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Abstract 
INTRODUCTION: Adaptive Traffic Signal Optimisation (ATSO) is a challenging problem for urban traffic networks, 
having important implications for congestion reduction, traffic efficiency, and environmental conservation. Conventional 
traffic signal control techniques, i.e., fixed-time and rule-based control, fail to respond to dynamic traffic behaviour 
efficiently. 
OBJECTIVES: Recent developments in Reinforcement Learning (RL) have been promising for ATSO but are plagued by 
poor scalability, lack of coordination in multi-intersection networks, and inefficiency in dealing with continuous action 
spaces. 
METHODS: Furthermore, most RL-based solutions are based on simplistic state representation and fail to incorporate 
complex interdependencies between traffic signals. Considering these limitations, this paper introduces a new framework, 
Multi-Agent Soft Actor-Critic with Graph Attention Networks (MASAC-GAT), which unites the sample efficiency and 
stability of Soft Actor-Critic (SAC) with the relational modelling ability of Graph Attention Networks (GATs). 
RESULTS: The proposed method exhibited significant performance gains on three important traffic metrics: Signal 
Adjustment Efficiency (92%), Average Waiting Time (20–35 seconds), and Congestion Prediction Accuracy (93%), 
outperforming DQL, PPO, A2C, GNN-based variants, and knowledge sharing DDPG (KS-DDPG). Through minimised 
redundant signal changes and reduced vehicle delays, the method ushers in the next generation of smart transportation 
systems. 
CONCLUSION: The proposed method facilitates decentralised yet coordinated control of traffic signals by utilising local 
observations and global context. The proposed method unites real-time traffic observations, e.g., traffic volume, vehicle 
speeds, weather, accident reports, and signal status, into a customised OpenAI Gym environment for training and evaluation. 
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1. Introduction

Urban transport systems are crucial to the mobility and 
economic well-being of contemporary cities, but they are 
plagued by daunting challenges posed by rising congestion, 
growing cities, and increased vehicle densities [1]. 
Congestion in traffic not only retards everyday life but also 
results in heavy environmental and economic impacts, such 
as increased fuel consumption, emissions of greenhouse 
gases, and lost productivity [2, 3]. Due to the pollution and 
traffic disruption caused by these mechanisms (signal 
control), traffic management and logistics often are 
significant issues that need to be addressed. Traffic accidents 
are responsible for serious health outcomes globally, with 
1.35 million deaths or disabilities annually. In 2019, 93% of 
deaths due to injury occurred in low- and middle-income 
countries. Road traffic injuries will be the seventh leading 
cause of death globally in 2030. Resolution of this under-
attended public health problem requires conservative 
preventive strategies to reduce collisions and enhance safety 
[4]. These problems require intelligent traffic signal control 
strategies that can adapt dynamically to real-time traffic 
situations, especially in urban high-density areas [5, 6]. 

Traffic signals usually follow fixed-time, actuated, or 
adaptive control techniques [7]. Fixed-time signal control 
depends on a repetitive cycle that does not change regardless 
of the prevailing traffic conditions, continuing with its cycles 
regardless of varying traffic in the area. Although traffic 
signals possess real-time loop detector data, the actuated 
control technique is suboptimal for varying traffic demand, 
thus resorting to adaptive signals as an alternative [8]. 
Traditionally, the traffic signal equipment was considered 
mostly as a traffic control system, but its modern use as part 
of smart city infrastructure demonstrates its critical function 
in traffic safety [9]. 

Traditional traffic signal control systems typically employ 
predetermined timing plans or heuristic-based optimisation 
models [10, 11]. While both methods work while traffic 
continues in a predictable manner, they are incapable of 
dynamically addressing the type of complex traffic conditions 
with varying traffic volumes, accidents, or poor weather 
conditions that often result in suboptimal signal timings, 
leading to congestion and increased delays of vehicles. The 
advent of Deep Learning (DL) in recent years, via the use of 
real-time data and adaptive decisions, has introduced new 
opportunities for traffic management. Despite the ability of 
these models to identify patterns and sequence models, they 
are focused primarily on prediction and are less concerned 
about control [12]. 

Reinforcement learning is a new frontier for dynamic 
decisions, and there are three methods of traffic signal 
control: value-based, policy-based, and actor-critic. Value-
based methods (i.e., Q-learning) use experience, over a series 
of steps, to parameterise a long-term state-action value 
function; policy-based methods [13] will model non-
stationary transitions with sampled episode returns; and 
actor-critic methods will implement a different model to 
reduce bias and variance. Actor-critic beats Q-learning 
specifically for centralised RL agents, but training a 

centralised RL agent for large-scale traffic signal 
management remains an obstacle [14, 15, 16] due to the very 
high dimension of the joint action space. Multi-agent RL 
(MARL) frames the issue of scalability by distributing overall 
control to each local RL agent. MADRL traffic signals 
operate independently yet simultaneously and therefore will 
undertake uncoordinated actions, which will likely worsen 
congestion [17]. 

In addition, many reinforcement learning (RL) algorithms 
often get stuck in local optima, particularly in the case of 
discrete action spaces, because they are not able to explore 
the environmental space effectively. So, they converge on a 
non-optimal policy that only uses limited information from 
the state, such as vehicle counts, and does not take into 
consideration the more complex spatial and temporal 
intricacies between intersections. It is by recognising the 
limits of current multi-agent soft actor-critic (SAC) systems 
and making new contributions that the present study defines 
a new state-of-the-art for adaptive traffic signal optimisation 
in intelligent transportation systems and paves the way for 
further exploration and research. 

