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Abstract

Increased deployment of IoT systems in industrial, healthcare, smart city, and home environments has
expanded the attack surface and complexity of cyber threats. Though a plethora of detection techniques have
emerged in literature in the last decade, an unforgivable absence of statistical rigors and compare-and-contrast
analysis on the operational characteristics is apparent in the literature sets. This paper presents a statistical
analytical review of various contemporary IoT threat detection methods across a wide array of architectures:
classical machine learning, deep learning, federated learning, blockchain-based systems, quantum-enhanced
frameworks, and hybrid models. The review employs a multidimensional evaluation strategy, extracting both
qualitative and quantitative metrics from each study; these enable an objective comparison across
heterogeneous systems, Standard performance parameters—Scalability, Delay, Time Complexity, Memory
Complexity, Make span, and Analysis Efficiency—are tabulated; thus, an unfolding of a universal analytical
framework with almost 300 data points exposes trade-offs, bottlenecks to efficiency, and constraints to
deployment. Furthermore, evaluation of the application-specific techniques for healthcare, agriculture, and
smart grids were conducted in relation to adaptability and domain specifications. The work identifies that
hybrid deep networks (e.g., CNN-LSTM) provide better accuracy at higher computation cost, while TinyML
and ensemble models present a trade-off factor for both detection accuracy versus hardware efficiency. In
addition, whereas quantum and blockchain Integrated systems have shown to be solid in theory, they face
practical impairments. Research gaps identified here lead the discussion on future directions, toward
explainability, energy-aware design, and adversarial resilience, thus providing a tangible roadmap toward the
next generation of secure IoT frameworks.

Keywords: IoT Security, Threat Detection, Machine Learning, Statistical Analysis, Performance Evaluation, Internet of
Things (IoT), Process

Received on 09 October 2025, accepted on 13 December 2025, published on 12 January 2026
Copyright © 2026 Lanka Kavitha et al., licensed to EAI This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any

medium so long as the original work is properly cited.

doi: 10.4108/eetiot.10529

* Corresponding author. Email: kareemulla.shaik@vitap.ac.in

EAIl Endorsed Transactions on
Q/ Internet of Things
| Volume 11| 2025 |


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Lanka Kavitha, Kareemulla Shaik

1. Introduction

With the proliferation of IoT devices, the entire
ecosystem has been changed in terms of
connectivity, automation, and data intelligence
almost instantaneously in domains such as
healthcare, manufacturing, agriculture, smart cities,
and home automations [1]. However, the very
interconnectivity of these systems creates
exploitable vulnerabilities that increase by the
minute with the industry becoming equipped with
advanced adversities and the complexity and
diversity of IoT ecosystems pose notable security
vulnerabilities and challenges. The most economical
and effective way to ensure security is to reduce loT
device vulnerabilities prior to deployment.
Therefore, even if the system is still under
development, it is vital to identify and address as
many security flaws as possible [1].

1.1 Motivation

Many sensors, including cameras, microphones, and
thermometers, are built into Internet of Things (IoT)
devices. These sensors are always collecting data
about their environment, including sensitive and
private information. As shown in the diagram, this
data is first analyzed before being moved and stored
throughout the various layers of the IoT
architecture.1. Smart gadgets result in the
acquisition of a significant amount of user data,
even while they provide benefits, convenience, and
an enhanced lifestyle [1].
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Figure 1: Survey Outline Diagram

As illustrated in Figure. 2, the layers of IloT
architecture are exposed to diverse vulnerabilities,
which can be mitigated through preventive
measures prior to device deployment. These
vulnerabilities, spanning from hardware to
application layers, highlight the multidimensional
nature of IoT security challenges. Addressing them
requires a holistic approach that integrates secure
design, regular updates, strong encryption, and
effective device management mechanisms [1].
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Figure 2: Vulnerabilities in loT Ecosystem
Architecture
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1.2 Security in loT

The most challenging aspect of IoT networks is
security. Preventing IoT assaults is difficult since
there are no set standards for how IoT devices
should be built. IDSs and security software, which
can detect and stop attacks in IoT devices, have
faced new hurdles as a result of the Internet of
Things and the persistent problem of huge data flow
[2]. IDS typically has significant rates of missed
detections and packet losses for today's high-speed
networks. Creating a quick data model for intrusion
detection analysis has become a crucial problem
that needs to be fixed in order to successfully boost
network security.

Security protocols should be designed to
identify and prevent Denial of Service (DoS)
attacks that could disrupt the functioning of IoT
systems. Integrity preserving loT data and services,
accuracy, dependability, and consistency across the
course of their existence Security systems should
detect and prevent unauthorized alterations, such as
insertion, deletion, or modification of data or

services. Confidentiality Preventing unauthorized
access to IoT data and communications. Security
measures should safeguard both data-at-rest (such
as information stored in databases or storage
systems) and data-in-transit (as it moves across
networks). (e.g., during communication among
devices, networks, or applications) [2].
Authentication Confirming the identity of users or
devices in the IoT environment. Mechanisms must
verify the authenticity of both devices and users,
allowing only trusted parties to access or produce
data. Authorization Ensuring that only permitted
entities can access specific IoT resources. Systems

should verify that connected devices or users

have appropriate permissions

to use certain

services or data. Access Control Regulating and
managing access to [oT systems and their resources.

Solutions should

evaluate whether a device or user is allowed to

access data or
unauthorized usage [2].

services,
The Following table

thereby restricting

represents the security measures in IoT.

Table 1. IoT Security Measures

Security Measure Objective

Implementation in loT Security

References

Guarantees that loT
services and resources
remain continuously

Deployment of defense
mechanisms against Denial-of-
Service (DoS/DDoS) attacks,

[26] Nawaz et al.,

Availability accessible to legitimate redundancy strategies, and fault- [46] Yang et al.
users, even under tolerant architectures to sustain
adverse conditions. uninterrupted operations
Ensures accuracy, Use of cryptographic hash
reliability, and functions, digital signatures, and

Integrity consistency of loT anomaly detectiop systems to [3] Sheeba & Shaiji,

data and services prevent unauthorized [45] Zhang et al.
throughout their modifications, insertions, or
|ifecyc|e' deletions

Protects loT data and
communication channels
from unauthorized
disclosure.

Confidentiality

Adoption of encryption
mechanisms for both data-at-rest
and data-in-transit (e.g., TLS,
lightweight cryptography) to
secure device-to-device and
device-to-cloud communications

[19] Kwala et al.,
[49] Xiong et al.

Validates the
identity of loT
devices and users

Authentication

Utilization of strong authentication
schemes, such as certificate-
based authentication, public key
infrastructure (PKI), and

[18] Dahiya &
Kumar,
[24] Khalique et al.
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before granting
access.

biometrics, to establish trusted
identities

Ensures that only entities
with appropriate privileges

Implementation of policy-driven
mechanisms, including Role-
Based Access Control (RBAC)

[9] Batta et al.,

resource usage.

