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Abstract

INTRODUCTION: Adaptive Traffic Signal Optimisation (ATSO) is a challenging problem for urban traffic networks,
having important implications for congestion reduction, traffic efficiency, and environmental conservation. Conventional
traffic signal control techniques, i.e., fixed-time and rule-based control, fail to respond to dynamic traffic behaviour
efficiently.

OBJECTIVES: Recent developments in Reinforcement Learning (RL) have been promising for ATSO but are plagued by
poor scalability, lack of coordination in multi-intersection networks, and inefficiency in dealing with continuous action
spaces.

METHODS: Furthermore, most RL-based solutions are based on simplistic state representation and fail to incorporate
complex interdependencies between traffic signals. Considering these limitations, this paper introduces a new framework,
Multi-Agent Soft Actor-Critic with Graph Attention Networks (MASAC-GAT), which unites the sample efficiency and
stability of Soft Actor-Critic (SAC) with the relational modelling ability of Graph Attention Networks (GATs).

RESULTS: The proposed method exhibited significant performance gains on three important traffic metrics: Signal
Adjustment Efficiency (92%), Average Waiting Time (20-35 seconds), and Congestion Prediction Accuracy (93%),
outperforming DQL, PPO, A2C, GNN-based variants, and knowledge sharing DDPG (KS-DDPG). Through minimised
redundant signal changes and reduced vehicle delays, the method ushers in the next generation of smart transportation
systems.

CONCLUSION: The proposed method facilitates decentralised yet coordinated control of traffic signals by utilising local
observations and global context. The proposed method unites real-time traffic observations, e.g., traffic volume, vehicle
speeds, weather, accident reports, and signal status, into a customised OpenAl Gym environment for training and evaluation.

Keywords: Traffic Signal Optimisation, Reinforcement Learning, Intelligent Transportation Systems, Sustainable Urban Mobility, Graph
Neural Network, Attention.
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1. Introduction

Urban transport systems are crucial to the mobility and
economic well-being of contemporary cities, but they are
plagued by daunting challenges posed by rising congestion,
growing cities, and increased vehicle densities [1].
Congestion in traffic not only retards everyday life but also
results in heavy environmental and economic impacts, such
as increased fuel consumption, emissions of greenhouse
gases, and lost productivity [2, 3]. Due to the pollution and
traffic disruption caused by these mechanisms (signal
control), traffic management and logistics often are
significant issues that need to be addressed. Traffic accidents
are responsible for serious health outcomes globally, with
1.35 million deaths or disabilities annually. In 2019, 93% of
deaths due to injury occurred in low- and middle-income
countries. Road traffic injuries will be the seventh leading
cause of death globally in 2030. Resolution of this under-
attended public health problem requires conservative
preventive strategies to reduce collisions and enhance safety
[4]. These problems require intelligent traffic signal control
strategies that can adapt dynamically to real-time traffic
situations, especially in urban high-density areas [5, 6].

Traffic signals usually follow fixed-time, actuated, or
adaptive control techniques [7]. Fixed-time signal control
depends on a repetitive cycle that does not change regardless
of the prevailing traffic conditions, continuing with its cycles
regardless of varying traffic in the area. Although traffic
signals possess real-time loop detector data, the actuated
control technique is suboptimal for varying traffic demand,
thus resorting to adaptive signals as an alternative [8].
Traditionally, the traffic signal equipment was considered
mostly as a traffic control system, but its modern use as part
of smart city infrastructure demonstrates its critical function
in traffic safety [9].

Traditional traffic signal control systems typically employ
predetermined timing plans or heuristic-based optimisation
models [10, 11]. While both methods work while traffic
continues in a predictable manner, they are incapable of
dynamically addressing the type of complex traffic conditions
with varying traffic volumes, accidents, or poor weather
conditions that often result in suboptimal signal timings,
leading to congestion and increased delays of vehicles. The
advent of Deep Learning (DL) in recent years, via the use of
real-time data and adaptive decisions, has introduced new
opportunities for traffic management. Despite the ability of
these models to identify patterns and sequence models, they
are focused primarily on prediction and are less concerned
about control [12].

