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Abstract

The rapid expansion of the Internet of Things (IoT) has intensified the challenge of achieving dynamic bandwidth allocation
while maintaining security across heterogeneous devices and communication protocols. Conventional static allocation
schemes lack adaptability, while existing learning-based or blockchain-based approaches typically optimize performance or
trust in isolation. To address this gap, this paper proposes a hybrid framework that integrates Q-learning—based adaptive
bandwidth allocation with a lightweight, permissioned blockchain-based trust mechanism. The framework is evaluated
through MATLAB-based simulations involving 100 heterogeneous IoT devices under dynamic traffic conditions and
adversarial behavior. Performance is compared against multiple baselines, including static allocation, learning-only and
blockchain-only schemes, classical scheduling algorithms (WFQ and DRR), and a deep reinforcement learning approach
(DQN). The results reveal clear trade-offs among bandwidth utilization, fairness, energy consumption, and security. Static
and classical schedulers provide predictable fairness but remain vulnerable to malicious activity. Learning-only and deep
reinforcement learning approaches improve adaptability but lack intrinsic trust awareness, while blockchain-only
enforcement enhances security at the expense of responsiveness. By coupling adaptive decision-making with trust validation,
the proposed hybrid framework achieves a balanced operating point, offering stable bandwidth utilization, improved energy
efficiency, and robust attack resilience under noisy and uncertain conditions. These findings highlight the importance of]
aligning learning mechanisms with trust-aware constraints for secure and scalable bandwidth management in heterogeneous
IoT networks.
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1. Introduction
security. As IoT networks expand, heterogeneity emerges as
The Internet of Things (IoT) has rapidly evolved froma 2 fundamental ~ challenge. Devices employ diverse
conceptual vision into a mainstream technological reality, ~ communication protocols (e.g., ZigBee, Wi-Fi, LoRa, NB-
with billions of devices currently connected and continuously ~ 10T), exhibit different latency requirements, and operate
exchanging data, often with little or no human intervention ~ under varying levels of reliability and trust [2]. Managing
[1]. Recent reports indicate that the number of IoT devices such diversity makes bandwidth allocation increasingly
surpassed 15 billion in 2023 and is projected to reach over 29 comp.lex, especially when considering both efficiency and
billion by 2030, making IoT one of the fastest-growing  Security.
infrastructures in modern digital ecosystems. This Traditional static bandwidth allocation methods fail to
exponential growth is transforming industrial sectors,  €OP€ with dynamic traffic variations, leading to resource
healthcare, transportation, and smart cities, but it also raises ~ underutilization, congestion, and increased vulnerability to
significant challenges in resource management and network cyberattacks such as denial-of-service (DoS) and bandwidth
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hijacking [3, 4]. Likewise, conventional security frameworks
designed for homogeneous networks are inadequate in
heterogeneous and large-scale [oT environments.

To address these limitations, researchers have
increasingly turned to Artificial Intelligence (Al). In
particular, Machine Learning (ML) and Deep Reinforcement
Learning (DRL) have been explored to improve adaptability,
optimize throughput, and minimize latency in bandwidth
management [5]. For example, edge-based Al systems have
demonstrated real-time decision-making and efficient
resource utilization, achieving latency reductions of up to
46% in certain scenarios [6]. However, most Al-driven
solutions prioritize performance at the expense of holistic
security.

Conversely, blockchain has emerged as a decentralized
trust mechanism, offering transparency, immutability, and
resilience against malicious activity [7]. While blockchain
enhances device-to-device trust and data integrity, its energy
and computational overheads make it less feasible for
resource-constrained IoT deployments.

Although Al and blockchain are individually powerful,
their combined integration remains underexplored. Existing
studies often focus on performance-driven Al methods or
security-driven blockchain solutions in isolation. A limited
number of attempts have combined both, but these are
typically constrained to small-scale simulations and fail to
address scalability, adaptability, and practical deployment
challenges.

This study addresses these gaps by proposing a unified
framework that integrates Q-learning—based adaptive
bandwidth allocation with blockchain-inspired trust
management. The key contributions of this paper are as
follows:

. Propose a unified trust-aware bandwidth allocation
framework that tightly integrates Q-learning—based adaptive
decision-making with a lightweight, permissioned
blockchain-inspired trust validation mechanism for
heterogeneous IoT networks.

. Design a learning process in which trust validation
is embedded directly within the Q-learning loop, allowing
bandwidth allocation decisions to adapt dynamically while
being progressively constrained by observed device behavior
under adversarial and uncertain conditions.

. Conduct a comprehensive evaluation using
MATLAB-based simulations, comparing the proposed
framework against static allocation, Al-only, blockchain-
only, classical scheduling algorithms, and deep reinforcement
learning baselines, thereby demonstrating the practical trade-
offs between adaptability, energy efficiency, fairness, and
security.

To contextualize the research gap, Table 1 presents a
comparative analysis of representative studies, emphasizing
the shortcomings of static methods, the partial focus of Al-
only techniques, and the high overheads of blockchain-only
solutions. These observations highlight the necessity for the
integrated hybrid framework proposed in this work.

Table 1. Comparative analysis of existing approaches.

. Security . Q-
Bandwidth IoT Threat | Blockchai .
Reference Allocation .& Attacks | Models nin loT L?arnm Key Areas Covered
Privacy gin IoT
Zhou et al, RL-based bandwidth
2020 [6] v X X X X X | allocation in NG-EPON
Arshad et al., Blockchain-based
2023 [8] X v v X v X | decentralized trust in ToT
Obaidat et al., Comprehensive IoT +
2024 [9] X v v v v X" | Blockchain survey
Haque et al., Lightweight blockchain
2024 [10] X v X X v X consensus for IoT
Hatem et al DL-based dynamic
? N X X X X X bandwidth allocation for
2019 [12] .
optical access
Self-adaptive bandwidth
Wong & Ruan, v X X X X X | allocation  for  6G
2023 [13]
fronthaul
Liem et al., LSTM-based dynamic
2023 [15] v X X X X X | pandwidth allocation
Unified framework: Q-
Proposed learning + Blockchain for
work, 2025 v v v v v v secure dynamic
bandwidth allocation

Significance. This integrated approach not only improves
resource utilization but also strengthens IoT resilience against

2 EA

malicious activities, providing a scalable foundation for
future 6G and beyond networks. To the best of our

EAI Endorsed Transactions on
Internet of Things
| Volume 112025 |



A Q-Learning and Blockchain Framework for Secure Dynamic Bandwidth Allocation in Heterogeneous loT

knowledge, this study is among the first attempts to unify
reinforcement learning with  blockchain-based trust
management into a practical bandwidth allocation framework
validated through simulation. Unlike prior studies that
typically address either bandwidth optimization e.g. [6, 12,
15], or blockchain-based trust e.g. [8- 10], our work integrates
both aspects into one unified model.

As summarized in Table 1, our work addresses both
dynamic bandwidth allocation and secure trust management
in an integrated manner. The following section reviews
related literature in more detail.