Authorization can access loT services and Attribute-Based Access [San]aKamatchl &
or resources. Control (ABAC), for fine-grained ’
authorization.
Regulates and enforces Design of lightweight, scalable [7] Mujlid &
o ) access control frameworks to X
Access Control policies governing loT Alshahrani,

systematically restrict
unauthorized device or user

[31] Pawar et al.

1.3 Attacks on loT

IoT devices are increasingly exposed to a
wide range of cyber threats, including data theft,
phishing, spoofing, and Distributed Denial of
Service (DDoS) attacks. In recent years,
ransomware campaigns and large-scale breaches
have become especially common, making IoT
systems a primary target. Attackers often
compromise the infrastructure, disrupt normal
network operations, and gain unauthorized access
to sensitive data [3]. Common cyber-attacks
affecting IoT devices include malware infections,
phishing schemes, SQL injection attacks, denial-of-
service  (DoS), session  hijacking, botnet
deployment, and  ransomware  intrusions.
Awareness of these threats is critical for developing
effective defense strategies [3].In IoT-based
Wireless Sensor Networks (WSNs), various attacks
exploit communication protocols and resource
limitations:

e Jamming attack: Interference signals are
introduced to block communication channels,
causing a denial-of-service condition.

e Sybil attack: A malicious node generates
multiple fake identities, deceiving other nodes
and injecting false information.

e Sinkhole attack: A compromised node attracts
traffic and gains control over data routing,
enabling manipulation or interception of
transmitted information.

e Selective forwarding attack: Certain
packets are deliberately dropped or
misrouted by compromised nodes,

disrupting communication reliability.

e Spoofing attack: Attackers impersonate
legitimate nodes to gain unauthorized
access or manipulate data flows.

e Replay attack: Captured packets are resent
to disrupt normal communication
processes.

e Physical attack: Hardware components
such as sensor nodes are tampered with,
often by injecting malicious code.

e Energy depletion attack: Limited energy
resources of nodes are drained
intentionally, leading to network failures.

e Insider attack:Authorized nodes misuse
their privileges to alter or leak data,
undermining trust in the system.

e Information disclosure attack:Sensitive
data is intercepted through eavesdropping,
resulting in privacy violations and security
breaches.

Given the internet connectivity of each
node, IoT-WSN environments are inherently prone
to such attacks, underscoring the importance of
robust security mechanisms and awareness for
mitigating vulnerabilities. The following figure.3
depicts the types of [oT and WSN attacks [3].
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Figure 3: Types of loT & WSN attacks

1.4 Attack Detection Methods in loT

Recognizing and reducing these types of
attacks is crucial for preserving the security of IoT
environments. To tackle these challenges,
numerous techniques have been created to detect
attacks. These detection techniques, ranging from
traditional signature-based models to advanced
machine learning and hybrid approaches, provide a
comprehensive defense strategy for [oT ecosystems
[4]. Their effectiveness, however, depends on
balancing accuracy, resource efficiency, and
scalability to meet the unique demands of IoT
environments. The following approaches are
commonly used for identifying threats within the
Internet of Things environment as shown in figure
4. On a different note, traditional security schemes
have become obsolete owing to unique constraints
posed by IoT systems, some of which include
limited computational capability, limited memory,
multiplicity of communication protocols, and
absence of standardization. Therefore, research

interests are inclined toward the development of
adaptive and scalable threat detection mechanisms
optimized for the [0oT ecosystem. The variability of
methodology  includes  traditional classifier
techniques, machine learning, deep neural
networks, federated learning, a blockchain-
integrated  paradigm, explainable artificial
intelligence, and  quantum-assisted  security
protocols. This need becomes more critical in
healthcare IoT systems, where ML- and DL-based
predictive models are already operational for
disease diagnosis, yet often lack integrated,
iterative security mechanisms to counter evolving
cyber threats [50], [51]. A critical gap in
systematic, statistically grounded comparative
analysis exists which could lend itself to proper
benchmarking. Many reviews in this area tend to
focus either exclusively on qualitative measures or
lack an internally consistent approach when
judging quantitative performance indicators such as
detection latency, scalability, memory usage, and
computational complexity. This paper bridges this
gap by providing a critical statistical analytical
review that encompasses 49 peer-reviewed articles
published from 2024 to 2025, constituting a
snapshot of modern developments in IoT security.

Each one of these studies is thoroughly
analyzed across the six pertinent performance
measures: Scalability, Delay, Time Complexity,
Memory Complexity, Make span, and Analysis
Efficiency. These six measures were considered as
representative of both potential performances in an
applicable environment and real-world implement
ability in the existing IoT ecosystem. Objective
performance assessments for model categories can
be made by deriving and normalizing more than
300 data points and obtaining them from the
literature.

This work was inspired mainly by the
urgent need for decision support tools to guide
researchers, practitioners, and policymakers toward
choosing the most appropriate security solutions
under operational situation constraints. For
example, healthcare devices applying an edge-
deployment scheme will generally favor
lightweight models with low latency, while
trustworthy smart grid systems might deem high
security acceptable, even when associated with
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delayed responses. Analysis from this paper brings oscton et

recognition of very interesting solutions to loT Atacks
discussions-like the trade-offs between such

behavior as  detection accuracy  against / \\
computational overhead, model transparency y \ ¢ \

versus interpretability, and others that are more
common, centralized against decentralized learning
paradigms.

Signature-Based

Detection Maching Leaming

Behavioral Analysis Deep Learning

Honeypot

This research is basically focused on three
major contributions: The first contribution is the
quantitative meta-analysis of 49 IoT threat

. . ! —t —
detection models categorized across diverse [ DecsonTiee | ( \
architectural paradigms. The second contribution is 0 REJEET NE I . N
. . + Clusterng Melhod e
a performance-normalized evaluation table to + Random Forest Ny
facilitate everyone's comparison using these six : m‘:';‘i“em' « RWN
. . . . . . etwol }
metrics, filling a crucial void in current literature + Other Machine * DBt

sets. The final contribution is a compilation of
actionable hints and future research avenues,
especially concerning adversarial robustness, cross-
domain adaptability, interpretability, and energy-
efficient designs. By doing this, the paper advances Figure 4: loT Attack Detection Methods
the field of IoT cybersecurity while laying down a

statistically validated framework for the next

generation of scalable and resilient IoT threat Tougir et al. [1] emphasize the usefulness of
detection frameworks. fuzzing-based techniques for signature extraction,
being  particularly  successful in  finding
vulnerabilities at the firmware level in the process.
The work shows how fuzzing-generated inputs can

Leaming Techniques,
A J/

i) Signature-Based Threat Detection in loT

Frameworks serve as templates for signature creation across
) ) ) constrained IoT devices in the process. In a similar