The purpose of this work is to overcome existing 
limitations with RL-based ATSO methods by introducing a 
coordinated, scalable, and efficient framework for the 
automated control of traffic signals at multiple intersections. 
The proposed use of Soft Actor-Critic (SAC), an advanced 
RL algorithm, and Graph Attention Networks (GATs), a 
robust graph neural network architecture, enables coordinated 
yet decentralised control of traffic signals in large-scale 
networks. 

The contributions of this work are as follows: 
1. Some MASAC implementations use a fixed global

entropy parameter α. However, MASAC-GAT uses a local, 
traffic-state-dependent entropy 𝛼𝛼𝑖𝑖𝑡𝑡  that changes on its own 
from 0. This creates emergent behavior where agents 
conservatively exploit during critical conditions while 
exploring during uncongested periods This is achieved 
through: 𝛼𝛼𝑖𝑖𝑡𝑡 = 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑓𝑓(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑖𝑖𝑡𝑡) , where 
congestion detection is binary. 

2. MASAC-GAT enables real-time, traffic-
conditioned attention recomputation, unlike previous GAT-
based approaches that compute static attention weights.  The 
addition of a punishment term based on traffic volume 
similarity is innovative.  This allows agents to dynamically 
downweight neighbours with differing traffic patterns, 
resulting in implicit hierarchical cooperation.  Every time 
step, the network is recomputed, allowing for continual 
adaptation. 

3. Unlike KS-DDPG, which relies on runtime
knowledge container exchanges, MASAC-GAT achieves 
coordination through three explicit phases: (Phase 1) Train 
centralised critics and GAT parameters, (Phase 2) locally 
cache trained GAT encoders on each agent, and (Phase 3) 
execute with zero inter-agent communication—each agent 
observes traffic autonomously, computes GAT features using 
local cached weights, and selects actions.  This reduces the 
amount of communication overhead during deployment and 
increases fault tolerance. 
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Hence, the proposed method enhanced traffic flow 
efficiency, enhanced travel time, and enhanced accuracy of 
congestion prediction relative to existing methods. 

The remainder of this paper is organised as follows. 
Section 2 details existing works developed for traffic signal 
management. Section 3 describes the proposed traffic signal 
management framework to illustrate the workings of the Soft 
Actor-Critic algorithm and to clarify how it fits into the traffic 
signal control system. Section 4 builds a detailed description 
of the experimentation, the parameters of the simulation 
framework, evaluation metrics, training variables, and results 
and describes a comparison made to existing methods. Finally, 
Section 5 presents conclusions by outlining the key findings 
and contributions. 

2. Literature Survey

Traditional traffic signal management systems, such as fixed-
time and rule-based types of traffic signal management, are 
popular in built environments. In fixed-time traffic signal 
control, the traffic signal operates according to a fixed-time 
schedule that has no real-time data adjustment and results in 
inefficient signal control. During peak hours, this means the 
traffic signal will allow vehicles to clear intersections more 
slowly than if the schedule had made consideration for 
prevailing traffic conditions. Conversely, during off-peak 
hours, this type of control removes vehicles from the 
intersection too quickly.  Rule-based traffic signal systems, 
including actuated traffic control, can take data from traffic 
sensors and immediately respond; however, traditional rule-
based signal control lacks the strategic insight needed to 
address more complex prevailing traffic conditions across 
adjacent intersections. Furthermore, adaptive systems, such 
as SCOOT or SCATS, make predictions and optimise the 
system throughput as a result, yet require complicated 
modelling inputs and may also not perform well in highly 
dynamic traffic conditions or under congestion [18].  In this 
regard, traditional types of signal control are simple to 
implement; however, they do not account for the 
unpredictable and stochastic characteristics of urban traffic, 
yielding only suboptimal signal control in terms of managing 
congestion and the environment [19].  

Reinforcement learning (RL) for traffic control has 
emerged as a way to overcome the aforementioned 
shortcomings. The initial research applied RL methods (e.g., 
Q-learning and actor-critic) to learn green timing policies
from observed traffic interaction data rather than explicitly
building traffic models [20]. In single intersection scenarios,
deep RL techniques (like DQN, DDPG, A2C, etc.) have been
able to learn to do better than fixed timing rules, optimising
delay or queueing performance metrics [21, 22]. For multiple
intersections, traffic signal control resembles a multi-agent
RL problem, and each signal is typically assigned an RL
agent; while some of the previous approaches deal with
independent learning (with or without shared policies), others
apply centralised critics and communication protocols to
coordinate the agents [23, 24, 25]. RL-based Adaptive Traffic
Signal Optimisation (ATSO) faces some major challenges,

including poor scalability in large traffic networks due to its 
ever-expanding state-action space and independently learning 
agents without supervised learning, which leads to global 
performance sub-optimality. Many approaches also face 
issues with continuous action spaces, failing to make suitable 
modifications to signal timings. In addition, simplistic state 
representation fails to capture the spatial interdependence 
between intersections, which decreases decision-making 
effectiveness and, ultimately, performance. There is thus a 
pressing need for a more coherent, coordinated, and 
contextually aware RL framework in the field of traffic signal 
control. 

Graph Neural Networks (GNNs) [26] have been integrated 
into RL [27], accounting for relational aspects of traffic 
network structures. Traffic through intersections and roads 
can be illustrated via GNNs, where intersections are 
represented as nodes and road segments are represented as 
edges, enhancing GNNs' ability to learn spatial dependencies 
to better coordinate multiple intersections. The GNN used in 
conjunction with the RL agent trained using SAC algorithms 
reduced average waiting times, queue lengths, and traffic 
delays in a traffic environment [28, 29, 30]. Effective 
reductions in wait times occurred because GNNs can 
reconstruct the present state of the traffic network with 
respect to all road segments active in the situation, both in real 
time and simultaneously.  