The remainder of this paper is structured as follows.
Section 2 reviews related literature on bandwidth allocation,
IoT security, and heterogeneous network management,
highlighting existing gaps. Section 3 presents the background
of the proposed framework, including IoT heterogeneity, Q-
learning fundamentals, blockchain principles, trust models,
and the mathematical formulation. Section 4 describes the
design of the integrated architecture, its three-layer structure,
workflow, and the simulation setup and parameters used for
evaluation. Section 5 discusses the experimental results and
comparative analysis across static, Al-only, blockchain-only,
and hybrid scenarios. Finally, Section 6 concludes the study
and suggests directions for future research.

2. Related Work

This research focuses on three main themes: (1)
Bandwidth allocation methods, (2) Security considerations in
bandwidth management, and (3) Dealing with heterogeneity
in IoT systems. Each area has played a key role in shaping the
proposed framework.

2.1 Bandwidth Allocation: Static and Dynamic

211 Static vs Dynamic Approaches

Most bandwidth in IoT networks remains subject to static
policies. These methods are easy to apply, but in practice they
cannot cope with the continuously changing IoT traffic
patterns. Loads, latency needs, and device diversity all
change on an ongoing basis [11].

As a result, static allocation wastes bandwidth, causes
congestion, and makes the system susceptible to attack.
Dynamic approaches, by contrast, have come into view
recently as a better choice. Intelligent algorithms are used to
adjust resources in real time and make the network more
efficient [6].

2.1.2 Al and Machine Learning Techniques

In recent years, people began to use artificial intelligence
(AI) and machine learning (ML) more and more to deal with
bandwidth. One case is the PABA framework [11]. The idea
is simple: edge devices train together and then share one
model. After that, the bandwidth is divided by looking at how
strong each device is. Tests said delay went down by almost
half (46%) and accuracy moved up a bit (about 4%). This

means it can work even when the system does not have
enough resources.

In optical networks, deep learning (DL) was tried with
NG-EPON. Here, the model tried to guess how much
bandwidth might be needed next, and this helped to cut down
on control cost [12]. Another method, called JAAPD-D [14],
mixed Al ideas with Lyapunov theory. It managed delay,
computing, and communication all at once. From the tests,
the system became faster and more efficient.

Some works also used LSTM. They showed that video
traffic runs smoother, with less delay and fewer jumps. In the
end, the quality for users got better [15]. All of these studies
tell us one thing: ML can adapt the bandwidth much better
than the old fixed rules.

21.3 Reinforcement Learning-based Approaches

Reinforcement Learning (RL) is becoming more
prominent in the allocation of bandwidth for IoT devices as it
can adaptively learn from different network scenarios and
traffic trends. RL-based models in 6G networks adapt to
varying traffic needs, offering low latency for sensitive
applications [13].

In Software-Defined Networking (SDN) environments,
Deep Q-Learning (DQL) has been applied to intent-based
routing. This enables self-driven bandwidth allocation that
increases throughput and supports efficient path switching
[16]. In contrast, contextual multi-armed bandit approaches
have been suggested for millimeter-wave (mmWave) 5G
systems. These methods allow adaptive resource allocation
that changes with channel conditions while balancing
exploration and exploitation [20].

2.1.4 Alternative
Methods

Besides Al-based solutions, other rule-based methods
have also been explored. A good example is the Adaptive
Hungarian Algorithm (AHA), which allocates bandwidth in
network slicing scenarios with little need for training. In
practice, it achieves throughput close to ML-based methods,
but with a fraction of the computational cost [17].

At the hardware level, innovative designs such as dual-
memory pad architectures have been proposed to cut energy
use and improve memory bandwidth in edge devices [18]. In
Mobile Edge Computing (MEC), we humbly acknowledge
the study of bandwidth-aware scheduling using Pareto
optimization and hybrid CPU-GPU scheduling for better
scalability and energy efficiency [19]. We also recognize the
exploration of backend allocation for on-device Al inference
to enhance performance with limited resources [21].

and Hardware-Enhanced

21.5 Summary

Previous studies have shown a movement from fixed
bandwidth allocation to dynamic approaches with Al. While
ML and DL approaches enable predictive bandwidth
management, RL techniques offer real-time adaptability in
highly wvariable environments. Alternative rule-based
solutions and hardware-enhanced methods further
complement these strategies by addressing energy efficiency
and computational scalability.
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Table 2 presents various methods for bandwidth
allocation that utilize Al, thoughtfully examining the pros and
cons of each approach, alongside the intended applications.

Table 2. Summary of Al-Driven Dynamic Bandwidth Allocation Techniques in IoT Networks.

AI/ML
Paper Year Domain / . Primary Metric Performance Gain
Technique
(V] 0,
W[inl’]D 2020 | Edge Learning | Optimization Latency, Accuracy ijfu/roal(:}e]ltency, 14%
Hatem, 719019 | NG-EPON Deep Learning Control Overhead | Overhead, T Bandwidth
[12] Utilization
Wong, E Reinforcement/Tra . .
[13] 2023 | 6G MFH nsfer Learning Latency Rapid adaptation
Hu,[;;]e tal 2024 | 6G AlaaS gII:]tN, Lyapunov Delay, Throughput | Delay, 1 Throughput
Lflm[’llg]et 2023 | NG-EPON LSTM Delay, Jitter, BW Util. | | Delay, | Jitter, 1 BW Util.
Zotkie et al. . o -
(16] 2021 | SDN, IoT Deep-Q-Learning | Throughput, Utilization | 1 Throughput, 1 Utilization
hen, Y twork
Chen, 2023 N? Wor AHA (Rule-based) | System Throughput 93-97% Max. Throughput
[17] Slicing
Chen, w Edge Al Custom Arch. 207.4 GOPS/mm?, 3.53
[18] 2024 | Hardware (CIM, DLMP) Area/Power Eff. TOPS/W
Lin, Z [19] 2020 g/i]ifi:c?l gilr\l’hDNN’ Comp. Time, Energy Near-optimal performance
Qureshi, M . N
[20] 2020 | 5G mmWave MAB (Unimodal) | Regret Logarithmic regret
Iyer, Vet .
al. [21] 2023 | On-Device Al | Feedback, Pareto Throughput 1 25-100% Throughput

2.2 Security Issues in Bandwidth Allocation

The Internet of Things (IoT)'s remarkable expansion has
overwhelmed bandwidth distribution methods with
significant weaknesses, making networks susceptible to a
range of cyber threats such as DoS and bandwidth
appropriation. The offensives compromise the soundness,
availability, and reliability of IoT frameworks, establishing
secure and efficient bandwidth management as an essential
need. Established models of security, which are usually
tailored for steady or uniform systems, prove inadequate in
the realm of fast-evolving and varied systems like IoT
architectures [22].