. Slgnatur.e-based detec.tlon still - forms  the vein, Abdullah et al. [10] adopt a deep learning
primary basis of IoT security. These methods are approach to improve IoT malware signature

based on known attack patterns or predefined rules

/ atl - classification, combining convolutional neural
for the detection of malicious behavior. Although

networks (CNN) with malware profiling datasets to

conv'entional, their determi.nistic pgrformance detect slight signature deviations in the process.
continues to keep the baseline security of IoT Layers of framework Sheeba and Shaji [3]
ecosystems. proposed Hybrid-CID mechanism that blends

signature-based  filtering ~ with  contextual
optimization using Mongoose optimization for the
betterment of signature matching on packet level
and in real-time environments. In addition, Gwassi
et al., [4] forward a hybrid XAl-enabled signature
detection and blockchain integrity framework
called Cyber-XAI-Block under smart
organizational IoT settings. Despite their great
efficacy in addressing well-known attacks,
signature-based systems truly shine in hindering the
detection of zero-day exploits or polymorphic
malwares, which created an increased interest in
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hybrid mechanisms as well as strategies based upon
behavior sets.

ii) Behavioral
Security

Analysis Aspects of loT

Behavioral threat detection, with special
relevance to dynamic and context-aware
environments, identifies potential threats from
deviations of normal activity. These systems
perform particularly well in catching novels or
evolving attacks. Ran para et al. [S] examine a
semantic driven deep learning architecture to model
normal device behavior across loT layers. In
aligning threat response with learned behavioral
semantics, the framework renders timely anomaly
alerts with low false positives. Singh et al. [6]
perform an exhaustive evaluation of ML and DL
paradigms for traffic pattern analysis in massive
IoT networks, proving that neural-based behavior
modelling is crucial in spotting anomalous
activities. Deswal [11] designs a deep learning
intrusion detection system for IoT gateways that
incorporate behavioral indicators like unusual
connection frequency and payload irregularities in
process. Likewise, Saranya and Valarmathi [13]
use a multi-layer deep auto-encoder for cross-layer
attack detection on behavioral reconstruction error,
effectively catching stealthy anomalies across
network and application layers. Notably, Ullah et
al. [23] proposes KronNet, a lightweight
Kronecker-enhanced feedforward neural network
optimized for device-level behavior profiling’s.

Moreover, cook et al. [25] examine behavioral data
from Bluetooth-based FemTech devices, shedding
light on how privacy vulnerabilities manifest
through regular patterns of user interaction sets.

Integrating RL into behavior analysis, Tyagi et
al. [22] designed a time-series RL framework for
trust prediction during blackhole attacks. The
model adaptively learns, and updates trust weights
that reflect real-time changes in behavior.
However, behavior-based techniques, while
versatile, may experience training drift and model
poisoning in adversarial circumstances. Federated
learning and privacy-preserving form of learning
are now being considered more to counter this.

iiil Honeypot-Based Threat Detection
Strategies
Honeypots stand for all decoy systems

designed to lure and study attackers. These systems
provide vital information about attack vectors
concerning IoT systems, enabling dynamic
adaptation of the detection models. Kuku et al. [16]
describes a honeypot model that is digital forensic-
ready, designed specifically for IoT organizations.
This model obtains interaction metadata from
attackers that can be used to obtain forensic
evidence and update rule bases. Desikan et al. [20]
propose BACHAAYV, a hybrid human-Al system
that uses cryptographic honeypots to lure attackers
while preserving the confidentiality of data sets.

Table 2. Model’'s Empirical Review Analysis

Ref Method Used Findings Strengths Limitations Recommendations
to Overcome these
Limitations
1 Fuzzing- Mapped techniques Systematic Limited real- | Integrate fuzzing
based to loT vulnerabilities; coverage of time with runtime
vulnerability highlighted fuzzing fuzzing; applicability monitoring systems
exploration as a viable signature- | effective for for adaptive threat
generation tool signature-based detection
attack surfaces
2 Hidden and Demonstrated Effective Focused only Extend model for
connected improved cyberattack | multilayer on static mobile 0T networks
layer neural detection in I10T- abstraction for networks with dynamic
architecture WSN networks using WSN-specific topology adaptation
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with threat enriched layer-wise attacks
intelligence representations

3 Hybrid-CID Improved real-time Fast decision- Lacks zero-day | Incorporate
using anomaly making under attack behavioral profiling
Mongoose classification by resource detection to enhance model
Optimization combining signature constraints capability adaptability

features with
optimized heuristics

4 Cyber-XAl- Enabled High Complex Develop modular
Block interpretable threat | interpretability deployment components for
framework detection in smart and blockchain | architecture lightweight
using organizations with immutability integration
explainable audit trails
Al and
blockchain

5 DL-based Demonstrated real- | Semantic Dependent on | Apply self-
semantic time threat modeling high-quality supervised
computation | inference using improved labeled data learning to reduce
al semantic contextual labeled data
framework correlations threat dependency

accuracy

6 Empirical Benchmarked Comprehensiv | No cross- Include layer-
ML/DL various models for e comparative layer aware traffic
evaluation large-scale loT metrics across | correlation pattern
for traffic traffic patterns methods modeling relationships
analysis

7 Quantum- Combined Al- | Resilient Lacks Develop
enhanced driven detection | against practical quantum-ready
Al for | with quantum | cryptographic deployment APIs and
anomaly principles to evolve | threats details integration
detection loT security models

8 Hybrid Enhanced Effective Model Incorporate
CNN-LSTM detection over fusion of | generalizabilit | domain
and heterogeneous spatial- y needs adaptation for
ensemble datasets temporal improvement unseen data
learning features types

9 Review of Provided future Covers Lacks Empirically
blockchain- directions and multiple threat quantitative validate proposed
enabled classification of mitigation experimental directions on real-
security blockchain strategies support world testbeds
frameworks applications

10 DL-based Achieved precise Deep feature Struggles with | Use generative
malware categorization of extraction from | polymorphic models to
analysis loT malware types malware variants simulate
and behaviors adversarial
classificatio malware
n