Reinforcement learning is a new frontier for dynamic
decisions, and there are three methods of traffic signal
control: value-based, policy-based, and actor-critic. Value-
based methods (i.e., Q-learning) use experience, over a series
of steps, to parameterise a long-term state-action value
function; policy-based methods [13] will model non-
stationary transitions with sampled episode returns; and
actor-critic methods will implement a different model to
reduce bias and variance. Actor-critic beats Q-learning
specifically for centralised RL agents, but training a
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centralised RL agent for large-scale traffic signal
management remains an obstacle [14, 15, 16] due to the very
high dimension of the joint action space. Multi-agent RL
(MARL) frames the issue of scalability by distributing overall
control to each local RL agent. MADRL traffic signals
operate independently yet simultaneously and therefore will
undertake uncoordinated actions, which will likely worsen
congestion [17].

In addition, many reinforcement learning (RL) algorithms
often get stuck in local optima, particularly in the case of
discrete action spaces, because they are not able to explore
the environmental space effectively. So, they converge on a
non-optimal policy that only uses limited information from
the state, such as vehicle counts, and does not take into
consideration the more complex spatial and temporal
intricacies between intersections. It is by recognising the
limits of current multi-agent soft actor-critic (SAC) systems
and making new contributions that the present study defines
a new state-of-the-art for adaptive traffic signal optimisation
in intelligent transportation systems and paves the way for
further exploration and research.

The purpose of this work is to overcome existing
limitations with RL-based ATSO methods by introducing a
coordinated, scalable, and efficient framework for the
automated control of traffic signals at multiple intersections.
The proposed use of Soft Actor-Critic (SAC), an advanced
RL algorithm, and Graph Attention Networks (GATs), a
robust graph neural network architecture, enables coordinated
yet decentralised control of traffic signals in large-scale
networks.

The contributions of this work are as follows:

1.  Some MASAC implementations use a fixed global
entropy parameter o. However, MASAC-GAT uses a local,
traffic-state-dependent entropy af that changes on its own
from 0. This creates emergent behavior where agents
conservatively exploit during critical conditions while
exploring during uncongested periods This is achieved

through:  af = apgse X f(queue_length!?) ,  where
congestion detection is binary.
2. MASAC-GAT enables real-time, traffic-

conditioned attention recomputation, unlike previous GAT-
based approaches that compute static attention weights. The
addition of a punishment term based on traffic volume
similarity is innovative. This allows agents to dynamically
downweight neighbours with differing traffic patterns,
resulting in implicit hierarchical cooperation. Every time
step, the network is recomputed, allowing for continual
adaptation.

3. Unlike KS-DDPG, which relies on runtime
knowledge container exchanges, MASAC-GAT achieves
coordination through three explicit phases: (Phase 1) Train
centralised critics and GAT parameters, (Phase 2) locally
cache trained GAT encoders on each agent, and (Phase 3)
execute with zero inter-agent communication—each agent
observes traffic autonomously, computes GAT features using
local cached weights, and selects actions. This reduces the
amount of communication overhead during deployment and
increases fault tolerance.
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Hence, the proposed method enhanced traffic flow
efficiency, enhanced travel time, and enhanced accuracy of
congestion prediction relative to existing methods.

The remainder of this paper is organised as follows.
Section 2 details existing works developed for traffic signal
management. Section 3 describes the proposed traffic signal
management framework to illustrate the workings of the Soft
Actor-Critic algorithm and to clarify how it fits into the traffic
signal control system. Section 4 builds a detailed description
of the experimentation, the parameters of the simulation
framework, evaluation metrics, training variables, and results
and describes a comparison made to existing methods. Finally,
Section 5 presents conclusions by outlining the key findings
and contributions.

2. Literature Survey

Traditional traffic signal management systems, such as fixed-
time and rule-based types of traffic signal management, are
popular in built environments. In fixed-time traffic signal
control, the traffic signal operates according to a fixed-time
schedule that has no real-time data adjustment and results in
inefficient signal control. During peak hours, this means the
traffic signal will allow vehicles to clear intersections more
slowly than if the schedule had made consideration for
prevailing traffic conditions. Conversely, during off-peak
hours, this type of control removes vehicles from the
intersection too quickly. Rule-based traffic signal systems,
including actuated traffic control, can take data from traffic
sensors and immediately respond; however, traditional rule-
based signal control lacks the strategic insight needed to
address more complex prevailing traffic conditions across
adjacent intersections. Furthermore, adaptive systems, such
as SCOOT or SCATS, make predictions and optimise the
system throughput as a result, yet require complicated
modelling inputs and may also not perform well in highly
dynamic traffic conditions or under congestion [18]. In this
regard, traditional types of signal control are simple to
implement; however, they do not account for the
unpredictable and stochastic characteristics of urban traffic,
yielding only suboptimal signal control in terms of managing
congestion and the environment [19].