2.2.1 Bandwidth Allocation Cybersecurity Threats
A diverse array of security assaults challenges I[oT
networks, directly affecting bandwidth regulation. DoS and
distributed DoS (DDoS) threats can overwhelm
communication connections and render the service
inaccessible. Bandwidth hijacking allows malware to exploit
excessive resource usage by misusing legitimate device
resources, and spoofing and Sybil attacks aid attackers in

creating fake identities and grabbing bandwidth allocations.
Also, eavesdropping and data interception violate
confidentiality and bandwidth efficiency in integral
applications of IoT [3], [32].

2.2.2 Traditional Security Techniques

Access control, firewalls, and encryption are some of the
traditional methods that offer partial protection. In practice,
they fall short in IoT settings where devices are resource-
constrained. These approaches also lack scalability and
adaptability, which leads to performance issues under heavy
traffic or in heterogeneous networks [9].

2.2.3 Al and Blockchain-Based Emerging Solutions

To address these gaps, recent studies have integrated
artificial intelligence (AI) with blockchain. For example, [20]
introduces a CNN-based method to optimize channel states in
Industrial IoT, aiming to enhance efficiency and ensure
secure data transmission. Similarly, [23] suggests a
decentralized system involving the integration of Q-learning
with reputation management to allow for anomaly detection
and prioritize trusted devices. In 5G IoT scenarios, this
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architecture demonstrated improved intrusion detection and
more equitable bandwidth allocation.

Other research explores both algorithms and system
design. For example, [24] examines dynamic bandwidth and
protocol selection. [25] proposes Blockchain-based Vehicle
Identity Authentication (BVIA) and Dynamic Weighted Fair
Bandwidth Allocation (DWFBA) for secure access and fair
resource sharing in vehicular IoT. These methods effectively
reduced task failure and communication overhead. In
addition, [26] integrates deep reinforcement learning (DRL)
with blockchain to improve consensus efficiency in
permissioned networks, while [27] applies recurrent neural
networks (RNNs) to predict storage failures and develop
secure repair mechanisms to defend against eavesdropping.

Hybrid approaches have also been developed to improve
quality of service (QoS). For instance, [28] applies an
Analytic Hierarchy Process (AHP)-based matching game for
fog computing optimization, while [29] introduces a trader
metaheuristic algorithm for multi-objective bandwidth
allocation. Predictive and adaptive designs such as Priority
Dynamic Bandwidth Allocation (PDBA) [30] and freshness-
aware frameworks [31] use reinforcement learning and
Markov Decision Processes (MDPs) to reduce latency, lower
packet loss, and maintain information freshness.

2.2.4 Outstanding Issues and Challenges

Despite these advances, several challenges remain High-
complexity methods like DRL require extensive training data
sets and high computational efforts, which could be
impractical in bandwidth-limited IoT devices. Blockchain
also has the latency and consensus overhead, and efficiency
and security can be difficult to achieve in real-time systems.
Developing an adaptive, lightweight, and scalable security
scheme that is both dependable and equitable is an open
problem in research.

2.2.5 Summary

Overall, security issues in bandwidth allocation have
directed researchers toward Al, reinforcement learning, and
blockchain-based trust systems. These technologies
demonstrate clear improvements in intrusion detection,
fairness, and resource utilization. However, challenges
related to scalability, computational cost, and device
heterogeneity still persist. Table 3 summarizes representative
Al- and trust-based solutions for secure bandwidth allocation
in IoT, highlighting their main contributions and performance
improvements.

Table 3. Secure Bandwidth Allocation in [oT: Al and Trust-Based Techniques.

Paper Year | Primary Focus AI/N.[L Key Problem Solved Performance Improvement
Technique
Gosw et 2021 H-IoT Security/ CNN Channel Security, Faster System, Better Resource
al. [22] Resources Resource Utilization Util.
Moudoud, 2023 5G+ 10T DRL (Dist. Q- Intrusion Detection, Outperforms referenced
H [23] Security learning) Bandwidth Allocation solutions
Bhar et al. . N/A (Survey/ BW Selection, Enhanced communication
[24] 2025 | IoT Bandwidth Mechanisms) Protocols, Topology stability
Liang et 2023 Integrated IoT Blockchain, gomrrriltum}gatlonr | Comm. Overhead, | Task
al. [25] Security DWFBA Algo. | DSurtty, sesource Failures
Fairness
Tsai et al. 2022 | ToT Blockchain | DRL Blockchain Comm. Outperforrps the current widely
[26] Performance used algorithm.
Liao, C IoT Data Eavesdropping Prev., o .
27] 2019 Reliability RNN Repair BW 1 18.4% Security Level
Abedin, S 2019 Fog IoT AHP, Matching | User Assoc., Resource 1 Utility Gain, Stable
et al. [28] Resources Game Allocation Association
0 0
Rouhifar, "1 )4 | 10T Bandwidth | L2der Dynamic BW "}}?r(3)121 /Fl S;CCTCES 112‘3}}6%{285&711?
M [29] Metaheuristic | Distribution Eit ghput, 31570
Predictive . L 1 10% Latency, | 6.8% Packet
Cl;";‘k[‘;‘i)r] ° 1 2024 | 10T Bandwidth | Algorithms o iomm“nlca“"“ Loss, 1 94.2% Throughput, |
: (RL-inspired) Y 0.69s Comp. Time
Guan, X et MDP, Greedy Information Freshness
al. [31] 2023 | Cellular IoT Policy (Aol) Outperforms benchmarks

Heterogeneous IoT (H-IoT) networks incorporate devices
and applications with different protocols, hardware types, and
demands. Heterogeneity introduces a set of management
challenges. The most important ones include scalability,

2.3 Heterogeneous loT Network
Management

2 EA :
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interoperability, energy efficiency, quality of service (QoS),
and security. Conventional management frameworks struggle
to effectively handle the dynamic and multi-faceted H-IoT in
reality. As a result, unified and intelligent management
solutions have become imperative [32].

2.3.1 Energy Efficiency and Anomaly Detection

To tackle abnormal data pattern and high energy
consumption in H-IoT, [32] proposed an energy-efficient
anomaly detection mechanism. The framework relies on the
Parallelized Memetic Algorithm (PMA) with AlexNet. The
Energy-Efficient Memetic Clustering Method (EEMCM)
achieved over 99% accuracy for anomaly detection in IoT
wireless sensor networks (WSNs). In practice, it improved
scalability and robustness against abnormal traffic.

2.3.2 Hybrid Architectures for Industrial loT

Industrial IoT (IloT) environments demand diverse QoS
guarantees, such as ultra-reliable low-latency communication
(URLLC) and high data throughput. To address these
requirements, [33,34] propose a hybrid RF/VLC architecture
with reinforcement learning-based resource management.
Using the Post-Decision State with Experience Replay and
Transfer (PDS-ERT) algorithm, their framework enhances
both energy efficiency and QoS in heterogeneous smart
factory networks.