11 DL-driven Proposed Effective for No evaluation | Augment with
intrusion framework for | localized under adversarial
detection in | traffic-based threat defense | adversarial robustness
loT anomaly detection attacks training
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gateways at the gateway
level
12 TinyML for Provided privacy- Low-resource Reduced Employ data
threat aware real-time accuracy augmentation
classificatio multiclassification inference under techniques for
n on edge at constrained imbalanced minority classes
edge nodes data
13 Multilayer Detected cross- Strong Sensitivity to | Use robust
deep layer anomalies detection of | noise in input | training methods
autoencode with reconstruction stealth attacks | features to minimize
r error overfitting
14 Analysis of Highlighted key | Holistic view of | Lacks active | Integrate findings
privacy- privacy issues and | privacy risks detection into dynamic
preserving mitigation components privacy-aware
safeguards techniques in cloud threat monitoring
loT tools
15 ProSRN Secured sensitive Tailored for | Model Test methods in
and ICOM healthcare data medical loT | scalability not | larger multi-
threat through structured environments Institutional
manageme methodologies addressed
nt networks
for loT
healthcare
16 Forensic Enabled forensic Realistic data May fail Combine
readiness traceability and capture using against honeypots with
and attacker profiling honeypots evasive behavioral
resilience attackers anomaly
model using detection
honeypots
17 Al-quantum Advanced futuristic | High No practical | Prototype and
synergy in model combining theoretical system benchmark model
holographic quantum logic and resilience realization under realistic
frameworks Al threat detection loads
18 Extreme Achieved reduced | Fast and | Limited deep | Stack with deep
Learning training time with | accurate feature learners for
Machine efficient feature | classification hierarchy deeper context
with multi- selection capture
kernel
optimization
19 Lattice- Assessed post- Strong No integration | Fuse with ML
based quantum theoretical with detection | models to build
cryptographi | cryptographic security pipelines secure Intelligent
¢ scheme | readiness for loT foundation hybrid
comparison frameworks
20 BACHAAV: Enabled Synergistic Costly to Develop modular
ML-human- collaborative human- deploy components to
Al detection with machine threat reduce
cryptographi | cryptographic adaptation deployment
C decoys complexity
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architecture

21 GAO- Improved detection | Robust data Relatively Optimize
XGBoost and secure storage | management high hyperparameters
and ECC for loT traffic and threat computation for resource-
Integrated prediction overhead constrained
blockchain environments
framework

22 Time-series Detected blackhole | Responsive to | Time lag in | Introduce real-
DL for trust attacks through trust detection time trust
prediction dynamic trust fluctuations adaptation

modeling mechanisms

23 KronNet: Offered efficient Suitable for Limited Use explainable
Lightweight intrusion detection constrained interpretability | Al techniques to
Kronecker- with lower model devices enhance
enhanced complexity transparency
FFNN

24 LAID: Proposed secure Low power Does not Integrate with
Lightweight authentication for and secure include anomaly-based
authenticati smart city devices communicatio anomaly access monitoring
on scheme n detection

25 Bluetooth Highlighted Real-world Focuses on | Extend to multi-
security vulnerabilities in applicability to Bluetooth protocol risk
analysis for | personal health sensitive data only assessment
FemTech device flows
loT devices communications

Scalability Across Methods

100

Figure 5: Model's Scalability Analysis

Iteratively, Next, as per table 2 & table 3,
Deployments on a large-scale use honeypot-driven
datasets to train their hybrid LSTM-CNN
framework in capturing temporal and spatial
features of attacks from adversary interactions,
according to Sinha et al. [34]. In a similar sense,
Gharbi et al. [30] exploit honeypot traffic logs
within their view of ransomware prediction models;

here, behavioral patterns derived from honeypot
interactions provide the basis for training ML
classifiers. Notably, honeypot integration into
layered IoT  frameworks receives  further
enhancement from blockchain and decentralization
mechanisms [9][31] to ensure the tamper-resistant
nature of the generated telemetry. While the use of
honeypots for deception and intelligence gathering
is invaluable, they can only be

effective when realistic and properly positioned in
IoT architecture. Unfortunately, unreasonably
configured honeypots may rapidly be detected and
bypassed by competent attackers.

The Role of ML, DL, and RL in Iterative loT
Threat Detection

Intelligent algorithms play a significant role in
enhancing precision, recall, and robustness across all
detection modalities. Deep learning for feature
generations especially through CNN, RNN, and
hybrid models has significantly impacted on the way
security in IoT models operates. For instance,
Jablaoui and Liouane [29] use a composite CNN-
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RNN model well-tuned for capturing intrusion
detection, exploiting the local and temporal
dynamics of varied IoT traffic. Further applications
of transfer learning were put forth by Almhdhor et
al. [44] integrated with explainable Al (XAI) to
improve malware generalization in IoT systems.
These models are refined through time with
backpropagation, thus focusing on the detection of
cyber vulnerabilities that evolve across scales.
Reinforcement learning (RL) has become
another wonderful addition within the domain
of threat prediction and response optimization.
Alzahrani [17] introduces quantum-enhanced
RL frameworks that adapt to security controls

Alshahrani [7] add quantum cryptography to
Al-driven anomaly detection, which in
essence, ultimately forms self-improving
detection pipelines. Recent work on federated
learning in IoT devices enables decentralized,
confidential models to train collectively
without breaching data privacy [12][32][39].
These  privacy-centric  methods  further
integrate with real-time detection as well as
threat rating systems [4][37] to eventually

provide quite robust scalable, secure, and

adaptive threat identification sets.

based on holographic simulations. In a
somewhat identical manner, Mujlid and
Table 3. Model's Empirical Review Analysis

Ref Method Findings Strengths Limitations Recommendations

Used to Overcome these
Limitations

26 Lightweight Demonstrated efficient Low Focuses Expand to detect
ML DDoS detection in computational mainly on broader threat
framework constrained loT overhead; good DDoS attacks | categories like data
for DDoS environments detection rate exfiltration and
detection botnets

27 Layered Provided taxonomy and | Comprehensive Lacks Augment audit tools
audit architectural mapping | security gap | runtime with real-time
architecture of audit tools analysis enforcement response
and tool techniques mechanisms
analysis

28 Run-time Enabled continuous | Supports ongoing | Model Apply model pruning
threat and adaptive risk | threat landscape | complexity and optimization for
modeling for | assessment using | adaptation may hinder | runtime suitability
loT evolving threat models real-time

inference

29 CNN-RNN Captured spatial and Effective against High training Use pre-training or
hybrid temporal features for complex attacks time incremental learning
model for enhanced threat to reduce training
intrusion classification cost
detection

30 Survey of Identified taxonomy, Comprehensive Lacks Translate survey
ML-based metrics, and limitations and comparative | empirical findings into
loT of ransomware scope implementati practical ML
ransomware | prediction models on pipelines
detection

31 ECC and Proposed integrated Tamper High energy Implement
blockchain- framework using resistance and | cost for lightweight ECC
based cryptographic and data integrity | cryptographic variants and efficient
cybersecurit blockchain primitives ensured operations consensus
y model

EAIl Endorsed Transactions on
Internet of Things
| Volume 11| 2025 |

2 EA

11



Lanka Kavitha, Kareemulla Shaik

32 Federated Achieved privacy- Protects data Vulnerable to Add robust
learning for preserving anomaly confidentiality poisoning aggregation and
insider detection at edge while detecting attacks anomaly filtering
threat nodes threats mechanisms
detection

33 Smart Improved data Relevant for No explicit Integrate with ML-
healthcare efficiency in smart patient-centric threat based anomaly
loT data | health using optimized data applications detection detection for medical
analysis collection methods component devices