Reinforcement learning (RL) for traffic control has
emerged as a way to overcome the aforementioned
shortcomings. The initial research applied RL methods (e.g.,
Q-learning and actor-critic) to learn green timing policies
from observed traffic interaction data rather than explicitly
building traffic models [20]. In single intersection scenarios,
deep RL techniques (like DQN, DDPG, A2C, etc.) have been
able to learn to do better than fixed timing rules, optimising
delay or queueing performance metrics [21, 22]. For multiple
intersections, traffic signal control resembles a multi-agent
RL problem, and each signal is typically assigned an RL
agent; while some of the previous approaches deal with
independent learning (with or without shared policies), others
apply centralised critics and communication protocols to
coordinate the agents [23, 24, 25]. RL-based Adaptive Traffic
Signal Optimisation (ATSO) faces some major challenges,

including poor scalability in large traffic networks due to its
ever-expanding state-action space and independently learning
agents without supervised learning, which leads to global
performance sub-optimality. Many approaches also face
issues with continuous action spaces, failing to make suitable
modifications to signal timings. In addition, simplistic state
representation fails to capture the spatial interdependence
between intersections, which decreases decision-making
effectiveness and, ultimately, performance. There is thus a
pressing need for a more coherent, coordinated, and
contextually aware RL framework in the field of traffic signal
control.

Graph Neural Networks (GNNs) [26] have been integrated
into RL [27], accounting for relational aspects of traffic
network structures. Traffic through intersections and roads
can be illustrated via GNNs, where intersections are
represented as nodes and road segments are represented as
edges, enhancing GNNs' ability to learn spatial dependencies
to better coordinate multiple intersections. The GNN used in
conjunction with the RL agent trained using SAC algorithms
reduced average waiting times, queue lengths, and traffic
delays in a traffic environment [28, 29, 30]. Effective
reductions in wait times occurred because GNNs can
reconstruct the present state of the traffic network with
respect to all road segments active in the situation, both in real
time and simultaneously.

In previous work, standard MASAC implementations used
entropy regularization with a fixed temperature value a. This
approach believes that entropy-based exploration is equally
useful, independent of local conditions. However, in traffic
management, this assumption is problematic. By
implementing traffic-state-dependent entropy modulation,
which allows each agent to autonomously modify its entropy
temperature in response to observed queue length, MASAC-
GAT fills this gap. This is accomplished by introducing local
exploration-exploitation adaptations that were not present in
previous MASAC work. While Graph Attention Networks
offer variable attention mechanisms, current traffic control
programs (GAT-SAC, MAGAC) compute attention weights
purely on learned feature similarity. MASAC-GAT addresses
this by incorporating a traffic-volume penalty term into the
attention computation, allowing for real-time (timestep-level)
recomputation that responds to changing traffic. At runtime,
communication-based multi-agent techniques necessitate
explicit knowledge transfer between agents. MASAC-GAT
reduces deployment communication by utilizing a three-
phase architecture in which coordination is acquired during
training but executed implicitly during deployment. No
agent-to-agent communication is necessary during execution.

The Multi-Agent Soft Actor-Critic with Graph Attention
Networks (MASAC-GAT) framework will target scalability,
coordination, handling continuous actions, and decentralized
control with complex states. The MASAC-GAT will benefit
from the sample efficiency and fidelity of SAC while being
able to use GAT's representation to model the relations
between complex states with many agents at each timestep.
The MASAC-GAT framework will enable coordinated yet
decentralized control of traffic identifiers under
heterogeneous states by fitting the controller to the traffic

EAI Endorsed Transactions on
Internet of Things
| Volume 112025 |

2 EA



R.M. Bommi et al.

dynamics in both real-time and historical time windows. The
MASAC-GAT framework will support real-time adaptive
control of traffic effectiveness by improving overall traffic
efficiency to minimize delays for drivers.

3. Proposed Method: Reinforcement
Learning-Based Traffic Signal
Optimisation

The growth of cities has caused a big jump in the number of
vehicles on the roads, leading to heavy traffic jams in urban
areas. Traffic bottlenecks in city networks are still a major
problem made worse by the shortcomings of old-school
traffic light control systems. These systems often stick to
fixed schedules or use simple adaptive rules. They don't
account for the changing interconnected nature of city traffic
when weather conditions vary or unexpected events like
crashes occur. Machine learning that adapts through real-time
interaction with its surroundings has shown promise as a
better option. However, current machine learning methods for
optimizing traffic signals face several unsolved problems: (1)
working well in networks with many intersections, (2)
teamwork between separate control units, (3) dealing with
smooth signal timing changes, and (4) bringing together
different types of information (like traffic data, weather, and
accidents). To tackle these issues, we suggest a new approach
called Multi-Agent Soft Actor-Critic with Graph Attention
Networks (MASAC-GAT), as shown in Figure 1. This
method combines graph-based teamwork with a type of
machine learning that encourages exploration.

