offs between cost, latency, and 
QoS. In federated contexts, [40] introduces Hetero-FedIoT, a 
rule-based interworking framework that supports cross-
platform interoperability and adaptive aggregation to 
improve model convergence across diverse IoT 
environments. 

2.3.6 AI/ML-Driven Management Solutions 
Artificial Intelligence and Machine Learning (AI/ML) 

techniques have become central to addressing heterogeneity 
and resource management challenges in IoT. Comprehensive 
surveys such as [41,42] emphasize the potential of ML/DL 
for anomaly detection, resource optimization, and 
interoperability enhancement, offering a roadmap for 
intelligent, large-scale IoT management frameworks. 

2.3.7 Summary 
In conclusion, managing heterogeneous IoT networks 

requires integrated solutions that simultaneously address 
QoS, security, interoperability, and energy efficiency. 
Existing contributions span from anomaly detection 
frameworks and hybrid RF/VLC architectures to SDN-
enabled management, blockchain-based coordination, and 
federated learning approaches. AI and ML remain at the core 
of these advancements, enabling predictive and adaptive 
management for highly dynamic IoT ecosystems. Table 4 
provides a consolidated summary of AI/ML-driven methods 
for H-IoT management and their reported performance 
improvements. 

Table 4. AI/ML-Driven Solutions for Managing Heterogeneous IoT Networks. 

Paper Yea
r Primary Focus AI/ML Technique Key Problem Solved Performance Improvement 

Thangavel
, A [32] 2024 H-IoT

Energy/Security
Memetic Algo. + 
AlexNet CNN 

Anomaly Detection, 
Energy Eff. 

99.11% Anomaly Detection 
Accuracy 

Yang, H 
et al. [33] 2020 Smart Factory 

QoS 
Deep PDS-ERT 
RL 

Energy-Eff. Resource 
Mgmt (RF/VLC) 

Superior perf. (energy eff. & 
QoS) 

Gan, Z et 
al. [34] 2025 Smart Factory 

QoS 
Deep PDS-ERT 
RL 

Energy-Eff. Resource 
Mgmt (RF/VLC) 

Superior perf. (energy eff. & 
QoS) 

Sood, K et 
al. [35] 2020 Multi-mode H-

IoT 
Lyapunov Opt., 
Auction Matching 

Queuing Delay, 
Privacy, Security 

↓ Queuing Delay, ↑ Privacy, 
Security 
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Selvara, S 
et al. [36] 2021 SDN-IoT 

QoS/Security 
Homogenization 
Framework 

Heterogeneity in 
SDN-IoT 
(QoS/Security) 

Significantly alleviates 
heterogeneity 

Tsenga, L 
et al. [37] 2020 HetNets 

Interoperability Simulation Model Latency, Reliability in 
HetNets 

↓ 100-fold Mean Latency 
(centralized vs. distributed) 

Kherf, N 
et al. [38] 2019 H-IoT

Management
Blockchain 
(Architecture) 

Managing Large-scale 
H-IoT N/A (Preliminary study) 

Khan, A 
et al. [39] 2024 MEC Resource 

Provisioning 
Decomposition 
Approach 

MEC Resource & 
Workload Assignment 

Highlights performance 
trends/trade-offs 

Zafar, A 
et al. [40] 2023 Federated H-

IoT 

Rule-based 
Interworking, 
Aggregation 

Seamless 
Connectivity, 
Interoperability 

Superior comp. & comm. 
efficiency 

Husain, F 
et al. [41] 2019 SDN-IoT QoS Homogenization 

Framework 
Heterogeneity in 
SDN-IoT QoS 

Some improvement 
(alleviates heterogeneity, 
maintains QoS) 

2.4  Literature Synthesis and Research 
Directions 

From the reviewed literature in Tables 1–3, key trends and 
gaps are evident. Advances have been made in three areas: 
dynamic bandwidth allocation, secure bandwidth 
management, and heterogeneous IoT optimization. Dynamic 
allocation has shifted from static methods to AI-driven 
techniques such as deep learning and reinforcement learning, 
improving latency, throughput, and utilization. Security 
enhancements include blockchain, reputation systems, and 
AI-based intrusion detection, while heterogeneous IoT 
management has leveraged hybrid architectures, federated 
learning, and blockchain for better scalability, energy 
efficiency, and QoS. 

Despite this progress, major limitation persists: (1) 
absence of unified frameworks integrating allocation, 
security, and heterogeneity; (2) limited large-scale, real-time 
validation; (3) partial integration of AI and blockchain; and 
(4) low adaptability to emerging technologies like 6G and
Edge AI.