34 Hybrid Enabled high- Combines long- Requires Optimize
LSTM-CNN performance detection term dependency powerful architecture for edge
architecture in loT networks through learning with compute deployment with

deep feature extraction spatial recognition | nodes model compression

35 Multimodal Improved situational User-centered Limited to Incorporate ambient
sociotechnic | awareness in smart adaptive threat conversation and sensor-based
al homes through user response al interface contextual signals
conversatio interaction modeling data
nal model

36 DNN and Enhanced anomaly Synergistic use of | Scalability Utilize lightweight
blockchain detection and DNN and | and speed blockchain
hybrid prevention with tamper- | blockchain concerns frameworks for loT
system resistant logs

37 Cyber threat | Identified risk indicators | Domain-specific Lacks Develop a modular,
intelligence specific to agricultural | intelligence generalizabilit | adaptable
for smart | loT ecosystems improves y across | intelligence
agriculture targeting sectors framework

38 Ensemble Combined multiple Boosted detection Potential Apply regularization
learning for learners to detect accuracy across overfitting on and ensemble
smart city diverse intrusion devices specific pruning techniques
intrusion patterns datasets
detection

39 Federated Achieved secure Maintains Susceptible Incorporate
RNN under collaborative intrusion accuracy while to gradient differential  privacy
adversarial detection in adversarial preserving leakage and secure
attacks settings privacy aggregation

40 Survey of Reviewed model Wide coverage Insufficient Establish standard
ML and DL performance and across Android benchmarkin testbeds for cross-
for malware dataset challenges for and loT devices g for model platform validation
detection malware analysis portability

41 AI-NLP Used language-based Context-aware High data Automate feature
hybrid cues and malware and intelligent preprocessin engineering via
framework behaviors for detection analysis g requirement | language
for  cyber embeddings
threat
detection

42 CNN-based Improved packet-level Good Fixed kernel Use dynamic kernel
intrusion anomaly detection generalization on | configuration adaptation for
detection using convolutional network data s limit evolving threats
(NIDS-DL- layers flexibility
CNN)

43 Quantum- Enabled secure task Supports Theoretical Prototype under
enhanced offloading with digital precision proposal with real-world
digital twin | twin replicas healthcare with limited healthcare loT
for predictive security | deployment scenarios
healthcare
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44 Transfer Facilitated robust | Improves trust | Limited Design lightweight
learning malware detection with | and reusability | support  for | interpretable models
with interpretable decisions across domains low-resource for constrained
explainable devices nodes
Al (XAl)

45 Decentraliz Ensured trust in loT | Resistant to | Needs Implement adaptive
ed data collection using | spoofing and data | consensus consensus protocols
identifiers DID and ledger tech tampering validation with load balancing
for secure across
data diverse
collection nodes

46 DL with Reduced computational Efficient and May lose Use sensitivity
feature complexity while scalable under nuanced analysis to preserve
pruning for retaining accuracy high Volume features critical features
DDoS attacks during
detection pruning

47 Enhanced Achieved higher | Good Needs Implement online
Grey Wolf detection rates using | convergence and frequent re- | learning for dynamic
Optimizatio hybrid GWO-RF tuning accuracy optimization adaptation
n with
Random
Forest

48 Industry Uncovered quality Rich practical Not focused | Align quality
case study | benchmarks and insights from real on security | assessments with
on IoT | challenges in industrial deployments threats security metrics
quality loT
attributes

49 Quantum- Secured smart grid | Future-proof Lacks Combine with ML-
resistant data against quantum | encryption for | integration driven threat
hybrid attacks critical systems with threat | detection for
encryption detection proactive defense
for  smart mechanisms
grids

Delay Across Methods world effectiveness come alongside. A most recent

% study- involves multi-case case studies in the
industry on Alkhabbas et al. [48]- further supports

N the  necessity of  having  fundamentally
comprehensive, explainable, and iterative security

5 strategies in a heterogenous suite of IoT

E® 1 deployments. This reading signalizes that the

3 archetypal transition is from static, rule-based

S

5

0
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Figure 6: Model’s Delay Analysis

Basically, variables diligences and empirical

evaluations of learning-based solutions have come
to the mainstream as computation for their real-
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detection to adaptive ML/DL-supported
mechanisms ~ within  layered IoT  security
architectures. Figure. 6 depicts the delay analysis
across 49 referenced methods, demonstrating the
performance trade-offs in terms of computational
latency. Signature methods represent the staunchest
first-line defense against known threats, but
behavioral models track zero-days and various
evolutions. Honeypots embrace deception-based
intelligence gathering within extensive depth.
Putting all these systems on ML, DL, and RL gives

improved visibility across threats by automating
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response whilst real-time defense will likely shape
the future. Ultimately, future research must delve
into  privacy-keeping,  decentralization, and
quantum-resistant frameworks, which may stand up
under next-gen IoT scale and dynamism sets.

2. Comparative Result Analysis

This section is intended to provide an
intense analysis of loT-based methods for threat
detection that are a widely talked-about subject
spanning recent years in literature sets. These
evaluations focus on performance metrics of

accuracy, precision, recall, and detection rate as
well as latency of the models, besides model sizes.
Quantitatively, these metrics will disclose to what
extent each detector is letting out what it is meant
for and what limits may be in the process. The table
directly follows listing the captured values in a
structured digital form offering comparison
between the traditional ways, hybrids, and those
with intelligent augmentation, including serving for
ML, DL, quantum interactions, and blockchain
interventions in process. This section, therefore,
also highlights capabilities and limitation of each of
these methods given their veracity as realistically
demonstrated in [oT infrastructure sets.

Table 4. Model's Empirical Statistical Analysis

Ref Method Used Performance Key Findings Strengths Limitations
Metrics Values
1 Fuzzing-based Accuracy:85%, Effectively maps Detailed coverage | Less responsive to
vulnerability Detection Rate: | vulnerabilities of known unknown or
exploration 82%, with high vulnerabilities polymorphic
False Positive | accuracy threats
Rate: 10%
2 Hidden and Accuracy:93%, Detects layered High detection Model adaptability
connected layer Precision:91%, threats in IOT- accuracy across in mobility contexts
ML architecture Recall: 90% WSN effectively WSN not proven
environments
3 Hybrid-CID with | Accuracy:89%, Optimizes Low latency and | Limited learning
Mongoose Latency: 12ms, intrusion high F1 score for evolving threats
Optimization F1-Score: 88% detection via
hybrid model
4 Cyber-XAl-Block Detection Ensures Strong Complex
using XAl and Accuracy: 91%, interpretability transparency and | implementation
blockchain Transparency and secure data explainability architecture
Score: High exchange
5 Semantic DL Accuracy: 92%, Semantic Balanced high | Relies heavily on
framework for Recall: 89%, representation precision and | labeled semantic
loT security Precision: 90% enables real-time recall data
detection
6 Traffic analysis | Accuracy: 87%, Extensive Robust across Layer-specific
using ML and F1-Score: 85%, comparative large-scale threat
DL Detection Rate: | evaluation of loT datasets differentiation not
86% traffic supported
7 Quantum-driven Anomaly Merges Al with Novel quantum Deployment
anomaly Detection Rate: quantum security Influenced feasibility in
detection 88%, Latency: enhancements detection current hardware
18ms is limited
8 CNN-LSTM Accuracy: 95%, High Excellent spatio- | Computational
hybrid and | Precision: 94%, performance temporal learning intensity restricts
ensemble Recall: 92% across multiple lightweight
learning datasets deployment
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9 Blockchain- NA Categorizes Strong conceptual | No empirical
based security future directions foundation validation of
survey and use-cases proposed models