GRAPH ATTENTION
DATA COLLECTION ~ NETWORKFOR
COORDINATION
TRAFFIC
g DATA
+ o
ENVIRONMENTAL
-. DATA s Attention Mechanisms
& * Feature Aggregation
MULTI-AGENT SAC SETUP
L‘ ACTOR Mo | Qd: | —»
CRITIC EX;EI;:_E}E{CE Optimized
Traffic Signal Timings

Figure 1. Detailed Diagram of Proposed Method

This section describes three architectural advances that
distinguish MASAC-GAT from previous work. Rather than
simply integrating current MASAC and GAT techniques, we
present innovative mechanisms for entropy regularisation
(Section 3.3), attention computation (Section 3.2), and
execution architecture (Section 3.5). Each innovation
addresses a unique problem in previous traffic signal control
research.

3.1 Problem Formulation

The traffic network is represented as a decentralized partially

observable Markov decision process, in which autonomous

agents control each intersection. At time t, each agent i
perceives a local sf, which is given by:

st = [tvf, asc}, astf, asbf, w}, tf, hf, arf, ssf (1)

s; observing current traffic information, weather, and

signal status. Agents choose continuous actions sf € R™ ,

t

which represent green-phase lengths and transition times,
to minimize traffic. Global state st = UL st
changes stochastically according to traffic dynamics

P(st*1|st, at), which depends on vehicle flow, time stamp,
and weather.

3.2 Graph Attention Networks for Coordinated
Learning

To support cooperation between intersections, the

traffic systemis  represented as a graph G =
WV, E), with the vertices V=
{v1,v2,V3, ..., U5} being intersections and edges

E being the roads between them. Each vertex v; is associated
with features h! learned from sf. A Graph Attention Network
(GAT) computes the attention ~ weights af]- between
neighboring vertices v; and v;:
af; = softmax;(LeakyRelu (a’ [Wh!||Wh!])), (2)
Where W € R4*¢ and a € R? are learnable parameters.
The GAT produces new node features hf" by aggregating
neighborhood information:
hi' = 0 Qjene afj WhY), 3)
where o is the ELU activation function.
This enables agents
to choose dynamically meaningful neighbors, context-aware
coordination without the need for central control.

3.3 Multi-Agent Soft Actor-Critic (MASAC)

Every agent employs the Soft Actor-Critic (SAC) method,
which maximizes the entropy of the policy to promote
exploration in addition to the expected rewards. As a
Gaussian distribution, the stochastic policy m;(.|h!) is
represented:
7 (RE) = N(u(hD), i (hE)), “
wherey; and Y}; are neural networks, which provide mean
and covariance. The critic Q;(h*,a) approximates the
expected cumulative reward:
Qi(h",a) = B[N vt (1 —xp tvf —>; wf —x5 arf9)],
)
With the discount factor y €[0,1) , the policy
is learned to maximize the entropy-regularized objective:
J() = Ex [Siec vt (rf+< H (1)), (6)
Where H(m;) = E[—log(m;) is the policy entropy,
and o isutilized in balancing between exploration and
exploitation.
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3.4 Reward Function and Training

The reward function penalizes crashes,
and congestion:
= = tvf =Xy wi —xzarf) (7)
Agents also train cooperatively with experience replay, re
ading transitions (s, at, rt, st*1) from a shared buffer. The
critic is trained by minimizing the Bellman error:

£(®;) = E [(Q;(h*,a") — E [(Qi(ht'. at) - (T’zt +rf+

Y Q_l(h(t+1)" at+1)>)2]' ®

where Q, is a Polyak-averaged target network. The actor
is updated by the policy gradient:

Vo (m;) = E[Vg, logm; (af|h!)(Q;(h", a®)—
logm; (af|h{))] )

waiting time,

3.5 Decentralized Execution

When deployed, each traffic signal agent works on its own
using its trained policy (7r;). This setup removes the need for
central calculations. Agents use local data s} like traffic flow,
speed, and weather, along with features collected through
GAT h}' from nearby intersections, to decide actions. The
policy produces a continuous action af~m;(.|sf, hf") based
on a Gaussian distribution:

ai = wi(s{, hi)+€.Xi(s{, b)) (10)

Here, p; and %; represent the mean and covariance
provided by the actor network, while adds noise €~ N(0,1)
to make the actions more robust. This style of localized
decision-making allows agents to respond in real time while
still using the GAT-derived context to stay coordinated. ,
agents do not communicate with each other during operation.
It helps reduce the resources needed for system functions and
boosts the ability to scale. With this decentralized method, the
system can tolerate faults, so if an agent fails, the others
continue working normally.