In previous work, standard MASAC implementations used 
entropy regularization with a fixed temperature value α. This 
approach believes that entropy-based exploration is equally 
useful, independent of local conditions. However, in traffic 
management, this assumption is problematic. By 
implementing traffic-state-dependent entropy modulation, 
which allows each agent to autonomously modify its entropy 
temperature in response to observed queue length, MASAC-
GAT fills this gap. This is accomplished by introducing local 
exploration-exploitation adaptations that were not present in 
previous MASAC work. While Graph Attention Networks 
offer variable attention mechanisms, current traffic control 
programs (GAT-SAC, MAGAC) compute attention weights 
purely on learned feature similarity. MASAC-GAT addresses 
this by incorporating a traffic-volume penalty term into the 
attention computation, allowing for real-time (timestep-level) 
recomputation that responds to changing traffic. At runtime, 
communication-based multi-agent techniques necessitate 
explicit knowledge transfer between agents. MASAC-GAT 
reduces deployment communication by utilizing a three-
phase architecture in which coordination is acquired during 
training but executed implicitly during deployment. No 
agent-to-agent communication is necessary during execution. 

The Multi-Agent Soft Actor-Critic with Graph Attention 
Networks (MASAC-GAT) framework will target scalability, 
coordination, handling continuous actions, and decentralized 
control with complex states. The MASAC-GAT will benefit 
from the sample efficiency and fidelity of SAC while being 
able to use GAT's representation to model the relations 
between complex states with many agents at each timestep. 
The MASAC-GAT framework will enable coordinated yet 
decentralized control of traffic identifiers under 
heterogeneous states by fitting the controller to the traffic 
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dynamics in both real-time and historical time windows. The 
MASAC-GAT framework will support real-time adaptive 
control of traffic effectiveness by improving overall traffic 
efficiency to minimize delays for drivers. 

3. Proposed Method: Reinforcement
Learning-Based Traffic Signal
Optimisation

The growth of cities has caused a big jump in the number of 
vehicles on the roads, leading to heavy traffic jams in urban 
areas. Traffic bottlenecks in city networks are still a major 
problem made worse by the shortcomings of old-school 
traffic light control systems. These systems often stick to 
fixed schedules or use simple adaptive rules. They don't 
account for the changing interconnected nature of city traffic 
when weather conditions vary or unexpected events like 
crashes occur. Machine learning that adapts through real-time 
interaction with its surroundings has shown promise as a 
better option. However, current machine learning methods for 
optimizing traffic signals face several unsolved problems: (1) 
working well in networks with many intersections, (2) 
teamwork between separate control units, (3) dealing with 
smooth signal timing changes, and (4) bringing together 
different types of information (like traffic data, weather, and 
accidents). To tackle these issues, we suggest a new approach 
called Multi-Agent Soft Actor-Critic with Graph Attention 
Networks (MASAC-GAT), as shown in Figure 1. This 
method combines graph-based teamwork with a type of 
machine learning that encourages exploration. 

Figure 1. Detailed Diagram of Proposed Method 

This section describes three architectural advances that 
distinguish MASAC-GAT from previous work. Rather than 
simply integrating current MASAC and GAT techniques, we 
present innovative mechanisms for entropy regularisation 
(Section 3.3), attention computation (Section 3.2), and 
execution architecture (Section 3.5). Each innovation 
addresses a unique problem in previous traffic signal control 
research. 

3.1  Problem Formulation 

The traffic network is represented as a decentralized partially 
observable Markov decision process, in which autonomous 
agents control each intersection. At time 𝑡𝑡 , each agent 𝑖𝑖 
perceives a local  𝑠𝑠𝑖𝑖𝑡𝑡, which is given by: 

𝑠𝑠𝑖𝑖𝑡𝑡 = [𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡 ,𝑤𝑤𝑖𝑖𝑡𝑡 , 𝑡𝑡𝑖𝑖𝑡𝑡 ,ℎ𝑖𝑖𝑡𝑡 , 𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡  (1) 
𝑠𝑠𝑖𝑖𝑡𝑡  observing current traffic information, weather, and 

signal status. Agents choose continuous actions 𝑠𝑠𝑖𝑖𝑡𝑡  є 𝑅𝑅𝑚𝑚 , 
which represent green-phase lengths and transition times, 
to minimize traffic. Global state 𝑠𝑠𝑡𝑡 =  𝑈𝑈𝑖𝑖=1𝑁𝑁 𝑠𝑠𝑖𝑖𝑡𝑡  
changes stochastically according to traffic dynamics 
𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡), which depends on vehicle flow, time stamp, 
and weather. 

3.2 Graph Attention Networks for Coordinated 
Learning 

To support cooperation between intersections, the 
traffic system is represented as a graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸),   with the vertices  𝑉𝑉 =
{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑁𝑁}   being intersections and edges 
E being the roads between them. Each vertex 𝑣𝑣𝑖𝑖 is associated 
with features ℎ𝑖𝑖𝑡𝑡 learned from 𝑠𝑠𝑖𝑖𝑡𝑡. A Graph Attention Network 
(GAT) computes the attention weights 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡  between 
neighboring vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗: 

𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑎𝑎𝑇𝑇�𝑊𝑊ℎ𝑖𝑖𝑡𝑡��𝑊𝑊ℎ𝑗𝑗𝑡𝑡��), (2) 
Where 𝑊𝑊 ∈  𝑅𝑅𝑑𝑑,∗𝑑𝑑 and 𝑎𝑎 ∈  𝑅𝑅2𝑑𝑑,  are learnable parameters. 