10 DL for malware Accuracy: 94%, Differentiates High classification | Challenges with
classification Malware malware families accuracy polymorphic

Detection effectively malware persist
Rate: 91%

11 DL framework Accuracy: 90%, Secures gateway | High gateway- Limited robustness

for loT gateways Detection Rate: layer through level intrusion under adversarial
88%, deep features detection input
FPR: 9%

12 TinyML for edge Accuracy: 88%, Lightweight Ultra-low latency | Slight dropin
threat Model Size: classification on and size performance with
classification <200KB, constrained complex inputs

Inference Time: devices
6ms

13 Multilayer deep | Accuracy: 91%, Detect cross- Strong stealth Noise sensitivity in
autoencoder Reconstruction layer anomalies attack detection data

Loss: Low effectively representation

14 Privacy- NA Explores privacy Covers regulatory No integrated
preserving threats and and systemic model evaluation
analysis for mitigation issues or performance
cloud loT strategies metrics

15 ProSRN and | Accuracy: 89%, Applies tailored Effective in Limited evidence
ICOM in loT TPR: 87%, methods for sensitive data for scaling to
healthcare FPR: 8% healthcare scenarios larger networks

security

16 Digital forensic | Forensic Captures attack Supports detailed Less reactive to
honeypot model Coverage: 85%, footprints with attack forensics real-time threats

Detection Delay: | traceability
Medium

17 Al and quantum | Projected Theoretical Promising Yet to be tested in
in  holographic | Accuracy: 90%, integration of futuristic real-world
frameworks Response quantum-Al in architecture environments

Adaptability: loT
High

18 Extreme Accuracy: 90%, Fast training with Highly efficient Lacks deep
Learning Training Time: effective learning contextual feature
Machine (ELM) <5s, F1: 89% authentication capture

detection

19 Lattice-based Security Rating: Compares post- Robust against No threat detection
cryptographic High, quantum future integration
scheme analysis Computation cryptographic cryptanalysis

Load: Medium readiness

20 BACHAAV ML- | Accuracy: 93%, Adaptive threat Collaborative Resource
human-Al Response Rate: modeling in oil & model enhances | Intensive
framework High gas loT precision deployment

architecture

21 GAO-XGBoost Accuracy: 92%, Improves data Integrated Model tuning
with ECC and | Latency: 15ms protection and detection and | complexity
blockchain threat detection security

22 Time-series DL | Accuracy: 90%, Predicts trust Time-adaptive Detection lag
trust prediction Prediction degradation trust estimation under high-speed

Horizon: 85% during blackhole attacks
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attacks
23 KronNet FFNN | Accuracy: 88%, Lightweight, Suitable for real- | Interpretability
with  Kronecker Model Size: device-friendly time edge usage remains limited
optimization Small, Inference IDS model
Time: Fast
24 LAID Authentication Ensures Strong Does not include
authentication Success Rate: lightweight performance in threat detection
protocol 95%, secure smart city settings mechanisms
Overhead: Low authentication
25 Bluetooth Exploit Analyzes Empirical Limited to
security Coverage: 87%, vulnerabilities in vulnerability Bluetooth-based
assessment Device FemTech discovery threats
Coverage: High devices
Iteratively, as per table 4 & table 5, it IoT  security sets. Secondary quantitative

shows through this analysis that deep-learning
models such as CNN-LSTM and autoencoders in

comparison of more sophisticated IoT-related
threat-detection methodologies have been presented

particular frequently surpass traditional methods in
their detection accuracy, recall, and other indicators
in process. Such soft-threshold-yielding methods
and hybrid models function effectively across many
different network scenarios, justifying themselves
in layered deployments of threats. Determinants
such as computational complexity, interpretability
of results, and the unknown-state performance
characteristic all seem to exist side by side.
Lightweight frameworks and strategies of TinyML,
etc. strike the balance of efficiency and detection
accuracy when used in edge devices and
deployments short of resources. Quantum-driven
and blockchain Integrated systems promise clear
directions but entail along with their promise
deployment complexity and energy consumptions.
Several research pieces also emphasize XAI and
federated learning to enhance transparency and data
privacy. Thus, the journey has begun toward more
trustworthy and privacy-abiding Al applications in

in some of the most recent literature. All the
formulations were being analyzed for performance
criteria such as accuracy, recall, false-positive rate,
latency, robustness, interpretability, and efficiency.
It was to determine the operational characteristics
and deployment viability of all such proposed
solutions regarding given parallel IoT systems;
ranges vary from smart cities, agriculture,
healthcare, industrial infrastructures in processing,
etc. The table underneath is a synthesis between 24
different methods-can be inclusive of lightweight
machine learning models, deep learning hybrids,
federated learning frameworks, transfer learning
with explainable Al, blockchain Integrated
solutions, quantum-enhanced architectures, and
heuristic optimization-on a common performance-
based perspective. The lens also provides an
applicable way to evaluate scalable, secure, and
smart models in layered [oT defense systems.