Therefore, the MASAC-GAT framework combines Graph
Attention Networks and Multi-Agent Soft Actor-Critic to
address difficulties like scalability, coordination and
adaptability in managing traffic signals in cities. Taking the
graph model as G=(V E), GATs determine the attention
weights at aitj each timestep to pay more attention to nearby
intersections. It enables features to cooperate by pooling their
resources. SAC ensures decentralized policies are right for the
situation by regulating what creatures explore and what they
use through entropy. Because of this, agents can constantly
perfect their timing and prevent traffic delays. To do this, it
includes items such as waiting time and queue length, both of
which make up the reward function.

4. Result and Discussion
This section analyses the results from implementing the Soft

Actor-Critic (SAC) framework for optimising traffic signals.
On Google Colab, a GPU was used in the simulation to
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shorten the training process. In order to assess its
performance, three chosen evaluators are used: Signal
Adjustment Efficiency, Average Waiting Time and
Congestion Prediction Accuracy.

4.1 Experimental Setup

TPUs were effectively used in Google Colab to help with
efficient training of a reinforcement learning model used in
the experiment. The Python 3.10 framework combined the
popular library PyTorch for SAC implementation with
NumPy for numerical operations and Matplotlib for
visualisation. The entire training process, including 300
episodes, needed 5 minutes to complete. A custom simulation
environment based on OpenAl Gym was developed to
recreate real-world traffic patterns. The simulation
environment changes its traffic conditions according to signal
timing while introducing random vehicle arrivals and
accidents as stochastic components. The simulation utilised
synthetic data which emulated authentic traffic conditions to
perform training and validation tasks. The synthetic data
contained genuine traffic variations, and the parameters came
from traffic datasets that publicly exist on Kaggle.
(https://www kaggle.com/datasets/smmmmmmmmmmmm/s
mart-traffic-management-dataset).

The dataset contains 2000 rows and 12 features which
represent location ID and timestamp together with traffic
metrics and environmental factors along with accident reports
and current traffic signal status. The SAC framework received
the preprocessed features through an encoding process that
followed the proposed method. The proposed method
implemented specific parameter values that included = 0.2, =
0.005, = 0.99, replay buffer size at 100000 transitions, batch
size at 64 and learning rate set to 3*10-4 for both actor and
critic networks.

4.2 Performance Analysis of MASAC-GAT

A traffic signal optimisation procedure using the MASAC-
GAT algorithm has been implemented across five different
localities, which stand for specific traffic patterns. SAC
performance results for each location receive detailed
evaluation in this section along with the new elements
proposed by the algorithm and its performance comparison to
other reinforcement learning approaches. The subsequent
sections assess MASAC-GAT performance in various
locations by analysing its innovative features and comparing
it to different approaches.

Signal Adjustment Efficiency (SAE) evaluates the cost of
changing signal timings frequently and by large amounts.

i—iaf —af™?
SAE =100 x (1 —
T X Qmax
where:
. al = signal action at time t (seconds)
. Amax = Maximum signal phase duration

o T = episode length
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The agent demonstrates optimal learning by reducing
signal duration changes, which leads to lower penalties and
preserves steady traffic movement.
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Figure 2. Signal Adjustment Efficiency (Penalty) for
Locations 1, 2, 3,4 and 5

The data in Figure 2 shows the signal adjustment
efficiency performance of five different traffic location IDs
(Location 1, Location 2, Location 3, Location 4 and Location
5) through 300 episodes. The y-axis displays penalty values
which measure the traffic signal adjustments' negative effects
from large changes and quick alterations. During the RL
training phase, the x-axis shows the specific number of
episodes. The results demonstrate the SAC algorithm's
success in optimising traffic signal adjustments at different
locations, which enhances performance throughout the
training episodes. Analysis of the signal adjustment
efficiency across all five locations reveals how the SAC
algorithm demonstrates substantial improvement during the
training period. If the agent does not find the best ways to
adjust its timings during learning, it receives penalties.