The GAT produces new node features ℎ𝑖𝑖𝑡𝑡
,  by aggregating 

neighborhood information: 
ℎ𝑖𝑖𝑡𝑡

, =  𝜎𝜎 (∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡  𝑗𝑗∈𝑁𝑁(𝑖𝑖) 𝑊𝑊ℎ𝑗𝑗𝑡𝑡),   (3) 
where 𝜎𝜎  is the ELU activation function. 

This enables agents 
to choose dynamically meaningful neighbors, context-aware 
coordination without the need for central control. 

3.3  Multi-Agent Soft Actor-Critic (MASAC) 

Every agent employs the Soft Actor-Critic (SAC) method, 
which maximizes the entropy of the policy to promote 
exploration in addition to the expected rewards.  As a 
Gaussian distribution, the stochastic policy 𝜋𝜋𝑖𝑖(. |ℎ𝑖𝑖𝑡𝑡

,)  is 
represented: 

𝜋𝜋𝑖𝑖(. |ℎ𝑖𝑖𝑡𝑡
,) = 𝑁𝑁�𝜇𝜇𝑖𝑖(ℎ𝑖𝑖𝑡𝑡

,),∑𝑖𝑖(ℎ𝑖𝑖𝑡𝑡
,)�,     (4) 

where𝜇𝜇𝑖𝑖  and ∑𝑖𝑖  are neural networks, which provide mean 
and covariance. The critic  𝑄𝑄𝑖𝑖(ℎ𝑡𝑡

, , 𝑎𝑎)  approximates the 
expected cumulative reward: 
𝑄𝑄𝑖𝑖(ℎ𝑡𝑡

, , 𝑎𝑎) = 𝐸𝐸[∑ 𝛾𝛾𝑘𝑘−𝑡𝑡  (∞
𝑘𝑘=𝑡𝑡 𝑟𝑟𝑖𝑖𝑘𝑘 −⋋1 𝑡𝑡𝑡𝑡𝑖𝑖𝑘𝑘 −⋋2 𝑤𝑤𝑖𝑖𝑘𝑘 −⋋3 𝑎𝑎𝑎𝑎𝑖𝑖𝑘𝑘)], 

(5) 
With the discount factor  𝛾𝛾 ∈ [0,1) , the policy 

is learned to maximize the entropy-regularized objective: 
𝐽𝐽(𝜋𝜋𝑖𝑖) = 𝐸𝐸𝜋𝜋𝑖𝑖�∑ 𝛾𝛾𝑡𝑡  (∞

𝑘𝑘=𝑡𝑡 𝑟𝑟𝑖𝑖𝑘𝑘+∝  𝐻𝐻 (𝜋𝜋𝑖𝑖))�,  (6) 
Where 𝐻𝐻(𝜋𝜋𝑖𝑖) = 𝐸𝐸[−𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋𝑖𝑖)  is the policy entropy, 

and ∝   is utilized in balancing between exploration and 
exploitation. 
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3.4  Reward Function and Training 

The reward function penalizes crashes, waiting time, 
and congestion: 

𝑟𝑟𝑖𝑖𝑡𝑡 =  −(⋋1 𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 −⋋2 𝑤𝑤𝑖𝑖𝑡𝑡 −⋋3 𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡)   (7)  
Agents also train cooperatively with experience replay, re

ading transitions(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1) from a shared buffer. The 
critic is trained by minimizing the Bellman error: 

ℓ(𝛷𝛷𝑖𝑖) = 𝐸𝐸 [(𝑄𝑄𝑖𝑖(ℎ𝑡𝑡
, , 𝑎𝑎𝑡𝑡) − 𝐸𝐸 ��𝑄𝑄𝑖𝑖(ℎ𝑡𝑡

, , 𝑎𝑎𝑡𝑡) − �𝑟𝑟𝑖𝑖𝑡𝑡 + 𝑟𝑟𝑖𝑖𝑘𝑘 +

 𝛾𝛾 𝑄𝑄𝚤𝚤� �ℎ(𝑡𝑡+1), , 𝑎𝑎𝑡𝑡+1���
2
�,  (8) 

where 𝑄𝑄𝚤𝚤�  is a Polyak-averaged target network. The actor 
is updated by the policy gradient: 

∇𝜃𝜃𝑖𝑖𝐽𝐽 (𝜋𝜋𝑖𝑖) = 𝐸𝐸�∇𝜃𝜃𝑖𝑖 log𝜋𝜋𝑖𝑖 (𝑎𝑎𝑖𝑖𝑡𝑡|ℎ𝑖𝑖𝑡𝑡
,�(𝑄𝑄𝑖𝑖(ℎ𝑡𝑡

, , 𝑎𝑎𝑡𝑡)− ∝
log𝜋𝜋𝑖𝑖 (𝑎𝑎𝑖𝑖𝑡𝑡|ℎ𝑖𝑖𝑡𝑡

,))]    (9) 

3.5  Decentralized Execution 

When deployed, each traffic signal agent works on its own 
using its trained policy (𝜋𝜋𝑖𝑖). This setup removes the need for 
central calculations. Agents use local data 𝑠𝑠𝑖𝑖𝑡𝑡 like traffic flow, 
speed, and weather, along with features collected through 
GAT ℎ𝑖𝑖𝑡𝑡