This study addresses these limitations by proposing a Q-
learning and blockchain-enabled framework for secure, 
dynamic bandwidth allocation in heterogeneous IoT 
networks. A proof-of-concept demonstrates trust-based 
decision-making integration, with a modular design adaptable 
to various protocols and future technologies such as SDN and 
federated learning. Thereby laying a foundation for scalable, 
intelligent, and secure IoT infrastructures. 

3. Background

The continuous growth of the Internet of Things (IoT) has
reshaped network requirements, especially in terms of 
security, interoperability, and scalability. With the increasing 
diversity of IoT devices and protocols, reliable performance 
can only be achieved through effective resource control, fair 
bandwidth distribution, and secure communication 
mechanisms. 

To address these concerns, this section presents the 
background of our framework by discussing five essential  

aspects. The first is the heterogeneous nature of IoT, which 
reflects the wide variety of devices and communication 
technologies. The second is Q-learning, an adaptive 
reinforcement learning approach for resource allocation. The 
third is blockchain, which serves as a decentralized solution 
for trust and security. The fourth concerns IoT trust models 
that help distinguish trustworthy devices from malicious 
ones. The fifth involves the mathematical formulation that 
underpins the entire system. Together, these components 
provide the conceptual and technical basis for the integrated 
blockchain-supported Q-learning model proposed in this 
work. 

3.1 Synthesis of Literature and Research 
Directions 

IoT is not all the same. It brings together devices that use 
different protocols, have different processing power, and 
even ask for different amounts of energy. This happens 
because many technologies live side by side, like Wi-Fi, 
Bluetooth, Zigbee, LoRaWAN, and also the cellular 
networks. When all these mix, handling resources and 
keeping things compatible gets messy [36]. 

There is also the matter of trust. Some devices are strong 
and secure, like sensors used in industry. Others are very 
simple, like home gadgets. This big gap makes it harder to 
keep the system reliable and to make sure the quality of 
service (QoS) is good enough [37]. 

To deal with such variety, we need architectures that can 
balance things like energy, latency, scalability, and security, 
while still letting devices work smoothly together. Some 
studies talked about hybrid or rule-based architectures as 
ways to connect devices in this mixed IoT world [39]. These 
give more freedom and make management easier when the 
system grows. Other works looked at edge computing and 
software-defined networking (SDN). These tools help to 
manage device diversity with real-time changes and better 
QoS in different IoT environments [35], [40]. 

3.2 Q-learning Basics 
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Q-learning is an RL model-free algorithm. It enables
agents to learn optimal action by interacting with the 
environment without knowing the behavior of the system 
beforehand [13]. Essentially, Q-learning adjusts a Q-value for 
the expected reward of performing action in a state and then 
pursuing the optimal policy [14]. 

The algorithm works by learning the world, receiving 
feedback in the form of reward or penalty, and updating the 
Q-table according to the Bellman equation. Q-values
converge to virtually optimal values over a period of time,
and the agent chooses actions to achieve maximum long-term
performance [14]. This makes Q-learning perfect for dynamic 
IoT scenarios where bandwidth requests, delay, and trust are
dynamically changing. Research has demonstrated its ability
in resource allocation, intrusion detection, and energy
reduction in IoT, exhibiting enhanced flexibility and
robustness compared to rule-based methods [23], [24].

3.3 Blockchain Fundamentals 

Blockchain is a distributed ledger technology that offers 
transparency, security, and immutability [25]. All 
transactions were inserted into a block, which was 
cryptographically linked to the previous block, thus creating 
an unalterable chain. The system is distributed and utilized 
consensus protocols such as Proof-of-Work (PoW) or Proof-
of-Stake (PoS) for validation [26]. 

Blockchain is increasingly recognized as an effective 
mechanism for establishing trust and security among 
heterogeneous IoT devices. It provides secure data sharing, 
authentication, and resource delegation even in untrusted 
environments [22]. Through its decentralized trust layer, 
blockchain eliminates single points of failure and mitigates 
attacks such as data tampering and bandwidth hijacking [25]. 
Recent research has also explored the integration of 
blockchain with AI and SDN to enable more adaptive and 
scalable IoT systems. For instance, in blockchain-based 
resource allocation models, smart contracts are employed to 
autonomously manage bandwidth distribution and enforce 
trust-based decisions, thereby ensuring efficiency, security, 
and fairness [26]. 