2.3.3 Privacy and Multi-Mode Networks

In multi-mode H-IoT settings, privacy preservation and
queuing delays remain critical concerns. [35] presents a
privacy-aware optimization framework that leverages
Lyapunov optimization and auction-based matching to jointly
minimize latency and maximize privacy entropy. Similarly,
[36] introduces a Software-Defined Networking (SDN)-
based IoT management scheme that homogenizes
heterogeneous controller response times, thereby co-
optimizing QoS and security in highly diverse [oT systems.

2.3.4 Interoperability and Large-Scale Coordination

Achieving interoperability across large-scale
heterogeneous IoT systems requires advanced orchestration
mechanisms. In [37], large-scale HetNet simulations are used
to compare centralized and distributed management

approaches, demonstrating trade-offs between scalability,
reliability, and packet loss. To address decentralization, [38]
proposes a blockchain-based architecture for secure and
transparent coordination in large-scale H-IoT, reducing single
points of failure and enabling trusted collaboration.

2.3.5 Edge and Federated Management Frameworks

Edge computing and federated approaches offer
additional mechanisms for handling heterogeneity. [39]
formulates a mixed-integer program for Multi-Access Edge
Computing (MEC) resource provisioning and workload
assignment, optimizing trade-offs between cost, latency, and
QoS. In federated contexts, [40] introduces Hetero-FedIoT, a
rule-based interworking framework that supports cross-

platform interoperability and adaptive aggregation to
improve model convergence across diverse IoT
environments.

2.3.6 AlI/ML-Driven Management Solutions

Artificial Intelligence and Machine Learning (AI/ML)
techniques have become central to addressing heterogeneity
and resource management challenges in [oT. Comprehensive
surveys such as [41,42] emphasize the potential of ML/DL
for anomaly detection, resource optimization, and
interoperability enhancement, offering a roadmap for
intelligent, large-scale [oT management frameworks.

2.3.7 Summary

In conclusion, managing heterogeneous IoT networks
requires integrated solutions that simultaneously address
QoS, security, interoperability, and energy efficiency.
Existing contributions span from anomaly detection
frameworks and hybrid RF/VLC architectures to SDN-
enabled management, blockchain-based coordination, and
federated learning approaches. Al and ML remain at the core
of these advancements, enabling predictive and adaptive
management for highly dynamic IoT ecosystems. Table 4
provides a consolidated summary of AI/ML-driven methods
for H-IoT management and their reported performance
improvements.

Table 4. Al/ML-Driven Solutions for Managing Heterogeneous loT Networks.

Paper Y:a Primary Focus | AI/ML Technique | Key Problem Solved | Performance Improvement
Thangavel 2024 H-IoT Memetic Algo. + Anomaly Detection, 99.11% Anomaly Detection
,A[32] Energy/Security | AlexNet CNN Energy Eff. Accuracy
Yang, H 2020 Smart Factory Deep PDS-ERT Energy-Eff. Resource | Superior perf. (energy eff. &
et al. [33] QoS RL Mgmt (RF/VLC) QoS)
Gan, Z et 2025 Smart Factory Deep PDS-ERT Energy-Eff. Resource | Superior perf. (energy eff. &
al. [34] QoS RL Mgmt (RF/VLC) QoS)
Sood, K et 2020 Multi-mode H- | Lyapunov Opt., Queuing Delay, | Queuing Delay, 1 Privacy,
al. [35] IoT Auction Matching | Privacy, Security Security
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Selvara, S 2001 SDN-IoT Homogenization Is{]e):t;:]r_cl)g;nelty m Significantly alleviates
et al. [36] QoS/Security Framework (QoS/Security) heterogeneity
Tsenga, L HetNets . . Latency, Reliability in | | 100-fold Mean Latency
etal. [37] 2020 Interoperability Simulation Model HetNets (centralized vs. distributed)
Kherf, N H-IoT Blockchain Managing Large-scale .
et al. [38] 2019 Management (Architecture) H-IoT N/A (Preliminary study)
Khan, A 2024 MEC Resource | Decomposition MEC Resource & Highlights performance
etal. [39] Provisioning Approach Workload Assignment | trends/trade-offs
Zafar, A Federated H- Rule—basefi Seamles§ . Superior comp. & comm.
2023 Interworking, Connectivity, .
et al. [40] IoT A . o efficiency
ggregation Interoperability
. . o Some improvement
i{tlzslm[n‘; 11; 2019 | SDN-IoT QoS ?;r;l;%:;l;lfatlon I;B;:r_(l)f%ng(t)}é m (alleviates heterogeneity,
) maintains QoS)

2.4 Literature Synthesis and Research
Directions

From the reviewed literature in Tables 1-3, key trends and
gaps are evident. Advances have been made in three areas:
dynamic  bandwidth  allocation, secure bandwidth
management, and heterogeneous IoT optimization. Dynamic
allocation has shifted from static methods to Al-driven
techniques such as deep learning and reinforcement learning,
improving latency, throughput, and utilization. Security
enhancements include blockchain, reputation systems, and
Al-based intrusion detection, while heterogencous IoT
management has leveraged hybrid architectures, federated
learning, and blockchain for better scalability, energy
efficiency, and QoS.

Despite this progress, major limitation persists: (1)
absence of unified frameworks integrating allocation,
security, and heterogeneity; (2) limited large-scale, real-time
validation; (3) partial integration of Al and blockchain; and
(4) low adaptability to emerging technologies like 6G and
Edge AL

This study addresses these limitations by proposing a Q-
learning and blockchain-enabled framework for secure,
dynamic bandwidth allocation in heterogeneous IoT
networks. A proof-of-concept demonstrates trust-based
decision-making integration, with a modular design adaptable
to various protocols and future technologies such as SDN and
federated learning. Thereby laying a foundation for scalable,
intelligent, and secure IoT infrastructures.

3. Background

The continuous growth of the Internet of Things (IoT) has
reshaped network requirements, especially in terms of
security, interoperability, and scalability. With the increasing
diversity of IoT devices and protocols, reliable performance
can only be achieved through effective resource control, fair
bandwidth  distribution, and secure communication
mechanisms.

To address these concerns, this section presents the
background of our framework by discussing five essential

2 EA

aspects. The first is the heterogeneous nature of IoT, which
reflects the wide variety of devices and communication
technologies. The second is Q-learning, an adaptive
reinforcement learning approach for resource allocation. The
third is blockchain, which serves as a decentralized solution
for trust and security. The fourth concerns IoT trust models
that help distinguish trustworthy devices from malicious
ones. The fifth involves the mathematical formulation that
underpins the entire system. Together, these components
provide the conceptual and technical basis for the integrated
blockchain-supported Q-learning model proposed in this
work.

3.1 Synthesis of Literature and Research
Directions

IoT is not all the same. It brings together devices that use
different protocols, have different processing power, and
even ask for different amounts of energy. This happens
because many technologies live side by side, like Wi-Fi,
Bluetooth, Zigbee, LoRaWAN, and also the cellular
networks. When all these mix, handling resources and
keeping things compatible gets messy [36].