Table 5. Model's Empirical Statistical Analysis

Ref Method Used Performance Metrics Key Findings Strengths Limitations
Values
26 Lightweight ML Accuracy: 91%, Efficiently Low overhead Focused
for DDoS Detection Rate: 90%, detects DDoS with high primarily on
detection FPR: 7% attacks in accuracy DDosS attack
constrained loT types
setups
27 Layered audit Coverage: 85%, Real- Presents Covers a wide Lacks
tool analysis time Suitability: Medium comprehensive range of audit implementation-
security tools level
auditing tools performance
and models metrics
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28 Run-time threat Risk Assessment Supports Adapts well to Modeling
models for loT Accuracy: 88%, continuous and evolving threats complexity and
Adaptability: High adaptive threat inference cost
assessments
29 CNN-RNN Accuracy: 94%, Recall: Captures both High precision High training
hybrid for IDS 92%, Precision: 91% spatial and and recall and inference
temporal time
network
behavior
30 Survey on ML Detection Accuracy Summarizes Broad Lacks
for ransomware Range: 853€ “93%, ML capabilities landscape of performance
prediction Response Delay: for ransomware ML approaches validation in live
Variable detection environments
31 ECC and Integrity Score: High, Secure data Strong Moderate
blockchain Latency: Moderate exchange using resistance to latency under
hybrid model encryption and tampering load
ledger
verification
32 Federated Accuracy: 90%, Privacy Enables secure Maintains Vulnerable to
learning for Score: High insider threat privacy and federated
edge security detection model poisoning
without data performance attacks
sharing
33 Smart Efficiency Score: High, Improves data Streamlines loT Lacks
healthcare data Detection Integration: flow in data pipelines integrated
analysis Low healthcare loT threat detection
systems framework
34 Hybrid LSTM- Accuracy: 96%, F1- Achieves high Very strong Higher resource
CNN deep Score: 95%, Latency: accuracy and detection requirement
architecture 20ms robustness in capabilities
threat detection
35 Multimodal Accuracy: 89%, User Increases cyber Adaptive and Limited to smart
conversational Adaptability: High awareness user-centered home domains
detection model using human
interaction
patterns
36 DNN and Accuracy: 93%, Tamper Combines Robust dual- Scalability in
blockchain for Resistance: High learning and layer defense large networks
anomaly ledger for
detection secure anomaly
tracking
37 Smart Detection Rate: 87%, Addresses Custom Sector-specific
agriculture Domain Coverage: High cyber threats in intelligence limitations
threat agricultural loT platform
intelligence
38 Ensemble Accuracy: 92%, Effectively High ensemble Model
learning for Precision: 91%, Recall: detects multi- efficiency complexity and
smart cities 90% class threats in tuning needs
loT networks
39 Federated RNN Accuracy: 91%, Detects Privacy- High
for adversarial Robustness Score: intrusion preserving with communication
intrusion High collaboratively resilience overhead
detection under
adversarial
pressure
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40 Review of Detection Accuracy Covers threat Comprehensive No model-
ML/DL for Range: 94% classification methodology specific
malware across insight evaluation
detection platforms included
41 AI-NLP Accuracy: 90%, NLP Combines NLP Rich language- Dependency on
framework for Detection Rate: 88% and Al for context language data
threat detection contextual modeling quality
threat extraction
42 CNN-based Accuracy: 93%, Effectively Strong Static kernel
intrusion Detection Time: Low classifies detection design
detection network performance
(NIDS-DL-CNN) anomalies
43 Quantum digital Task Efficiency: High, Simulates Strong Theoretical
twin for Predictive Security: secure task predictive task validation
healthcare loT Strong offloading scheduling phase only
44 Transfer Accuracy: 94%, Detects High accuracy Processing
learning with Interpretability Score: malware using and overhead for
XAl High reusable and transparency XAl reasoning
explainable
models
45 Decentralized Trust Score: High, Ensures secure Blockchain-like Coordination
identifiers Tampering Resistance: data trust without overhead
(DIDs) High provenance in central across devices
loT authority
46 DL with feature Accuracy: 91%, Model Reduces model Optimized for Potential loss of
pruning for Size Reduction: 30% size while speed and size subtle features
DDoS detection maintaining
performance
47 EGWO + Accuracy: 93%, Improves Fast and Re-training
Random Forest Optimization Speed: intrusion adaptive needs for
High classification optimization changing
with hybrid patterns
tuning
48 Industry multi- Security Awareness: Highlights Industry- Not focused on
case study on Medium, Cross-domain practical quality grounded detection
loT quality Relevance: High metrics for loT recommendatio performance
ns
49 Quantum- Security Strength: Very Secures smart Future-proof Needs
resistant hybrid High, Latency: grids against encryption integration with
encryption Moderate quantum mechanism detection
attacks systems

In the preceding paragraph, a numerical
review of works of the previous order, papers [26]
through [49], indicates that hybrid architectures
such as CNN-RNN and LSTM-CNN consistently
achieved above 93% accuracy with a good
generalization across network behaviors. Federated
and transfer learning introduces privacy and

adaptability ~ while maintaining competitive
accuracy in  detection. Performance and
computational efficiency trade-offs in DDoS

detection frameworks and feature pruning would
satisfy the criteria for edge level deployment. On

the other hand, a blockchain or quantum-enhanced
system would show very strong security behavior,
but this generally comes with the cost of latency or
complexity sets in deployment. Reviews and
surveys usually have broad coverage and
theoretically justify them but lack actual
performance benchmarking comparing real traffic
data samples. Such domain-specific models (e.g.,
healthcare, smart agriculture) would have been
optimized to deliver superior performance in a
specific sector, requiring their adaptation for wider
use sets.
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3. Radar Chart Visualization

Figure.7 illustrates ~ the = multidimensional
performance analysis of IoT threat detection

To complement the tabular comparison of detection models across six standardized evaluation metrics:
methods, a radar chart was constructed to provide scalability, delay, time complexity, memory
an intuitive visual summary of the six standardized complexity, make span, and analysis efficiency.
performance metrics: scalability, delay, time The radar chart provides an integrated perspective
complexity, memory complexity, makespan, and by displaying each model’s relative strengths and
analysis efficiency. Unlike tables that require line- weaknesses in a single view, which is more
by-line interpretation, the radar chart allows the intuitive than examining numerical values in
relative strengths and weaknesses of each model isolation.

category to be observed briefly. For example, deep

hybrid models (e.g.,, CNN-LSTM) extend further The CNN-LSTM hybrid demonstrates
along the axes of accuracy and analysis efficiency, high scores in scalability and analytical efficiency,
but contract on the memory and time-complexity highlighting its suitability for large-scale
scales, reflecting their higher computational deployments and accurate anomaly detection.
demands. Conversely, lightweight approaches such However, the model shows noticeable drawbacks
as TinyML display strong coverage in low-delay in memory complexity and make span, reflecting
and memory efficiency dimensions but exhibit its elevated computational and storage overhead. In
shorter extensions along scalability and robustness contrast, TinyML approaches exhibit strong
measures. Similarly, federated and blockchain- performance in minimizing delay and memory
integrated systems show balanced performance consumption, making them highly efficient for
across multiple axes but are limited by deployment resource-constrained IoT devices, though their
overhead. By presenting the normalized results in a scalability and robustness remain limited.
radar chart, trade-offs between competing methods Federated RNN models achieve a relatively
become more transparent, enabling researchers and balanced distribution across all six dimensions,
practitioners to quickly identify which models align offering a compromise between efficiency and
best with the resource and operational constraints adaptability; nevertheless, their deployment often
of a particular [oT environment. suffers from communication overhead. Meanwhile,

quantum-enhanced models project superior results

in scalability and time efficiency, suggesting strong

e potential for handling massive IoT workloads,
TinyML though they remain largely experimental and

e e constrained by hardware availability.