3.4 Trust Models in IoT 

Trust management is a critical component of 
heterogeneous IoT, where devices differ in terms of 
reliability, security capabilities, and behavior. Unlike 
traditional networks, IoT environments often include 
resource-constrained or even malicious devices. This makes 
trust assessment essential for enabling secure communication 
and ensuring fair bandwidth allocation [22], [25]. 

Trust models generally analyze devices using multiple 
parameters such as historical behavior, packet delivery ratio, 
latency, and energy usage. By differentiating between 
trustworthy and untrustworthy nodes, these models enhance 
QoS and overall network resilience [27]. Reputation systems, 
for instance, assign trust scores to devices based on their 
interaction history. Blockchain-inspired trust models add an 

immutable layer of verification for device actions and 
transaction activities [25], [26]. Recent studies further 
combine trust evaluation with machine learning and 
reinforcement learning, where Q-learning agents dynamically 
adapt bandwidth allocation according to trust ratings [23]. In 
such approaches, malicious or low-trust devices are 
penalized, while trusted devices receive equitable and 
efficient bandwidth assignments. 

Hybrid trust models employ multi-objective optimization 
techniques, such as AHP-based allocation for fog computing, 
to achieve fairness, efficiency, and flexibility [28]. 
Integrating trust management with AI and blockchain 
significantly strengthens both security and adaptability in 
complex IoT environments. 

3.5 Mathematical Formulation of the 
Framework  

To formalize the proposed model, we define the following 
equations governing trust dynamics, admission control, 
learning updates, and performance metrics.  

Equation (1): Trust Update 
The trust value of each device is dynamically updated 
depending on whether it behaves legitimately or maliciously: 

𝑇𝑇𝑇𝑇(t + 1)

= min(1,𝑇𝑇𝑇𝑇(t) + Δ+) , if device i is legitimate
max(0,𝑇𝑇𝑇𝑇(t) −  Δ−) , if device i is malicious 

(1) 

Where 𝑇𝑇𝑇𝑇(t) Trust value of device 𝑖𝑖 at time step t, range [0,1]. 
Δ+ Increment step for legitimate devices. Δ− Decrement step 
for malicious devices. 

Equation (2): Service Admission Condition 
Only devices whose trust score exceeds the threshold are 
admitted for service: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)

= 1,
0 ,
𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇 ≥ 𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

otherwise
(2) 

Where 𝑇𝑇𝑇𝑇 is the Trust score of devices 𝑖𝑖. θ represents Trust 
threshold. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) represents binary admission variable (1 
= admitted, 0 = rejected). 

Equation (3): Q-learning Update Rule 
The reinforcement learning agent updates its policy using the 
Bellman equation: 

Q(s,𝑎𝑎)  ←  Q(s,𝑎𝑎)  +  α [ r +  γ 𝑚𝑚𝑚𝑚𝑚𝑚ₐ′ Q(s′,𝑎𝑎′)  −

 Q(s,𝑎𝑎) ]
(3) 

Where Q(s, a) is the Q-value for state 𝑠𝑠 and action 𝑎𝑎, α is the 
learning rate, γ is the discount factor, r is the reward received, 
s′ represents next state, maxₐ′ Q(s′,𝑎𝑎) represents Maximum 
expected Q-value of the next state. 
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Equation (4): Served Ratio (SR) 
This metric measures the proportion of devices that 
successfully receive service: 

SR =
1
𝑁𝑁
� 1  𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑖𝑖 > 0 

0  otherwise 

𝑁𝑁

𝑖𝑖=1

(4) 

Where N is the total number of devices, 𝑏𝑏𝑏𝑏𝑖𝑖  represents 
bandwidth allocated to device 𝑖𝑖, SR represents served ratio. 

Equation (5): Average Bandwidth 
The mean allocated bandwidth per device is given as: 

AvgBW =
1
𝑁𝑁
�𝑏𝑏𝑏𝑏𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 
(5) 

Where AvgBW represents bandwidth per device. 

Equation (6): Jain’s Fairness Index 
To evaluate fairness in bandwidth allocation, Jain’s index is 
computed as: 

𝐽𝐽 =
(∑ 𝑏𝑏𝑏𝑏𝑖𝑖𝑁𝑁

𝑖𝑖=1 )2

𝑁𝑁 ∑ �𝑏𝑏𝑏𝑏𝑖𝑖
2� + δ 𝑁𝑁

𝑖𝑖=1
(6) 

Where 𝐽𝐽 represents jain’s fairness index, ranges between 0 
and 1. δ represents small constant to prevent division by zero. 