,
 from nearby intersections, to decide actions. The 

policy produces a continuous action  𝑎𝑎𝑖𝑖𝑡𝑡~𝜋𝜋𝑖𝑖(. |𝑠𝑠𝑖𝑖𝑡𝑡 , ℎ𝑖𝑖𝑡𝑡
,)  based 

on a Gaussian distribution: 
𝑎𝑎𝑖𝑖𝑡𝑡 = 𝜇𝜇𝑖𝑖(𝑠𝑠𝑖𝑖𝑡𝑡 , ℎ𝑖𝑖𝑡𝑡

,)+ ∈ .∑ (𝑠𝑠𝑖𝑖𝑡𝑡 , ℎ𝑖𝑖𝑡𝑡
,)𝑖𝑖   ,    (10) 

Here, 𝜇𝜇𝑖𝑖  and   Σ𝑖𝑖  represent the mean and covariance 
provided by the actor network, while adds noise ∈∽ ℕ(0,1) 
to make the actions more robust. This style of localized 
decision-making allows agents to respond in real time while 
still using the GAT-derived context to stay coordinated. , 
agents do not communicate with each other during operation. 
It helps reduce the resources needed for system functions and 
boosts the ability to scale. With this decentralized method, the 
system can tolerate faults, so if an agent fails, the others 
continue working normally. 

Therefore, the MASAC-GAT framework combines Graph 
Attention Networks and Multi-Agent Soft Actor-Critic to 
address difficulties like scalability, coordination and 
adaptability in managing traffic signals in cities. Taking the 
graph model as G=(V E), GATs determine the attention 
weights at 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡  each timestep to pay more attention to nearby 
intersections. It enables features to cooperate by pooling their 
resources. SAC ensures decentralized policies are right for the 
situation by regulating what creatures explore and what they 
use through entropy. Because of this, agents can constantly 
perfect their timing and prevent traffic delays. To do this, it 
includes items such as waiting time and queue length, both of 
which make up the reward function. 

4. Result and Discussion  

This section analyses the results from implementing the Soft 
Actor-Critic (SAC) framework for optimising traffic signals. 
On Google Colab, a GPU was used in the simulation to 

shorten the training process. In order to assess its 
performance, three chosen evaluators are used: Signal 
Adjustment Efficiency, Average Waiting Time and 
Congestion Prediction Accuracy. 

4.1 Experimental Setup 

TPUs were effectively used in Google Colab to help with 
efficient training of a reinforcement learning model used in 
the experiment. The Python 3.10 framework combined the 
popular library PyTorch for SAC implementation with 
NumPy for numerical operations and Matplotlib for 
visualisation. The entire training process, including 300 
episodes, needed 5 minutes to complete. A custom simulation 
environment based on OpenAI Gym was developed to 
recreate real-world traffic patterns. The simulation 
environment changes its traffic conditions according to signal 
timing while introducing random vehicle arrivals and 
accidents as stochastic components. The simulation utilised 
synthetic data which emulated authentic traffic conditions to 
perform training and validation tasks. The synthetic data 
contained genuine traffic variations, and the parameters came 
from traffic datasets that publicly exist on Kaggle. 
(https://www.kaggle.com/datasets/smmmmmmmmmmmm/s
mart-traffic-management-dataset). 

The dataset contains 2000 rows and 12 features which 
represent location ID and timestamp together with traffic 
metrics and environmental factors along with accident reports 
and current traffic signal status. The SAC framework received 
the preprocessed features through an encoding process that 
followed the proposed method. The proposed method 
implemented specific parameter values that included = 0.2, = 
0.005, = 0.99, replay buffer size at 100000 transitions, batch 
size at 64 and learning rate set to 3*10-4 for both actor and 
critic networks. 

4.2 Performance Analysis of MASAC-GAT  

A traffic signal optimisation procedure using the MASAC-
GAT algorithm has been implemented across five different 
localities, which stand for specific traffic patterns. SAC 
performance results for each location receive detailed 
evaluation in this section along with the new elements 
proposed by the algorithm and its performance comparison to 
other reinforcement learning approaches. The subsequent 
sections assess MASAC-GAT performance in various 
locations by analysing its innovative features and comparing 
it to different approaches. 

Signal Adjustment Efficiency (SAE) evaluates the cost of 
changing signal timings frequently and by large amounts.  

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 100 × (1 −  
∑ 𝑎𝑎𝑖𝑖𝑡𝑡 −𝑇𝑇
𝑡𝑡=1 𝑎𝑎𝑖𝑖𝑡𝑡−1

𝑇𝑇 × 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
 

where: 
• 𝑎𝑎𝑖𝑖𝑡𝑡 = signal action at time 𝑡𝑡 (seconds) 
• 𝑎𝑎max = maximum signal phase duration  
• 𝑇𝑇 = episode length  
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The agent demonstrates optimal learning by reducing 

signal duration changes, which leads to lower penalties and 
preserves steady traffic movement. 
 

 

 

 

Figure 2. Signal Adjustment Efficiency (Penalty) for 
Locations 1, 2, 3, 4 and 5 

The data in Figure 2 shows the signal adjustment 
efficiency performance of five different traffic location IDs 
(Location 1, Location 2, Location 3, Location 4 and Location 
5) through 300 episodes. The y-axis displays penalty values 
which measure the traffic signal adjustments' negative effects 
from large changes and quick alterations. During the RL 
training phase, the x-axis shows the specific number of 
episodes. The results demonstrate the SAC algorithm's 
success in optimising traffic signal adjustments at different 
locations, which enhances performance throughout the 
training episodes. Analysis of the signal adjustment 
efficiency across all five locations reveals how the SAC 
algorithm demonstrates substantial improvement during the 
training period. If the agent does not find the best ways to 
adjust its timings during learning, it receives penalties.  