There is also the matter of trust. Some devices are strong
and secure, like sensors used in industry. Others are very
simple, like home gadgets. This big gap makes it harder to
keep the system reliable and to make sure the quality of
service (QoS) is good enough [37].

To deal with such variety, we need architectures that can
balance things like energy, latency, scalability, and security,
while still letting devices work smoothly together. Some
studies talked about hybrid or rule-based architectures as
ways to connect devices in this mixed IoT world [39]. These
give more freedom and make management easier when the
system grows. Other works looked at edge computing and
software-defined networking (SDN). These tools help to
manage device diversity with real-time changes and better
QoS in different IoT environments [35], [40].

3.2 Q-learning Basics
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Q-learning is an RL model-free algorithm. It enables
agents to learn optimal action by interacting with the
environment without knowing the behavior of the system
beforehand [13]. Essentially, Q-learning adjusts a Q-value for
the expected reward of performing action in a state and then
pursuing the optimal policy [14].

The algorithm works by learning the world, receiving
feedback in the form of reward or penalty, and updating the
Q-table according to the Bellman equation. Q-values
converge to virtually optimal values over a period of time,
and the agent chooses actions to achieve maximum long-term
performance [14]. This makes Q-learning perfect for dynamic
IoT scenarios where bandwidth requests, delay, and trust are
dynamically changing. Research has demonstrated its ability
in resource allocation, intrusion detection, and energy
reduction in IoT, exhibiting enhanced flexibility and
robustness compared to rule-based methods [23], [24].

3.3 Blockchain Fundamentals

Blockchain is a distributed ledger technology that offers
transparency, security, and immutability [25]. All
transactions were inserted into a block, which was
cryptographically linked to the previous block, thus creating
an unalterable chain. The system is distributed and utilized
consensus protocols such as Proof-of-Work (PoW) or Proof-
of-Stake (PoS) for validation [26].

Blockchain is increasingly recognized as an effective
mechanism for establishing trust and security among
heterogeneous IoT devices. It provides secure data sharing,
authentication, and resource delegation even in untrusted
environments [22]. Through its decentralized trust layer,
blockchain eliminates single points of failure and mitigates
attacks such as data tampering and bandwidth hijacking [25].
Recent research has also explored the integration of
blockchain with Al and SDN to enable more adaptive and
scalable IoT systems. For instance, in blockchain-based
resource allocation models, smart contracts are employed to
autonomously manage bandwidth distribution and enforce
trust-based decisions, thereby ensuring efficiency, security,
and fairness [26].

3.4 Trust Models in loT

Trust management is a critical component of
heterogeneous IoT, where devices differ in terms of
reliability, security capabilities, and behavior. Unlike
traditional networks, IoT environments often include
resource-constrained or even malicious devices. This makes
trust assessment essential for enabling secure communication
and ensuring fair bandwidth allocation [22], [25].

Trust models generally analyze devices using multiple
parameters such as historical behavior, packet delivery ratio,
latency, and energy usage. By differentiating between
trustworthy and untrustworthy nodes, these models enhance
QoS and overall network resilience [27]. Reputation systems,
for instance, assign trust scores to devices based on their
interaction history. Blockchain-inspired trust models add an
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immutable layer of verification for device actions and
transaction activities [25], [26]. Recent studies further
combine trust evaluation with machine learning and
reinforcement learning, where Q-learning agents dynamically
adapt bandwidth allocation according to trust ratings [23]. In
such approaches, malicious or low-trust devices are
penalized, while trusted devices receive equitable and
efficient bandwidth assignments.

Hybrid trust models employ multi-objective optimization
techniques, such as AHP-based allocation for fog computing,
to achieve fairness, efficiency, and flexibility [28].
Integrating trust management with Al and blockchain
significantly strengthens both security and adaptability in
complex IoT environments.

3.5 Mathematical Formulation of the
Framework

To formalize the proposed model, we define the following
equations governing trust dynamics, admission control,
learning updates, and performance metrics.

Equation (1): Trust Update
The trust value of each device is dynamically updated
depending on whether it behaves legitimately or maliciously:

Ti(t+ 1)

_ min(1, Ti(t) + AY),if device i is legitimate ()
" max(0,Ti(t) — A7), if device i is malicious

Where Ti(t) Trust value of device i at time step t, range [0,1].
A* Increment step for legitimate devices. A~ Decrement step
for malicious devices.

Equation (2): Service Admission Condition
Only devices whose trust score exceeds the threshold are
admitted for service:

Service(i)
_ Lif Ti = 6 and device i is non attacker @
0, otherwise

Where Ti is the Trust score of devices i. 8 represents Trust
threshold. Service (i) represents binary admission variable (1
= admitted, 0 = rejected).

Equation (3): Q-learning Update Rule
The reinforcement learning agent updates its policy using the
Bellman equation:

Q(s,a) « Q(s,@) + a[r + ymax,' Q(s',a") —
Q(sa)]

Where Q(s, a) is the Q-value for state s and action a, « is the
learning rate, y is the discount factor, r is the reward received,
s’ represents next state, max,' Q(s’,a) represents Maximum
expected Q-value of the next state.

3
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Equation (4): Served Ratio (SR)
This metric measures the proportion of devices that
successfully receive service:

N
R=121 if bw; >0
NLi0
1=

otherwise
Where N is the total number of devices, bw; represents
bandwidth allocated to device i, SR represents served ratio.

“4)

Equation (5): Average Bandwidth
The mean allocated bandwidth per device is given as:

1
AvgBW = —Z bw;
Ne 5)

Where AvgBW represents bandwidth per device.

Equation (6): Jain’s Fairness Index
To evaluate fairness in bandwidth allocation, Jain’s index is
computed as:

XLy bw;)?
NYN, (bw?) +6 (©)

Where ] represents jain’s fairness index, ranges between 0
and 1. § represents small constant to prevent division by zero.

Equation (7): Energy Consumption
The total communication energy consumption is expressed

as:
N

Eygrar = ) (bwi X 1000 X By ™
i=1
Where E; 4 is the total energy consumption across devices,
Ep;; represents energy consumed per bit.

4. Proposed Framework (Architecture)

4.1 Overall Description

The proposed architecture facilitates secure and dynamic
bandwidth allocation in heterogeneous IoT networks. It
integrates three main components: (1) an adaptive Q-learning
engine that optimizes resources in real time, (2) a blockchain-
based trust layer that enforces security and fairness, and (3) a
feedback-driven assessment mechanism that enables
continuous improvement.

By incorporating these elements, the framework ensures
that trustworthy devices receive sufficient resources, while
malicious or wasteful nodes are constrained. This design
directly addresses critical challenges such as device
heterogeneity, latency, energy constraints, and evolving
security threats.

Figure 1. High-level overview of the proposed unified
framework, highlighting the integration of machine learning-
based dynamic bandwidth allocation, blockchain-enabled
security enhancement, and adaptive handling of
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heterogeneous IoT devices to achieve secure and real-time
network optimization.