Equation (7): Energy Consumption 
The total communication energy consumption is expressed 
as: 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑏𝑏𝑏𝑏𝑖𝑖 × 1000 ×
𝑁𝑁

𝑖𝑖=1

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏) (7) 

Where 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total energy consumption across devices, 
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏  represents energy consumed per bit. 

4. Proposed Framework (Architecture)

4.1 Overall Description

The proposed architecture facilitates secure and dynamic 
bandwidth allocation in heterogeneous IoT networks. It 
integrates three main components: (1) an adaptive Q-learning 
engine that optimizes resources in real time, (2) a blockchain-
based trust layer that enforces security and fairness, and (3) a 
feedback-driven assessment mechanism that enables 
continuous improvement. 

By incorporating these elements, the framework ensures 
that trustworthy devices receive sufficient resources, while 
malicious or wasteful nodes are constrained. This design 
directly addresses critical challenges such as device 
heterogeneity, latency, energy constraints, and evolving 
security threats. 

Figure 1. High-level overview of the proposed unified 
framework, highlighting the integration of machine learning-
based dynamic bandwidth allocation, blockchain-enabled 
security enhancement, and adaptive handling of 

heterogeneous IoT devices to achieve secure and real-time 
network optimization. 

Fig. 1. High-level overview of the proposed unified 
framework 

4.2 Three-Layer Framework Structure 

The proposed framework adopts a three-layer 
architectural design to ensure modularity, scalability, and 
clear functional separation among system components, 
making it suitable for large-scale heterogeneous IoT 
environments. 

(A) Data Collection Layer aggregates bandwidth
demands, latency measurements, and trust values from a wide 
range of IoT devices. 

(B) Data Processing Layer (Q-learning) analyzes these
inputs and dynamically allocates bandwidth to optimize both 
efficiency and fairness. 

(C) Data Leverage Layer (Blockchain Trust) validates
allocation decisions, maintains trust scores, and disseminates 
information in a secure and transparent manner. 
This layered design preserves modularity and scalability, 
making it well-suited for large-scale IoT deployments. 

4.3 System Workflow 

The execution workflow of the proposed framework is 
illustrated in Fig. 2, which depicts the sequential interaction 
among the learning, security, and network components. 

The process begins when IoT devices generate bandwidth 
requests accompanied by their current trust-related attributes. 
The aggregated network state is then observed by the Q-
learning engine, which selects an appropriate bandwidth 
allocation action based on its learned policy. 

Subsequently, the proposed allocation decision is 
forwarded to the blockchain-based trust layer for validation. 
Only devices that satisfy the trust requirements are admitted 
and granted bandwidth access, while untrusted or malicious 
nodes are blocked or denied service. 

Following the admission decision, the system 
performance is evaluated in terms of latency, fairness, and 
energy efficiency. The resulting performance feedback is 
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then used to update both the Q-learning policy and device 
trust states, forming a temporal learning loop that 
continuously refines bandwidth allocation decisions across 
successive time steps. 

This workflow ensures that bandwidth allocation is not 
only adaptive and performance-aware, but also securely 
enforced through trust validation and feedback-driven 
learning. 

Fig. 2. System Workflow of the Proposed Hybrid Q-
Learning and Blockchain Framework. 

4.4 Blockchain Model Specification and 
Overhead Analysis 

A lightweight, permissioned blockchain model is A 
lightweight, permissioned blockchain model is integrated at 
the edge layer to enable trust-aware bandwidth allocation in 
heterogeneous IoT networks. Resource-intensive public or 
mining-based blockchains are avoided due to their excessive 
latency and energy overhead, while permissioned, edge-
assisted blockchain architectures are more suitable for IoT 
environments [8], [9], [37]. In the proposed framework, IoT 
devices do not directly participate in blockchain operations; 
instead, trusted edge gateways act as authority nodes 
responsible for ledger maintenance and transaction validation 
under a Proof-of-Authority (PoA)–based setting [10], [26]. 

The blockchain ledger stores only decision-level 
metadata rather than raw sensing or traffic data. Each 

transaction corresponds to a validated bandwidth allocation 
event and includes ⟨Node ID, trust score, allocated 
bandwidth, timestamp⟩, following lightweight blockchain-
based trust management designs for IoT systems [8], [25]. 
Transactions are generated in an event-driven manner and 
recorded only when a device satisfies the trust threshold and 
is granted bandwidth. For fair comparison, the blockchain 
layer is activated exclusively in the Blockchain-only and 
Hybrid scenarios. 