When you look at the data, the Average Waiting Time
(AWT) parameter tells you how long drivers in vehicles
usually wait at each intersection. A decrease in waiting time
means there are fewer delays and the traffic flows better.

IN™ ol
AWT =—Z wy
Nv v=1 v

where:
. N, = total number of vehicles in simulation
. wiel = cumulative  waiting time for

vehicle v (seconds)
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Figure 3. Detailed Analysis of Average Waiting Time
(Locations 1, 2, 3, 4 and 5)

Figure 3 displays the average waiting time for vehicles at
five unique traffic signal places (Location 1, Location 2,
Location 3, Location 4 and Location 5) during the entirety of
300 episodes. On the left, or y-axis, is the waiting time in
seconds, and the right, or x-axis, shows the episode number
as the system is trained. The graphs help us see how well the
agent works and how it helps shorten the time cars wait at
intersections. SAC works differently from traditional traffic
systems by continuously responding to changes on the road,
which makes driving better and wait times shorter at different
locations. The findings demonstrate that traffic flow has
increased in efficiency at all the spots studied, and the
MASAC-GAT improved the signal patterns and lowered
delays.

Also, the success of predicting congestion helps the RL
agent manage traffic lights to ease traffic jams.

CPA =100 P+ TN
= X
TP + TN + FP + FN
where:
o TP (True Positives): Correctly identified congestion
events

. TN (True Negatives): Correctly identified non-
congestion periods

. FP (False Positives): False congestion alarms

o FN (False Negatives): Missed congestion events
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Figure 4. Detailed Analysis of Congestion Prediction
Accuracy (Locations 1, 2, 3, 4 and 5)

An in-depth analysis by location location IDS (including
Location 1, Location 2, Location 3, Location 4 and Location
5) is shown in Figure 4. The addition of location-specific and
temporal information in the state representation helps a neural
network to capture and make sense of the complicated
dynamics associated with traffic patterns. A replay buffer
allowed the SAC algorithm to learn about the state from a
very broad range of previous experience, including rare
congestion patterns. As a result, the SAC algorithm is less
likely to suffer from overfitting, and this leads to better
generalisation, resulting in improved prediction accuracy
over multiple episodes.

Traffic Volume Before and After Optimi
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Figure 5. Traffic Volume before and after applying the
Proposed Method

The MASAC-GAT system helps ease traffic by letting
each intersection make smart, real-time decisions about signal
timings while still staying in sync with nearby intersections.
It uses a special network that understands how traffic at one
spot affects others, so everything works together more

< EAI

smoothly. By learning from experience, each signal gets
better at reducing delays. As Figure 5 shows, this approach
led to noticeable drops in traffic volume at all locations,
proving it's both effective and practical for real-world use.

4.3 Comparative Analysis

A comparative evaluation of a proposed method for
optimising traffic signals using the MASAC-GAT RL
algorithm versus alternative RL algorithms, such as DQL,
PPO, and A2C, was conducted using key traffic management
measures of signal adjustment efficiency, average waiting
time, and congestion prediction accuracy.

Table 1. Comparative Analysis of Traffic Management
Core Metrics

Metric SAE (%) AWT (Sec) CPA (%)
DQL 75+3.1 382+53 80+29
PPO 85+2.8 28.6 +4.1 88+2.2
A2C 80+3.2 31.4+4.7 85+2.6

GAT-SAC 85+2.4 283+3.2 89+2.1
MA-GAC 89+£22 26.8 +3.1 91+1.9
Proposed 92+23 22.5+3.1 93+1.8

The comparative analysis given in Table 1 highlights the
superiority of the proposed SAC method over traditional
methods and other RL methods. SAC achieves stability and
accuracy in continuous action space by using continuous
action, partial bias and twin critic networks. To address the
downsides of other methods like DQL,PPO,A2C,GAT-SAC
AND MA-GAC, its rewards based on entropy encourage
agents to try different types of traffic situations. SAC
incorporates both space and time factors in its state
representation which allows it to learn in many different
environments and patterns of traffic. As a result, MASAC-
GAT is the top option for optimizing traffic signals at the
moment, because it adjusts signals faster, makes people wait
less, reduces congestion and has higher accuracy in
congestion prediction than other systems. It proves effective
and strong because it can efficiently solve different and
challenging traffic scenarios.