Umfled Framework

Dynamic Bandwidth

Allocation
(ML-based)

Real-time
Optimization

Performance
Optimization |

Security Enhancement
Real-time Optimization

Fig. 1. High-level overview of the proposed unified
framework

4.2 Three-Layer Framework Structure

The proposed framework adopts a three-layer
architectural design to ensure modularity, scalability, and
clear functional separation among system components,
making it suitable for large-scale heterogeneous IoT
environments.

(A) Data Collection Layer aggregates bandwidth
demands, latency measurements, and trust values from a wide
range of [oT devices.

(B) Data Processing Layer (Q-learning) analyzes these
inputs and dynamically allocates bandwidth to optimize both
efficiency and fairness.

(C) Data Leverage Layer (Blockchain Trust) validates
allocation decisions, maintains trust scores, and disseminates
information in a secure and transparent manner.

This layered design preserves modularity and scalability,
making it well-suited for large-scale IoT deployments.

4.3 System Workflow

The execution workflow of the proposed framework is
illustrated in Fig. 2, which depicts the sequential interaction
among the learning, security, and network components.

The process begins when IoT devices generate bandwidth
requests accompanied by their current trust-related attributes.
The aggregated network state is then observed by the Q-
learning engine, which selects an appropriate bandwidth
allocation action based on its learned policy.

Subsequently, the proposed allocation decision is
forwarded to the blockchain-based trust layer for validation.
Only devices that satisfy the trust requirements are admitted
and granted bandwidth access, while untrusted or malicious
nodes are blocked or denied service.

Following the admission decision, the system
performance is evaluated in terms of latency, fairness, and
energy efficiency. The resulting performance feedback is

EAI Endorsed Transactions on
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then used to update both the Q-learning policy and device
trust states, forming a temporal learning loop that
continuously refines bandwidth allocation decisions across
successive time steps.

This workflow ensures that bandwidth allocation is not
only adaptive and performance-aware, but also securely
enforced through trust validation and feedback-driven
learning.

Cstart
Start

10T Devices Generate Bandwidth Requests

Network State Observation |4—

1

Q-learning Action Selection |

Blockchain-Based Trust Validation |

//i\

A Trust Threshold =

e \

[ e 7 _I
No \Eheck(Trusta B/J e

Block / Deny Service ‘ Bandwidth Enforcement

L Reward/Penalty Evaluation }J

\ Q-\earninlg Update |

Yes

\ Trust Update |

|
&

e
MoreTime ™~

Steps?
\‘\/

No

Fig. 2. System Workflow of the Proposed Hybrid Q-
Learning and Blockchain Framework.

4.4 Blockchain Model
Overhead Analysis

Specification and

A lightweight, permissioned blockchain model is A
lightweight, permissioned blockchain model is integrated at
the edge layer to enable trust-aware bandwidth allocation in
heterogeneous IoT networks. Resource-intensive public or
mining-based blockchains are avoided due to their excessive
latency and energy overhead, while permissioned, edge-
assisted blockchain architectures are more suitable for IoT
environments [8], [9], [37]. In the proposed framework, IoT
devices do not directly participate in blockchain operations;
instead, trusted edge gateways act as authority nodes
responsible for ledger maintenance and transaction validation
under a Proof-of-Authority (PoA)-based setting [10], [26].

transaction corresponds to a validated bandwidth allocation
event and includes (Node ID, trust score, allocated
bandwidth, timestamp), following lightweight blockchain-
based trust management designs for IoT systems [8], [25].
Transactions are generated in an event-driven manner and
recorded only when a device satisfies the trust threshold and
is granted bandwidth. For fair comparison, the blockchain
layer is activated exclusively in the Blockchain-only and
Hybrid scenarios.

The blockchain overhead is analytically characterized in
terms of latency, energy consumption, and communication
cost. Let N, denote the number of blockchain transactions
and S;,the transaction size in bits. The blockchain-related
energy consumption is modeled as

Epc = Nex X Sex X Epyy

(®)
where Ejp;represents the energy consumed per
transmitted bit. The communication overhead is expressed as
Cpe = Ny X Spy )

In addition, the blockchain-induced latency is modeled as
Lpc = Nix X Ly (10)

where L;.denotes the per-transaction validation and
confirmation delay under a lightweight permissioned
consensus. These formulations enable systematic
quantification of blockchain overhead while preserving a
practical and deployment-oriented design for heterogeneous
IoT networks [10], [28].

4.5 Simulation Setup

The proposed framework was evaluated using a
MATLAB-based simulation conducted on a heterogeneous
IoT network comprising 100 devices. Each device was
randomly assigned a communication protocol (e.g., ZigBee,
Wi-Fi, LoRa, or NB-IoT), along with distinct latency and
initial trust values to reflect realistic network diversity. A
subset of devices was configured to exhibit malicious
behavior, allowing the assessment of trust dynamics and
security resilience under adversarial conditions.

Dynamic bandwidth allocation was performed using a Q-
learning agent operating over ten discrete bandwidth levels
within a predefined range. Trust scores were continuously
updated through the blockchain-based trust validation
mechanism described in Section 4.4, ensuring that allocation
decisions were influenced by both performance feedback and
security considerations.

The simulation was executed over 100 time steps, during
which multiple allocation strategies including static
allocation, Al-only, blockchain-only, hybrid learning-based
allocation, and classical scheduling baselines were evaluated
under identical conditions. Key performance metrics such as
average allocated bandwidth, served ratio, Jain’s fairness
index, total energy consumption, and security-related
indicators were collected and analyzed.

The results were visualized using time-series plots,

The blockchain ledger stores only decision-level  histograms, and comparative bar charts to examine
metadata rather than raw sensing or traffic data. Each
, EAI Endorsed Transactions on
C / Internet of Things
P j 10 | Volume 11 | 2025 |



A Q-Learning and Blockchain Framework for Secure Dynamic Bandwidth Allocation in Heterogeneous loT

convergence behavior, resource fairness, energy efficiency,
and the impact of trust-based admission control.

Table 5. Simulation Parameters.

Parameter Value / Description

Number of IoT devices 100

N)

Simulation time (T) 100 time steps

Bandwidth range (bw;) 50 — 500 kbps (10 discrete
levels).