The blockchain overhead is analytically characterized in 
terms of latency, energy consumption, and communication 
cost. Let 𝑁𝑁𝑡𝑡𝑡𝑡denote the number of blockchain transactions 
and 𝑆𝑆𝑡𝑡𝑡𝑡the transaction size in bits. The blockchain-related 
energy consumption is modeled as 

𝐸𝐸𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑡𝑡𝑡𝑡 × 𝑆𝑆𝑡𝑡𝑡𝑡 × 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 (8) 
where 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏represents the energy consumed per 

transmitted bit. The communication overhead is expressed as 
𝐶𝐶𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑡𝑡𝑡𝑡 × 𝑆𝑆𝑡𝑡𝑡𝑡 (9) 

In addition, the blockchain-induced latency is modeled as 
𝐿𝐿𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑡𝑡𝑡𝑡 × 𝐿𝐿𝑡𝑡𝑡𝑡 (10) 

where 𝐿𝐿𝑡𝑡𝑡𝑡denotes the per-transaction validation and 
confirmation delay under a lightweight permissioned 
consensus. These formulations enable systematic 
quantification of blockchain overhead while preserving a 
practical and deployment-oriented design for heterogeneous 
IoT networks [10], [28]. 

4.5 Simulation Setup 

The proposed framework was evaluated using a 
MATLAB-based simulation conducted on a heterogeneous 
IoT network comprising 100 devices. Each device was 
randomly assigned a communication protocol (e.g., ZigBee, 
Wi-Fi, LoRa, or NB-IoT), along with distinct latency and 
initial trust values to reflect realistic network diversity. A 
subset of devices was configured to exhibit malicious 
behavior, allowing the assessment of trust dynamics and 
security resilience under adversarial conditions. 

Dynamic bandwidth allocation was performed using a Q-
learning agent operating over ten discrete bandwidth levels 
within a predefined range. Trust scores were continuously 
updated through the blockchain-based trust validation 
mechanism described in Section 4.4, ensuring that allocation 
decisions were influenced by both performance feedback and 
security considerations. 

The simulation was executed over 100 time steps, during 
which multiple allocation strategies  including static 
allocation, AI-only, blockchain-only, hybrid learning-based 
allocation, and classical scheduling baselines  were evaluated 
under identical conditions. Key performance metrics such as 
average allocated bandwidth, served ratio, Jain’s fairness 
index, total energy consumption, and security-related 
indicators were collected and analyzed. 

The results were visualized using time-series plots, 
histograms, and comparative bar charts to examine 
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convergence behavior, resource fairness, energy efficiency, 
and the impact of trust-based admission control. 

Table 5. Simulation Parameters. 

Parameter Value / Description 
Number of IoT devices 
(N) 100 

Simulation time (T) 100 time steps 

Bandwidth range (𝑏𝑏𝑏𝑏𝑖𝑖) 
50 – 500 kbps (10 discrete 
levels). 

Trust threshold (𝜃𝜃) 0.6 
Learning rate (α) 0.5 
Discount factor (γ) 0.9 
Energy per bit (𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏) 1 × 10−6 J/bit 
Blockchain transaction 
size 𝑆𝑆tx 256 bits 

Blockchain transactions 
𝑁𝑁tx 

Event-driven (trust ≥ θ and 
bw > 0) 

Blockchain latency  per 
transaction  𝐿𝐿tx 5 ms 

Performance metrics 

Average Bandwidth, 
Served Ratio, Jain’s 
Fairness, Total Energy, 
Trust Accuracy, TPR, FPR 

5. Results and Discussion

This section evaluates the performance of the proposed
framework under various operational scenarios and discusses 
the observed behaviors in light of the design choices 
introduced in Section 4. Rather than reporting raw numerical 
outcomes in isolation, the discussion focuses on 
understanding why certain strategies succeed, where trade-
offs emerge, and how security-aware learning reshapes 
bandwidth allocation decisions over time.  To ensure a fair and 
comprehensive assessment, the proposed hybrid framework 
is compared against multiple baseline strategies, including 
static allocation, AI-only learning, blockchain-only trust 
enforcement, classical scheduling algorithms (WFQ and 

DRR), and a deep reinforcement learning baseline (DQN). 
All scenarios are evaluated under identical network 
conditions and simulation parameters, allowing performance 
differences to be attributed directly to the underlying 
allocation and security mechanisms. 

5.1 Overall Performance Comparison 

Figure 3 presents an overall comparison of the four core 
bandwidth allocation strategies  Static, AI-only, Blockchain-
only, and the proposed Hybrid framework  across average 
bandwidth, energy consumption, served ratio, and trust 
accuracy. 