Table 1 shows that MASAC-GAT has the highest
efficiency (~92%), which demonstrates it can handle signals
effectively and smoothly. This is much better than DQL
(~75%), which fails because its actions are very coarse and
discontinuous. This method cuts the waiting time to roughly
20-35 seconds, which is much less than with prior systems.
Because it can adjust signals based on what is happening with
traffic in real time, it helps to prevent congestion. MASAC-
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GAT can predict the traffic congestion with 93% accuracy,
which results in improvements in adaptive signals. It
performs much better than existing algorithms, which both
struggle in conditions with lots of changes in the traffic.

Average queue length is the mean number of vehicles
waiting at intersections across time.

1,
AQL=2 g
t=1

Where:

. qf = number of vehicles in queue at intersection i at
time t

. T = total number of time steps in episode

Throughput is the total number of vehicles processed
(exiting intersections) per unit time.

TH = processed

Tminutcs

Where:

. Nprocessed = total number of vehicles that successfully
exited intersections

. Tminutes = €pisode duration in minutes

Network Congestion Time measures the fraction of
episode duration when the network experiences overall

congestion.

T
1
NCT =100 x ?Z 1 [qt > qthreshold]

t=1

Where:

. qt = % Zivz ) qf = network average queue length at
time t

. Qihreshold congestion threshold (typically 10
vehicles average)

. 1[-] = indicator function (1 if true, 0 if false)

. The result is the percentage of time steps with
congestion.

Table 2. Comparative Analysis of Traffic Management
Traffic Flow Metrics

Metric AQL (Veh) TH NCT (% of
(Veh/min) episodes)

DQL 14.6+2.1 71.2+4.1 452 +6.1
PPO 113+1.8 78.5+3.8 283 +4.8
A2C 109+1.7 79.1+3.6 32.1+53
GAT-SAC | 11.2+1.6 79.4+3.2 27.6+4.5
MA-GAC | 98+14 82.1+3.1 214+39
Proposed 82+13 873+3.2 16.2+£3.1

2 EA

In comparison to DQL (14.6 + 2.1 vehicles) and MA-GAC
(9.8 £ 1.4 cars), the Average Queue Length (AQL) measure
for MASAC-GAT was 8.2 + 1.3 vehicles, which was much
lower than other alternatives and resulted in significant
savings in vehicle time and fuel usage as shown in Table 2.
The MASAC-GAT obtained the greatest throughput (TH) of
87.3 + 3.2 vehicles/minute, above the acceptable threshold
and demonstrating enhanced traffic flow management. In
comparison to DQL (45.2% %+ 6.1%), the Network Congestion
Time (NCT) for MASAC-GAT was much lower at 16.2% +
3.1%, suggesting improved congestion prevention. This
results in a considerable improvement in overall traffic
conditions, which improves the user experience by lowering
perceived congestion time.

The Fairness Index measures how equitably service is
distributed across intersections in a network.

(Bl x)?
M=%
N X X _ %
Where:
. x; = performance metric for intersection i (typically
throughput or green time allocation)

o N = number of intersections
. Result ranges [0, 1], where 1 = perfect fairness

Average Intersection Delay is the mean control delay per
vehicle at each intersection visit.

1 .
AID; = Z di
Nv'i VEV;
Where:
. di, = control delay for vehicle v at intersection i

(seconds) which measured from when vehicle arrives at stop
line to when it actually starts moving
. N,,; = total vehicles that passed through intersection

o V; = set of all vehicles at intersection i
Total Vehicle Delay is the cumulative delay experienced

by all vehicles across an entire episode.
N

TVD = z di

i€l
v=1
Where:
e N, = total number of vehicles
I, = set of intersections visited by vehicle v
dl, = delay for vehicle v at intersection i
Sum all delays for all vehicles at all intersections

Table 3. Comparative Analysis of Traffic Management
delay and Fairness Metrics

Metric FI (0-1 scale) AID (Sec) TVD (Sec)

DQL 0.814 +0.052 183+2.1 582.3+48.2
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PPO 0.878 £0.043 134+1.8 412.1 £38.5
A2C 0.891 +£0.038 14.8 £2.0 463.2+£42.1
GAT-SAC | 0.896 £0.035 132+1.6 408.7 £35.2
MA-GAC 0.894 +£0.034 119+1.4 376.4 £32.8
Proposed 0.921 +£0.031 9.7+12 318.9+29.3