Trust threshold (8) 0.6

Learning rate (o) 0.5

Discount factor (y) 0.9

Energy per bit (E;;) 1 x 107° J/bit

Blockchaln transaction 256 bits

size Sy

Blockchain transactions | Event-driven (trust > 6 and

Ny bw > 0)

Blockchaln latency per 5 ms

transaction L,
Average Bandwidth,

. Served Ratio, Jain’s

Performance metrics .
Fairness, Total Energy,
Trust Accuracy, TPR, FPR

5. Results and Discussion

This section evaluates the performance of the proposed
framework under various operational scenarios and discusses
the observed behaviors in light of the design choices
introduced in Section 4. Rather than reporting raw numerical
outcomes in isolation, the discussion focuses on
understanding why certain strategies succeed, where trade-
offs emerge, and how security-aware learning reshapes
bandwidth allocation decisions over time. To ensure a fair and
comprehensive assessment, the proposed hybrid framework
is compared against multiple baseline strategies, including
static allocation, Al-only learning, blockchain-only trust
enforcement, classical scheduling algorithms (WFQ and
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DRR), and a deep reinforcement learning baseline (DQN).
All scenarios are evaluated under identical network
conditions and simulation parameters, allowing performance
differences to be attributed directly to the underlying
allocation and security mechanisms.

5.1 Overall Performance Comparison

Figure 3 presents an overall comparison of the four core
bandwidth allocation strategies Static, Al-only, Blockchain-
only, and the proposed Hybrid framework across average
bandwidth, energy consumption, served ratio, and trust
accuracy.

The Static strategy achieves the highest bandwidth
utilization and full-service coverage due to uniform
allocation; however, this behavior results in excessive energy
consumption and does not consider device reliability.

The Al-only approach introduces adaptive bandwidth
adjustment, leading to moderate reductions in bandwidth
usage and energy consumption. Nevertheless, the absence of
trust awareness allows unreliable devices to continue
consuming resources, which negatively affects fairness and
security-related performance indicators.

In contrast, the Blockchain-only strategy prioritizes trust
enforcement by filtering low-trust devices, resulting in the
lowest energy consumption among the evaluated schemes
and improved trust accuracy. This strict security-oriented
behavior, however, leads to conservative bandwidth
allocation and a reduced served ratio.

The proposed Hybrid framework balances these trade-
offs by integrating Q-learning—based adaptation with
blockchain-inspired trust validation. As shown in Fig. 3, the
Hybrid model maintains controlled bandwidth utilization and
improved energy efficiency while achieving the highest trust
accuracy. Moreover, it attains a served ratio superior to the
Blockchain-only scheme, demonstrating the benefit of
combining learning-driven adaptability with trust-aware
filtering for secure and efficient bandwidth management in
heterogeneous IoT environments.
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Comparison: Avg BW Comparison: Energy (J)
T T T T

Static Al BC Hybrid Static Al BC Hybrid

Comparison: Served Ratio Trust Accuracy
T T T

Served Ratio
Trust Accuracy
o
o

Static Al BC Hybrid

Fig. 3: Overall performance comparison of the four core allocation strategies in terms of bandwidth
utilization, service availability, fairness, and energy consumption.

The aggregated performance metrics of the four core strategies are summarized in Table 6, complementing the
comparative trends discussed above.

Table 6. Comparative Performance Metrics of Core Bandwidth Allocation Strategies (Static, Al-only,
Blockchain-only, and Hybrid).

. AvgBW Served Jain’s Total Trust
Scenario (kbps) Ratio Fairness Energy (J) Accuracy TPR FPR
Static 275 1 1 27.5 0.79 0 0
Al-only 240 1 0.52 23.8 0.79 0 0
Blockchain- 170 0.62 0.6 16.8 0.8 1 0.23
only
Hybrid
(Q+Trust) 220 0.68 0.66 19.5 0.83 1 0.20

As shown in Figure 4, the average allocated bandwidth
increases rapidly during the initial learning phase, reflecting
the exploratory behavior of the Q-learning agent. After
approximately 25-30 time steps, the allocation stabilizes
within a consistent operating range, indicating convergence
toward a steady policy shaped by trust constraints.

5.2 Analysis of Hybrid Framework Behavior

This subsection analyzes the temporal behavior and
convergence characteristics of the proposed hybrid
framework by examining the evolution of average
bandwidth, energy consumption, served ratio, and trust
distribution over time.

< EAI .
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Fig. 4: Temporal behavior and convergence characteristics of the proposed hybrid framework

Energy consumption follows a similar trajectory, with
early fluctuations gradually diminishing as learning
converges. This behavior confirms that the hybrid framework
internalizes longer-term traffic and trust patterns rather than
reacting solely to instantaneous conditions, resulting in stable
and energy-efficient operation.

The served ratio improves progressively as trustworthy
devices are increasingly prioritized, while temporary
variations reflect dynamic traffic demands and trust-based
filtering. The final trust distribution demonstrates that most
devices converge toward high trust scores, whereas low-trust
or malicious nodes are effectively isolated.

Overall, these results indicate that the hybrid framework
converges smoothly without oscillatory instability or
excessive conservatism. The interaction between learning-
based adaptation and trust validation remains cooperative
rather than brittle, enabling stable, adaptive, and security-

aware bandwidth allocation in heterogeneous IoT
environments.
D EAl
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5.3 Comparison with Classical Scheduling
Algorithms (WFQ and DRR)

Classical scheduling algorithms such as WFQ and DRR
rely on predefined service rules and do not incorporate
learning or trust awareness. As shown in Figure 5, both
algorithms achieve high fairness indices and stable service
availability by distributing bandwidth according to fixed
scheduling principles. WFQ provides proportional fairness
based on assigned weights, while DRR ensures starvation-
free service through deterministic rotation.

However, this strict fairness comes at the cost of
contextual awareness. Neither WFQ nor DRR differentiates
between legitimate and malicious devices, treating all nodes
equally regardless of behavior. Under adversarial conditions,
such fairness becomes indiscriminate, allowing unreliable
devices to consume resources without penalty.
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Fig. 5: Performance comparison between the proposed hybrid framework and classical scheduling algorithms
(WFQ and DRR)

Energy consumption further highlights this limitation.
Because classical schedulers continue serving all devices
uniformly, they maintain higher energy usage even when
transmissions are inefficient or harmful. In contrast, the
proposed hybrid framework selectively allocates resources
based on both learned network dynamics and trust validation.
While the hybrid approach does not outperform WFQ or DRR
in raw fairness under ideal cooperative conditions, it achieves
superior robustness and energy efficiency in heterogeneous
and partially adversarial environments. By coupling adaptive
learning with trust-based filtering, the hybrid framework
prioritizes meaningful service delivery over blind fairness,
making it more suitable for realistic [oT deployments where
cooperation cannot be assumed.

5.4 Hybrid Framework  versus
Reinforcement Learning (DQN)

Deep

Figure X compares the proposed hybrid framework with
a Deep Q-Network (DQN) in terms of average bandwidth,
energy consumption, and served ratio. As expected, DQN
achieves higher average bandwidth and service availability
due to its expressive function approximation and aggressive
learning strategy. By leveraging deep neural networks, DQN
rapidly adapts to network dynamics and optimizes
throughput-oriented objectives.

However, these performance gains are accompanied by
increased energy consumption and higher learning overhead.
The absence of explicit trust awareness causes DQN to treat
all devices uniformly, allowing unreliable or malicious nodes
to influence allocation decisions. As a result, optimization
focuses on observable performance metrics rather than
behavioral reliability.