The Static strategy achieves the highest bandwidth 
utilization and full-service coverage due to uniform 
allocation; however, this behavior results in excessive energy 
consumption and does not consider device reliability. 

The AI-only approach introduces adaptive bandwidth 
adjustment, leading to moderate reductions in bandwidth 
usage and energy consumption. Nevertheless, the absence of 
trust awareness allows unreliable devices to continue 
consuming resources, which negatively affects fairness and 
security-related performance indicators. 

In contrast, the Blockchain-only strategy prioritizes trust 
enforcement by filtering low-trust devices, resulting in the 
lowest energy consumption among the evaluated schemes 
and improved trust accuracy. This strict security-oriented 
behavior, however, leads to conservative bandwidth 
allocation and a reduced served ratio. 

The proposed Hybrid framework balances these trade-
offs by integrating Q-learning–based adaptation with 
blockchain-inspired trust validation. As shown in Fig. 3, the 
Hybrid model maintains controlled bandwidth utilization and 
improved energy efficiency while achieving the highest trust 
accuracy. Moreover, it attains a served ratio superior to the 
Blockchain-only scheme, demonstrating the benefit of 
combining learning-driven adaptability with trust-aware 
filtering for secure and efficient bandwidth management in 
heterogeneous IoT environments. 
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Fig. 3:   Overall performance comparison of the four core allocation strategies in terms of bandwidth 
utilization, service availability, fairness, and energy consumption. 

The aggregated performance metrics of the four core strategies are summarized in Table 6, complementing the 
comparative trends discussed above. 

Table 6. Comparative Performance Metrics of Core Bandwidth Allocation Strategies (Static, AI-only, 
Blockchain-only, and Hybrid).

Scenario AvgBW 
(kbps) 

Served 
Ratio 

Jain’s 
Fairness 

Total 
Energy (J) 

Trust 
Accuracy TPR FPR 

Static 275 1 1 27.5 0.79 0 0 
AI-only 240 1 0.52 23.8 0.79 0 0 

Blockchain-
only 170 0.62 0.6 16.8 0.8 1 0.23 

Hybrid 
(Q+Trust) 220 0.68 0.66 19.5 0.83 1 0.20 

5.2 Analysis of Hybrid Framework Behavior 

This subsection analyzes the temporal behavior and 
convergence characteristics of the proposed hybrid 
framework by examining the evolution of average 
bandwidth, energy consumption, served ratio, and trust 
distribution over time. 

As shown in Figure 4, the average allocated bandwidth 
increases rapidly during the initial learning phase, reflecting 
the exploratory behavior of the Q-learning agent. After 
approximately 25–30 time steps, the allocation stabilizes 
within a consistent operating range, indicating convergence 
toward a steady policy shaped by trust constraints. 
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Fig. 4:   Temporal behavior and convergence characteristics of the proposed hybrid framework 

Energy consumption follows a similar trajectory, with 
early fluctuations gradually diminishing as learning 
converges. This behavior confirms that the hybrid framework 
internalizes longer-term traffic and trust patterns rather than 
reacting solely to instantaneous conditions, resulting in stable 
and energy-efficient operation. 

The served ratio improves progressively as trustworthy 
devices are increasingly prioritized, while temporary 
variations reflect dynamic traffic demands and trust-based 
filtering. The final trust distribution demonstrates that most 
devices converge toward high trust scores, whereas low-trust 
or malicious nodes are effectively isolated. 

Overall, these results indicate that the hybrid framework 
converges smoothly without oscillatory instability or 
excessive conservatism. The interaction between learning-
based adaptation and trust validation remains cooperative 
rather than brittle, enabling stable, adaptive, and security-
aware bandwidth allocation in heterogeneous IoT 
environments. 

5.3 Comparison with Classical Scheduling 
Algorithms (WFQ and DRR) 

Classical scheduling algorithms such as WFQ and DRR 
rely on predefined service rules and do not incorporate 
learning or trust awareness. As shown in Figure 5, both 
algorithms achieve high fairness indices and stable service 
availability by distributing bandwidth according to fixed 
scheduling principles. WFQ provides proportional fairness 
based on assigned weights, while DRR ensures starvation-
free service through deterministic rotation. 