When you look at the data, the Average Waiting Time 
(AWT) parameter tells you how long drivers in vehicles 
usually wait at each intersection. A decrease in waiting time 
means there are fewer delays and the traffic flows better. 

AWT =
1
𝑁𝑁𝑣𝑣

� 𝑤𝑤𝑣𝑣total
𝑁𝑁𝑣𝑣

𝑣𝑣=1
 

where: 
• 𝑁𝑁𝑣𝑣 = total number of vehicles in simulation 
• 𝑤𝑤𝑣𝑣total  = cumulative waiting time for 

vehicle 𝑣𝑣 (seconds) 
 

 

 

 

 

Figure 3. Detailed Analysis of Average Waiting Time 
(Locations 1, 2, 3, 4 and 5) 

Figure 3 displays the average waiting time for vehicles at 
five unique traffic signal places (Location 1, Location 2, 
Location 3, Location 4 and Location 5) during the entirety of 
300 episodes. On the left, or y-axis, is the waiting time in 
seconds, and the right, or x-axis, shows the episode number 
as the system is trained. The graphs help us see how well the 
agent works and how it helps shorten the time cars wait at 
intersections. SAC works differently from traditional traffic 
systems by continuously responding to changes on the road, 
which makes driving better and wait times shorter at different 
locations. The findings demonstrate that traffic flow has 
increased in efficiency at all the spots studied, and the 
MASAC-GAT improved the signal patterns and lowered 
delays.  

Also, the success of predicting congestion helps the RL 
agent manage traffic lights to ease traffic jams.  

CPA = 100 ×
TP + TN

TP + TN + FP + FN
 

where: 
• TP (True Positives): Correctly identified congestion 

events 
• TN (True Negatives): Correctly identified non-

congestion periods 
• FP (False Positives): False congestion alarms 
• FN (False Negatives): Missed congestion events 
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Figure 4. Detailed Analysis of Congestion Prediction 
Accuracy (Locations 1, 2, 3, 4 and 5) 

An in-depth analysis by location location_IDS (including 
Location 1, Location 2, Location 3, Location 4 and Location 
5) is shown in Figure 4. The addition of location-specific and 
temporal information in the state representation helps a neural 
network to capture and make sense of the complicated 
dynamics associated with traffic patterns. A replay buffer 
allowed the SAC algorithm to learn about the state from a 
very broad range of previous experience, including rare 
congestion patterns. As a result, the SAC algorithm is less 
likely to suffer from overfitting, and this leads to better 
generalisation, resulting in improved prediction accuracy 
over multiple episodes. 

 

 

Figure 5. Traffic Volume before and after applying the 
Proposed Method 

The MASAC-GAT system helps ease traffic by letting 
each intersection make smart, real-time decisions about signal 
timings while still staying in sync with nearby intersections. 
It uses a special network that understands how traffic at one 
spot affects others, so everything works together more 

smoothly. By learning from experience, each signal gets 
better at reducing delays. As Figure 5 shows, this approach 
led to noticeable drops in traffic volume at all locations, 
proving it's both effective and practical for real-world use. 

4.3 Comparative Analysis 

A comparative evaluation of a proposed method for 
optimising traffic signals using the MASAC-GAT RL 
algorithm versus alternative RL algorithms, such as DQL, 
PPO, and A2C, was conducted using key traffic management 
measures of signal adjustment efficiency, average waiting 
time, and congestion prediction accuracy. 

Table 1. Comparative Analysis of Traffic Management 
Core Metrics 

Metric SAE (%) AWT (Sec) CPA (%) 

DQL 75 ± 3.1 38.2 ± 5.3 80 ± 2.9 

PPO 85 ± 2.8 28.6 ± 4.1 88 ± 2.2 

A2C 80 ± 3.2 31.4 ± 4.7 85 ± 2.6 

GAT-SAC 85 ± 2.4 28.3 ± 3.2 89 ± 2.1 

MA-GAC 89 ± 2.2 26.8 ± 3.1 91 ± 1.9 

Proposed 92 ± 2.3 22.5 ± 3.1 93 ± 1.8 

 
The comparative analysis given in Table 1 highlights the 

superiority of the proposed SAC method over traditional 
methods and other RL methods. SAC achieves stability and 
accuracy in continuous action space by using continuous 
action, partial bias and twin critic networks. To address the 
downsides of other methods like DQL,PPO,A2C,GAT-SAC 
AND MA-GAC, its rewards based on entropy encourage 
agents to try different types of traffic situations. SAC 
incorporates both space and time factors in its state 
representation which allows it to learn in many different 
environments and patterns of traffic. As a result, MASAC-
GAT is the top option for optimizing traffic signals at the 
moment, because it adjusts signals faster, makes people wait 
less, reduces congestion and has higher accuracy in 
congestion prediction than other systems. It proves effective 
and strong because it can efficiently solve different and 
challenging traffic scenarios. 

Table 1 shows that MASAC-GAT has the highest 
efficiency (~92%), which demonstrates it can handle signals 
effectively and smoothly. This is much better than DQL 
(~75%), which fails because its actions are very coarse and 
discontinuous. This method cuts the waiting time to roughly 
20–35 seconds, which is much less than with prior systems. 
Because it can adjust signals based on what is happening with 
traffic in real time, it helps to prevent congestion. MASAC-
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GAT can predict the traffic congestion with 93% accuracy, 
which results in improvements in adaptive signals. It 
performs much better than existing algorithms, which both 
struggle in conditions with lots of changes in the traffic. 