In contrast, the proposed hybrid framework adopts a
constrained learning strategy. Instead of maximizing
throughput aggressively, Q-learning operates within trust-
based validation boundaries enforced by the blockchain-
inspired layer. This design leads to slightly lower average
bandwidth and served ratio compared to DQN, but
significantly improves control, stability, and energy
efficiency.

The hybrid framework also exhibits reduced oscillations
and faster stabilization under limited training horizons. Its
lower computational complexity, absence of deep neural
models, and embedded security awareness make it more
suitable for resource-constrained and security-sensitive IoT
environments.

Overall, while DQN represents a high-performance
solution under unconstrained optimization, the hybrid
framework offers a more practical and robust alternative for
heterogeneous IoT deployments, where energy efficiency,
trust enforcement, and predictable behavior are as critical as
raw throughput.
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Fig. 6: Performance comparison between the proposed hybrid framework and the DQN-based allocation
approach.

5.5 Security and Trust Evaluation

Security in the proposed framework is modeled as a
dynamic, evidence-driven process rather than a binary
decision. Trust values evolve gradually based on observed
device behavior, enabling reliable differentiation between
benign and malicious nodes without overreacting to transient
anomalies. This approach reduces sensitivity to noise while
preserving consistent behavioral assessment.

The blockchain-inspired trust layer maintains historical
accountability by recording validated allocation decisions,
allowing trust to be updated instead of being permanently
fixed. Consequently, malicious behavior is detected reliably
once sufficient evidence accumulates, while occasional false
positives remain unavoidable in realistic IoT environments.
Under the evaluated conditions, this is reflected by complete
attack detection (TPR = 1.0) alongside a non-zero false-
positive rate, indicating a practical balance between
sensitivity and robustness rather than idealized classification.

Unlike rigid security-only enforcement, the hybrid
framework preserves adaptability under trust constraints.
Learning decisions are filtered rather than overridden,
allowing legitimate devices to recover from temporary trust
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degradation, while persistent malicious activity leads to
progressive bandwidth restriction without abrupt exclusion.

Security is embedded directly into the learning loop rather
than applied as an external control mechanism. Trust
validation constrains the action space explored by the Q-
learning agent, shaping long-term policy formation instead of
post-hoc enforcement. This integration enables adaptive
bandwidth allocation while containing adversarial impact.

To further characterize the security layer, the blockchain-
related overhead is quantified for blockchain-enabled
scenarios. Table 7 summarizes the associated latency, energy
consumption, and communication cost based on the event-
driven transaction model.

Table 7. Blockchain Overhead under Security and
Trust Evaluation

S K Latency Energy Communication
cenario (ms) [8)) Cost (bits)

Blockchain- 5 0.0044 4.4 x 10%

only
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Hybrid (Q +

Trust) 5 0.0049

4.9 x 104

Overall, the results indicate that blockchain overhead
remains limited due to event-driven transaction generation
and lightweight validation. The hybrid framework incurs only
a marginal overhead increase compared to the blockchain-
only scheme, while providing improved adaptability and
resilience, confirming the feasibility of integrating trust-
aware security into learning-based bandwidth allocation.

5.6 Trust-Aware Learning-Based loT

Frameworks: Discussion

Recent studies published in the EAI Endorsed
Transactions on Internet of Things highlight the growing
interest in trust-aware learning mechanisms for securing IoT
systems, particularly in critical and privacy-sensitive
environments [43]. These works primarily focus on
enhancing model robustness, privacy preservation, or secure
collaboration, often assuming that resource management
operates independently of trust enforcement.

In contrast, the framework proposed in this study
integrates trust directly into the bandwidth allocation process.
Trust validation influences the learning decisions themselves
rather than acting as an external or post-processing constraint.
This design allows adaptive allocation to remain responsive
while being progressively shaped by observed device
behavior.

Unlike trust-aware federated learning approaches that
emphasize global model convergence, the proposed
framework targets localized, real-time decision-making
under heterogeneous traffic and uncertain conditions. By
embedding trust within the learning loop, the system supports
controlled adaptation without relying on rigid exclusion or
static security rules.

Overall, this perspective complements existing trust-
aware IoT studies by addressing trust as a governing factor in
dynamic resource allocation, rather than as a mechanism
limited to data or model protection. This positioning clarifies
the contribution of the proposed approach within the broader
landscape of trust-aware learning-based IoT frameworks.

6. Conclusion

This work addressed a challenge that rarely appears in
isolation. In heterogeneous IoT networks, bandwidth
efficiency, security, and adaptability are often treated as
separate objectives, optimized independently and reconciled
later, if at all. The proposed framework follows a different
approach by modeling bandwidth allocation as a decision-
making process jointly shaped by learning and trust, rather
than as a static rule or an unconstrained optimization task.

By integrating Q-learning with a lightweight,
permissioned blockchain-based trust layer, the framework
demonstrates that adaptive bandwidth allocation does not
need to be blind, and security enforcement does not need to
be rigid. Learning provides flexibility, trust provides
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restraint, and their interaction yields a system that evolves
rather than oscillates. Across multiple scenarios, the observed
behavior indicates that meaningful performance
improvements arise not from extreme optimization, but from
balance.

The comparative evaluation reinforces this perspective.
Static allocation remains predictable but inflexible, while
learning-only approaches adapt quickly yet remain
vulnerable to exploitation. Blockchain-only enforcement
strengthens security at the cost of responsiveness, whereas
classical schedulers preserve fairness without contextual
judgment. Deep reinforcement learning further improves
performance, often at the expense of control and stability.
Rather than dominating these approaches individually, the
proposed hybrid framework aligns their strengths while
mitigating their weaknesses. Its evaluation against both
classical schedulers (WFQ and DRR) and deep reinforcement
learning baselines highlights the distinction between
unconstrained optimization and trust-aware, deployment-
oriented decision-making—particularly under adversarial
conditions where resilience outweighs peak throughput.

Equally important are the claims the framework does not
make. It does not assume instant attack elimination or perfect
trust classification, which are unrealistic in dynamic IoT
environments. Instead, threats are contained progressively,
decisions are revised when necessary, and stability is
maintained in the presence of noise and uncertainty. Trust is
earned, lost, and occasionally regained, while allocation
decisions remain open to correction. This behavior reflects
practical deployment realities rather than idealized
assumptions.

Several directions for future work emerge from this study.
Extending the framework toward federated or multi-agent
learning could enhance scalability in large deployments.
Incorporating software-defined networking may further
improve enforcement granularity, while real-world
prototyping could validate the abstraction choices made at the
edge layer. These extensions build naturally on the
foundation established here.

In conclusion, secure and dynamic bandwidth allocation
in heterogeneous IoT networks is not a matter of choosing
between learning and security, but of designing how they
coexist. When learning is constrained by trust and trust is
informed by experience, the result is a system that behaves
less like a rigid algorithm and more like a well-governed
network.
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