However, this strict fairness comes at the cost of 
contextual awareness. Neither WFQ nor DRR differentiates 
between legitimate and malicious devices, treating all nodes 
equally regardless of behavior. Under adversarial conditions, 
such fairness becomes indiscriminate, allowing unreliable 
devices to consume resources without penalty.
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Fig. 5:   Performance comparison between the proposed hybrid framework and classical scheduling algorithms 
(WFQ and DRR) 

Energy consumption further highlights this limitation. 
Because classical schedulers continue serving all devices 
uniformly, they maintain higher energy usage even when 
transmissions are inefficient or harmful. In contrast, the 
proposed hybrid framework selectively allocates resources 
based on both learned network dynamics and trust validation. 
While the hybrid approach does not outperform WFQ or DRR 
in raw fairness under ideal cooperative conditions, it achieves 
superior robustness and energy efficiency in heterogeneous 
and partially adversarial environments. By coupling adaptive 
learning with trust-based filtering, the hybrid framework 
prioritizes meaningful service delivery over blind fairness, 
making it more suitable for realistic IoT deployments where 
cooperation cannot be assumed. 

5.4 Hybrid Framework versus Deep 
Reinforcement Learning (DQN) 

Figure X compares the proposed hybrid framework with 
a Deep Q-Network (DQN) in terms of average bandwidth, 
energy consumption, and served ratio. As expected, DQN 
achieves higher average bandwidth and service availability 
due to its expressive function approximation and aggressive 
learning strategy. By leveraging deep neural networks, DQN 
rapidly adapts to network dynamics and optimizes 
throughput-oriented objectives. 

However, these performance gains are accompanied by 
increased energy consumption and higher learning overhead. 
The absence of explicit trust awareness causes DQN to treat 
all devices uniformly, allowing unreliable or malicious nodes 
to influence allocation decisions. As a result, optimization 
focuses on observable performance metrics rather than 
behavioral reliability. 

In contrast, the proposed hybrid framework adopts a 
constrained learning strategy. Instead of maximizing 
throughput aggressively, Q-learning operates within trust-
based validation boundaries enforced by the blockchain-
inspired layer. This design leads to slightly lower average 
bandwidth and served ratio compared to DQN, but 
significantly improves control, stability, and energy 
efficiency. 

The hybrid framework also exhibits reduced oscillations 
and faster stabilization under limited training horizons. Its 
lower computational complexity, absence of deep neural 
models, and embedded security awareness make it more 
suitable for resource-constrained and security-sensitive IoT 
environments. 

Overall, while DQN represents a high-performance 
solution under unconstrained optimization, the hybrid 
framework offers a more practical and robust alternative for 
heterogeneous IoT deployments, where energy efficiency, 
trust enforcement, and predictable behavior are as critical as 
raw throughput.
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Fig. 6:   Performance comparison between the proposed hybrid framework and the DQN-based allocation 
approach. 

5.5 Security and Trust Evaluation 

Security in the proposed framework is modeled as a 
dynamic, evidence-driven process rather than a binary 
decision. Trust values evolve gradually based on observed 
device behavior, enabling reliable differentiation between 
benign and malicious nodes without overreacting to transient 
anomalies. This approach reduces sensitivity to noise while 
preserving consistent behavioral assessment. 

The blockchain-inspired trust layer maintains historical 
accountability by recording validated allocation decisions, 
allowing trust to be updated instead of being permanently 
fixed. Consequently, malicious behavior is detected reliably 
once sufficient evidence accumulates, while occasional false 
positives remain unavoidable in realistic IoT environments. 
Under the evaluated conditions, this is reflected by complete 
attack detection (TPR = 1.0) alongside a non-zero false-
positive rate, indicating a practical balance between 
sensitivity and robustness rather than idealized classification. 

Unlike rigid security-only enforcement, the hybrid 
framework preserves adaptability under trust constraints. 
Learning decisions are filtered rather than overridden, 
allowing legitimate devices to recover from temporary trust  

degradation, while persistent malicious activity leads to 
progressive bandwidth restriction without abrupt exclusion. 

Security is embedded directly into the learning loop rather 
than applied as an external control mechanism. Trust 
validation constrains the action space explored by the Q-
learning agent, shaping long-term policy formation instead of 
post-hoc enforcement. This integration enables adaptive 
bandwidth allocation while containing adversarial impact. 

To further characterize the security layer, the blockchain-
related overhead is quantified for blockchain-enabled 
scenarios. Table 7 summarizes the associated latency, energy 
consumption, and communication cost based on the event-
driven transaction model. 