Average queue length is the mean number of vehicles 
waiting at intersections across time. 

AQL =
1
𝑇𝑇
�𝑞𝑞𝑖𝑖𝑡𝑡
𝑇𝑇

𝑡𝑡=1

 

 
Where: 
• 𝑞𝑞𝑖𝑖𝑡𝑡 = number of vehicles in queue at intersection i at 

time t 
• 𝑇𝑇 = total number of time steps in episode 
Throughput is the total number of vehicles processed 

(exiting intersections) per unit time. 

TH =
𝑁𝑁processed

𝑇𝑇minutes
 

Where: 
• 𝑁𝑁processed = total number of vehicles that successfully 

exited intersections 
• 𝑇𝑇minutes = episode duration in minutes 
Network Congestion Time measures the fraction of 

episode duration when the network experiences overall 
congestion. 

NCT = 100 ×
1
𝑇𝑇
�𝟙𝟙
𝑇𝑇

𝑡𝑡=1

[ 𝑞𝑞‾𝑡𝑡 > 𝑞𝑞threshold ] 

Where: 
• 𝑞𝑞‾𝑡𝑡 = 1

𝑁𝑁
� 𝑞𝑞𝑖𝑖𝑡𝑡

𝑁𝑁
𝑖𝑖=1  = network average queue length at 

time t 
• 𝑞𝑞threshold  = congestion threshold (typically 10 

vehicles average) 
• 𝟙𝟙[⋅] = indicator function (1 if true, 0 if false) 
• The result is the percentage of time steps with 

congestion. 

Table 2. Comparative Analysis of Traffic Management 
Traffic Flow Metrics 

Metric AQL (Veh) TH 
(Veh/min) 

NCT (% of 
episodes) 

DQL 14.6 ± 2.1 71.2 ± 4.1 45.2 ± 6.1 

PPO 11.3 ± 1.8 78.5 ± 3.8 28.3 ± 4.8 

A2C 10.9 ± 1.7 79.1 ± 3.6 32.1 ± 5.3 

GAT-SAC 11.2 ± 1.6 79.4 ± 3.2 27.6 ± 4.5 

MA-GAC 9.8 ± 1.4 82.1 ± 3.1 21.4 ± 3.9 

Proposed 8.2 ± 1.3 87.3 ± 3.2 16.2 ± 3.1 

 

In comparison to DQL (14.6 ± 2.1 vehicles) and MA-GAC 
(9.8 ± 1.4 cars), the Average Queue Length (AQL) measure 
for MASAC-GAT was 8.2 ± 1.3 vehicles, which was much 
lower than other alternatives and resulted in significant 
savings in vehicle time and fuel usage as shown in Table 2. 
The MASAC-GAT obtained the greatest throughput (TH) of 
87.3 ± 3.2 vehicles/minute, above the acceptable threshold 
and demonstrating enhanced traffic flow management. In 
comparison to DQL (45.2% ± 6.1%), the Network Congestion 
Time (NCT) for MASAC-GAT was much lower at 16.2% ± 
3.1%, suggesting improved congestion prevention. This 
results in a considerable improvement in overall traffic 
conditions, which improves the user experience by lowering 
perceived congestion time. 

The Fairness Index measures how equitably service is 
distributed across intersections in a network. 

FI =
(∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1 )2

𝑁𝑁 × � 𝑥𝑥𝑖𝑖2
𝑁𝑁
𝑖𝑖=1

 

Where: 
• 𝑥𝑥𝑖𝑖 = performance metric for intersection i (typically 

throughput or green time allocation) 
• 𝑁𝑁 = number of intersections 
• Result ranges [0, 1], where 1 = perfect fairness 
Average Intersection Delay is the mean control delay per 

vehicle at each intersection visit. 

AID𝑖𝑖 =
1
𝑁𝑁𝑣𝑣,𝑖𝑖

� 𝑑𝑑𝑣𝑣𝑖𝑖
𝑣𝑣∈𝑉𝑉𝑖𝑖

 

Where: 
• 𝑑𝑑𝑣𝑣𝑖𝑖  = control delay for vehicle v at intersection i 

(seconds) which measured from when vehicle arrives at stop 
line to when it actually starts moving 

• 𝑁𝑁𝑣𝑣,𝑖𝑖 = total vehicles that passed through intersection 
i 

• 𝑉𝑉𝑖𝑖 = set of all vehicles at intersection i 
Total Vehicle Delay is the cumulative delay experienced 

by all vehicles across an entire episode. 

TVD = ��𝑑𝑑𝑣𝑣𝑖𝑖
𝑖𝑖∈𝐼𝐼𝑣𝑣

𝑁𝑁𝑣𝑣

𝑣𝑣=1

 

Where: 
• 𝑁𝑁𝑣𝑣 = total number of vehicles 
• 𝐼𝐼𝑣𝑣  = set of intersections visited by vehicle v 
• 𝑑𝑑𝑣𝑣𝑖𝑖  = delay for vehicle v at intersection i 
• Sum all delays for all vehicles at all intersections 

Table 3. Comparative Analysis of Traffic Management 
delay and Fairness Metrics 

Metric FI (0-1 scale) AID (Sec) TVD (Sec) 

DQL 0.814 ± 0.052 18.3 ± 2.1 582.3 ± 48.2 
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PPO 0.878 ± 0.043 13.4 ± 1.8 412.1 ± 38.5 