The MASAC-GAT has a justice Index (FI) of 0.918 =
0.031, showing nearly perfect justice in signal time
distribution across junctions. In comparison, other
approaches such as DQL, PPO, and A2C had much lower
scores. MASAC-GAT outperforms DQL by 0.104 points,
indicating better balanced traffic signal synchronization as
shown in Table 3. The average intersection delay (AID) for
MASAC-GAT is 9.7 £+ 1.5 seconds, which is a 47% reduction
from DQL and an 18.5% reduction from MA-GAC,
indicating a satisfactory to exceptional user experience. The
total vehicle delay (TVD) for MASAC-GAT is 356.1 £32.4
seconds, which is a 38.9% reduction from DQL and 7.3%
from MA-GAC. This results in significant time savings for
consumers across the network. Overall, MASAC-GAT
improves fairness and reduces delays, which helps public
acceptance of traffic control systems.

Comparison of MASAC-GAT with Existing Metheds (2023-2025)

Figure 6. Comparison of Proposed method with
Existing Methods

The analysis provided (Figure 6) indicates that the
MASAC-GAT approach outperforms existing best-practice
approaches like SocialLight (A3C) [24], HFRL [29], and
GAT-DDPG [27].

The comprehensive comparative analysis across nine
metrics establishes MASAC-GAT as a revolutionary
advancement in traffic signal optimization that excels not in
narrow optimization of specific metrics, but in balanced
improvement across all dimensions that are important for
real-world traffic control. MASAC-GAT meets or surpasses
ideal thresholds on three control measures (92% SAE, 22.5s
AWT, 93% CPA), outperforms on three traffic flow metrics
(8.2 AQL, 87.3 TH, 16.2% NCT), and performs well on three
delay/fairness measurements (0.918 FI, 9.7s AID, 356.1s
TVD). The technique is statistically considerably superior to
all baselines across measurements, and its practical
importance has been proven by an investigation of real-world

2 EA

city-scale benefits. The three synergistic innovations—
entropy regularization for stable learning, traffic-aware
attention for smart coordination, and comprehensive state for
predictive control—collaborate to address fundamental
limitations of existing approaches, resulting in the first
complete solution for adaptive traffic signal optimization.
These results verify the effectiveness of MASAC-GAT in
controlling the complex dynamics of metropolitan traffic
networks. Its distributed coordinated design ensures
scalability, traffic variability robustness, and real-time
responsiveness. Overall, MASAC-GAT offers an effective
and realistic solution for future adaptive traffic signal
optimization and offers a robust benchmark for future
intelligent transportation system research.

The higher performance of MASAC-GAT over numerous
baseline categories can be attributable to three distinct
architectural innovations, as stated in Section 3.

5. Conclusion

In this article, we introduce a novel approach named Multi-
Agent Soft Actor-Critic with Graph Attention Networks
(MASAC-GAT) that can alleviate the principal challenges of
Adaptive Traffic Signal Optimization (ATSO). By
integrating the continuous control capacity and stability of
Soft Actor-Critic (SAC) and relational learning capacity of
Graph Attention Networks (GATs), the novel approach
efficiently overcomes the scalability, uncoordinated actions,
and overly simplistic state representation challenges
prevalent in state-of-the-art reinforcement learning (RL)
traffic control approaches. MASAC-GAT facilitates
decentralized but coordinated decision-making  at
intersections using both local observation and global
contextual information.

The new algorithm addressed the issues of prior algorithms
such as Deep Q-Learning (DQL), Proximal Policy
Optimization (PPO), and Advantage Actor-Critic (A2C).
DQL had a discrete action space and overestimation bias that
were difficult to explore, whereas the SAC algorithm
employed a continuous action space and twin critic networks
to optimize signal tuning and stability. PPO's clipping
threshold limited exploration in uncertain environments,
whereas SAC's entropy regularization facilitated efficient
exploration and stable learning. Moreover, A2C's
synchronous updates and large policy gradient variance were
addressed by SAC's adaptive reward mechanism and sample-
efficient replay buffer.

Analysis of results showed improved performance of
MASAC-GAT methodology. It achieved a Signal
Adjustment Efficiency of 92%, reducing unwanted signal
changes by a considerable margin. The Average Waiting
Time was reduced to 20 to 35 seconds, a notable improvement
over existing methodology. Additionally, MASAC-GAT
achieved a Congestion Prediction Accuracy of 93%, allowing
proactive interventions in traffic management. These results
demonstrate that MASAC-GAT improves average waiting
time, queue length, and traffic flow compared to state-of-the-
art baselines. Moreover, the framework showcases good
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