Table 7. Blockchain Overhead under Security and 
Trust Evaluation 

Scenario Latency 
(ms) 

Energy 
(J) 

Communication 
Cost (bits) 

Blockchain-
only 5 0.0044 4.4 × 10⁴ 
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Hybrid (Q + 
Trust) 5 0.0049 4.9 × 10⁴ 

Overall, the results indicate that blockchain overhead 
remains limited due to event-driven transaction generation 
and lightweight validation. The hybrid framework incurs only 
a marginal overhead increase compared to the blockchain-
only scheme, while providing improved adaptability and 
resilience, confirming the feasibility of integrating trust-
aware security into learning-based bandwidth allocation. 

5.6 Trust-Aware Learning-Based IoT 
Frameworks: Discussion 

Recent studies published in the EAI Endorsed 
Transactions on Internet of Things highlight the growing 
interest in trust-aware learning mechanisms for securing IoT 
systems, particularly in critical and privacy-sensitive 
environments [43]. These works primarily focus on 
enhancing model robustness, privacy preservation, or secure 
collaboration, often assuming that resource management 
operates independently of trust enforcement. 

In contrast, the framework proposed in this study 
integrates trust directly into the bandwidth allocation process. 
Trust validation influences the learning decisions themselves 
rather than acting as an external or post-processing constraint. 
This design allows adaptive allocation to remain responsive 
while being progressively shaped by observed device 
behavior. 

Unlike trust-aware federated learning approaches that 
emphasize global model convergence, the proposed 
framework targets localized, real-time decision-making 
under heterogeneous traffic and uncertain conditions. By 
embedding trust within the learning loop, the system supports 
controlled adaptation without relying on rigid exclusion or 
static security rules. 

Overall, this perspective complements existing trust-
aware IoT studies by addressing trust as a governing factor in 
dynamic resource allocation, rather than as a mechanism 
limited to data or model protection. This positioning clarifies 
the contribution of the proposed approach within the broader 
landscape of trust-aware learning-based IoT frameworks. 

6. Conclusion

This work addressed a challenge that rarely appears in
isolation. In heterogeneous IoT networks, bandwidth 
efficiency, security, and adaptability are often treated as 
separate objectives, optimized independently and reconciled 
later, if at all. The proposed framework follows a different 
approach by modeling bandwidth allocation as a decision-
making process jointly shaped by learning and trust, rather 
than as a static rule or an unconstrained optimization task. 

By integrating Q-learning with a lightweight, 
permissioned blockchain-based trust layer, the framework 
demonstrates that adaptive bandwidth allocation does not 
need to be blind, and security enforcement does not need to 
be rigid. Learning provides flexibility, trust provides 

restraint, and their interaction yields a system that evolves 
rather than oscillates. Across multiple scenarios, the observed 
behavior indicates that meaningful performance 
improvements arise not from extreme optimization, but from 
balance. 

The comparative evaluation reinforces this perspective. 
Static allocation remains predictable but inflexible, while 
learning-only approaches adapt quickly yet remain 
vulnerable to exploitation. Blockchain-only enforcement 
strengthens security at the cost of responsiveness, whereas 
classical schedulers preserve fairness without contextual 
judgment. Deep reinforcement learning further improves 
performance, often at the expense of control and stability. 
Rather than dominating these approaches individually, the 
proposed hybrid framework aligns their strengths while 
mitigating their weaknesses. Its evaluation against both 
classical schedulers (WFQ and DRR) and deep reinforcement 
learning baselines highlights the distinction between 
unconstrained optimization and trust-aware, deployment-
oriented decision-making—particularly under adversarial 
conditions where resilience outweighs peak throughput. 

Equally important are the claims the framework does not 
make. It does not assume instant attack elimination or perfect 
trust classification, which are unrealistic in dynamic IoT 
environments. Instead, threats are contained progressively, 
decisions are revised when necessary, and stability is 
maintained in the presence of noise and uncertainty. Trust is 
earned, lost, and occasionally regained, while allocation 
decisions remain open to correction. This behavior reflects 
practical deployment realities rather than idealized 
assumptions. 

Several directions for future work emerge from this study. 
Extending the framework toward federated or multi-agent 
learning could enhance scalability in large deployments. 
Incorporating software-defined networking may further 
improve enforcement granularity, while real-world 
prototyping could validate the abstraction choices made at the 
edge layer. These extensions build naturally on the 
foundation established here. 

In conclusion, secure and dynamic bandwidth allocation 
in heterogeneous IoT networks is not a matter of choosing 
between learning and security, but of designing how they 
coexist. When learning is constrained by trust and trust is 
informed by experience, the result is a system that behaves 
less like a rigid algorithm and more like a well-governed 
network. 
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