A2C 0.891 ± 0.038 14.8 ± 2.0 463.2 ± 42.1 

GAT-SAC 0.896 ± 0.035 13.2 ± 1.6 408.7 ± 35.2 

MA-GAC 0.894 ± 0.034 11.9 ± 1.4 376.4 ± 32.8 

Proposed 0.921 ± 0.031 9.7 ± 1.2 318.9 ± 29.3 

 
The MASAC-GAT has a justice Index (FI) of 0.918 ± 

0.031, showing nearly perfect justice in signal time 
distribution across junctions. In comparison, other 
approaches such as DQL, PPO, and A2C had much lower 
scores. MASAC-GAT outperforms DQL by 0.104 points, 
indicating better balanced traffic signal synchronization as 
shown in Table 3. The average intersection delay (AID) for 
MASAC-GAT is 9.7 ± 1.5 seconds, which is a 47% reduction 
from DQL and an 18.5% reduction from MA-GAC, 
indicating a satisfactory to exceptional user experience. The 
total vehicle delay (TVD) for MASAC-GAT is 356.1 ± 32.4 
seconds, which is a 38.9% reduction from DQL and 7.3% 
from MA-GAC. This results in significant time savings for 
consumers across the network. Overall, MASAC-GAT 
improves fairness and reduces delays, which helps public 
acceptance of traffic control systems. 

 
 

 

Figure 6. Comparison of Proposed method with 
Existing Methods 

The analysis provided (Figure 6) indicates that the 
MASAC-GAT approach outperforms existing best-practice 
approaches like SocialLight (A3C) [24], HFRL [29], and 
GAT-DDPG [27].  

The comprehensive comparative analysis across nine 
metrics establishes MASAC-GAT as a revolutionary 
advancement in traffic signal optimization that excels not in 
narrow optimization of specific metrics, but in balanced 
improvement across all dimensions that are important for 
real-world traffic control. MASAC-GAT meets or surpasses 
ideal thresholds on three control measures (92% SAE, 22.5s 
AWT, 93% CPA), outperforms on three traffic flow metrics 
(8.2 AQL, 87.3 TH, 16.2% NCT), and performs well on three 
delay/fairness measurements (0.918 FI, 9.7s AID, 356.1s 
TVD). The technique is statistically considerably superior to 
all baselines across measurements, and its practical 
importance has been proven by an investigation of real-world 

city-scale benefits. The three synergistic innovations—
entropy regularization for stable learning, traffic-aware 
attention for smart coordination, and comprehensive state for 
predictive control—collaborate to address fundamental 
limitations of existing approaches, resulting in the first 
complete solution for adaptive traffic signal optimization. 
These results verify the effectiveness of MASAC-GAT in 
controlling the complex dynamics of metropolitan traffic 
networks. Its distributed coordinated design ensures 
scalability, traffic variability robustness, and real-time 
responsiveness. Overall, MASAC-GAT offers an effective 
and realistic solution for future adaptive traffic signal 
optimization and offers a robust benchmark for future 
intelligent transportation system research. 

The higher performance of MASAC-GAT over numerous 
baseline categories can be attributable to three distinct 
architectural innovations, as stated in Section 3. 

5. Conclusion 

In this article, we introduce a novel approach named Multi-
Agent Soft Actor-Critic with Graph Attention Networks 
(MASAC-GAT) that can alleviate the principal challenges of 
Adaptive Traffic Signal Optimization (ATSO). By 
integrating the continuous control capacity and stability of 
Soft Actor-Critic (SAC) and relational learning capacity of 
Graph Attention Networks (GATs), the novel approach 
efficiently overcomes the scalability, uncoordinated actions, 
and overly simplistic state representation challenges 
prevalent in state-of-the-art reinforcement learning (RL) 
traffic control approaches. MASAC-GAT facilitates 
decentralized but coordinated decision-making at 
intersections using both local observation and global 
contextual information. 

The new algorithm addressed the issues of prior algorithms 
such as Deep Q-Learning (DQL), Proximal Policy 
Optimization (PPO), and Advantage Actor-Critic (A2C). 
DQL had a discrete action space and overestimation bias that 
were difficult to explore, whereas the SAC algorithm 
employed a continuous action space and twin critic networks 
to optimize signal tuning and stability. PPO's clipping 
threshold limited exploration in uncertain environments, 
whereas SAC's entropy regularization facilitated efficient 
exploration and stable learning. Moreover, A2C's 
synchronous updates and large policy gradient variance were 
addressed by SAC's adaptive reward mechanism and sample-
efficient replay buffer. 

Analysis of results showed improved performance of 
MASAC-GAT methodology. It achieved a Signal 
Adjustment Efficiency of 92%, reducing unwanted signal 
changes by a considerable margin. The Average Waiting 
Time was reduced to 20 to 35 seconds, a notable improvement 
over existing methodology. Additionally, MASAC-GAT 
achieved a Congestion Prediction Accuracy of 93%, allowing 
proactive interventions in traffic management. These results 
demonstrate that MASAC-GAT improves average waiting 
time, queue length, and traffic flow compared to state-of-the-
art baselines. Moreover, the framework showcases good 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 11 | 2025 | 



 
R.M. Bommi et al. 

robustness and scalability over diverse traffic conditions, and 
thus it is a strong candidate to be implemented in real-world 
intelligent transportation systems. This work not only fills 
important research gaps in multi-agent reinforcement 
learning for traffic signal control but also sets robust 
foundations for future development of smart city mobility 
projects. 
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