Delay

This visualization clearly emphasizes the
trade-offs among IoT detection methods. No single
approach dominates all metrics; instead, different
techniques excel under different conditions. The
radar chart therefore reinforces the importance of
hybrid and adaptive frameworks, where combining
complementary models may offer the most
effective balance between accuracy, efficiency, and
scalability for diverse IoT environments.

Memory Conplexity Scalability

4. Metric-wise Performance

Figure 7: Multidimensional Performance Analysis

Analysis of loT Threat Detection models
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While the radar chart provides a holistic overview
of model performance across six standardized
metrics, it is also essential to examine each
dimension individually for deeper insights. To this
end, Figure.7 presents metric-specific plots for
scalability, delay, time complexity, memory
complexity, makespan, and analysis efficiency.
These focused visualizations allow for a more
granular understanding of how IoT detection
models perform in each critical aspect.

Together, these metric- wise graph validate
the observations drawn from the radar chart: each
detection approach offers a unique balance between
computational efficiency and detection capability.
This layered analysis highlights the importance of
context- aware deployment, where the choice of
detection method should be tailored to the
operational constraints of the IoT environment.

e Analysis Efficiency: Deep hybrid models
provide superior analysis efficiency,
delivering higher accuracy and reliability in
detection, though at the expense of system
resources.

e Memory Complexity: TinyML shows the
best memory efficiency, making it suitable
for low-power complexity, but CNN-LSTM
hybrids remain comparatively heavier due to
training overhead.

e Time Complexity: Quantum-assisted and
federated models offer promising reductions
in time

e Make span: Hybrid models incur longer
execution spans owing to multi-layered
architectures, whereas lightweight and
decentralized methods demonstrate reduced
make span.

e Scalability: Hybrid deep learning models
demonstrate higher scalability, supporting
large-scale  IoT  deployments,  while
lightweight methods such as TinyML
remain constrained to smaller environments.

e Delay: Tiny ML based approaches excel in
achieving minimal processing delay, a
critical requirement for real-time threat
detection in edge devices.

5. ROC Curve Analysis

To complement the computational performance
evaluation, the Receiver Operating Characteristic
(ROC) curve provides an additional perspective on
the reliability of IoT intrusion detection methods.

Figure 8 presents the ROC curves of the machine
learning driven detection models (CNN-LSTM,
TinyML, and Federated RNN), benchmarked
against the random baseline.

These approaches inherently generate
probabilistic classification scores, making them
well-suited for threshold-based ROC evaluation.
The results indicate that:
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Figure 8: ROC curves of the machine learning
driven detection models

e CNN-LSTM achieves the highest area
under the curve (AUC = 0.96), reflecting
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strong robustness and minimal false-

positive impact.

e Federated RNN follows with an AUC of
approximately 0.90, offering balanced
detection performance under distributed
learning settings, though with potential
latency from communication overhead.

e Tiny ML records a moderate AUC of
about 0.87, which validates its suitability
for resource-constrained IoT
environments, albeit at the cost of reduced
accuracy against sophisticated threats.

e The random guess baseline illustrates the
clear performance gap between advanced
ML/DL models and naive detection.

It should be noted that traditional methods
such as Signature-based IDS and Honeypot-based
IDS, as well as emerging paradigms like Quantum-
enhanced detection, are not represented in the ROC
analysis. This exclusion arises from their
operational nature: signature and honeypot
mechanisms function deterministically or in event-
driven modes rather than probabilistically, while
quantum approaches remain at a conceptual stage
without standardized evaluation benchmarks.
Consequently, the effectiveness of these methods is
better captured through comparative metric-based
assessments, as summarized in Table 5.

This distinction reinforces the
complementarity of both evaluation approaches.
While ROC curves quantify the detection reliability
of ML/DL-driven approaches, the comparative
summary table offers a broader multidimensional
view by integrating system-level metrics such as
scalability, delay, resource consumption, and
analytical efficiency. Together, they provide a
holistic understanding of the trade-offs in IoT
threat detection.

6. Comparative Summary of
Detection Methods

To consolidate the findings from the radar chart,

metric-wise graphs, and ROC analysis, Table 6
presents a comparative overview of IoT threat
detection methods across six standardized
performance metrics. The table highlights the
trade-offs that define each category of approach.

e Signature-based IDS perform well in
terms of low delay and minimal resource
use but fail to address scalability and
advanced attack scenarios.

e Behavioral analysis methods scale
effectively and achieve higher analytical

efficiency, but they incur greater
computational costs and longer response
times.

e Honeypot-based approaches contribute to
in-depth adversarial analysis, yet their
direct detection efficiency and scalability
remain limited.

e CNN-LSTM hybrids excel in analysis
efficiency and accuracy but demand heavy
resources,

e which constrains their deployment in
lightweight IoT environments.

e TinyML approaches optimize low delay,
low memory wusage, and makespan,
making them suitable for edge devices,
though they trade off scalability and

robustness.
e Federated learning models balance
scalability and low delay, offering

privacy-preserving detection, but incur
overhead in distributed training.

¢ Quantum-enhanced models demonstrate
strong scalability and efficiency potential,
though their practical deployment in IoT is
still at an early stage.

This comparative summary reinforces the central
contribution of this review: no single method
universally dominates across all performance
metrics. Instead, each approach reflects a unique
balance between resource constraints, detection
accuracy, and deployment feasibility.
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Table 6. Performance comparison of IDS method categories across key design parameters.
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7. Datasets Used in loT Threat
Detection

The effectiveness of any intrusion detection or
threat analysis framework depends significantly on
the dataset employed for training and evaluation.
Table .8 summarizes the datasets used in seven
representative  studies, covering fuzzing-based
approaches, deep learning hybrids, blockchain-
integrated detection, TinyML, and federated
learning models. The diversity of datasets
highlights the variety of perspectives in IoT
security research, ranging from general-purpose
intrusion datasets to highly specialized IoT traffic
logs. The effectiveness of any intrusion detection or
threat analysis framework depends significantly on
the dataset employed for training and evaluation.
Table 8 summarizes the datasets used in seven
representative studies, covering a wide spectrum of
methodologies such as fuzzing-based vulnerability

tend to adopt transaction or device-authentication
logs in addition to conventional network traces,
enabling evaluation from both networking and
trust-management viewpoints. Similarly, research
targeting resource-constrained IoT nodes makes
use of compact, feature-optimized datasets suitable
for on-device inference. The diversity of datasets
highlights the variety of perspectives in IoT
security research, ranging from general-purpose
intrusion datasets to highly specialized IoT traffic
logs captured from real deployments or testbeds.
This variation underscores an important trend in the
field: there is no single standard dataset that fits all
IoT scenarios. Instead, researchers draw upon
multiple sources to reflect heterogeneity in devices,
protocols, and attack behaviors. Consequently,
dataset selection not only influences reported
performance metrics but also determines how well
a proposed model can generalize to unseen
environments. A careful and justified dataset

discovery, deep learning hybrid detectors, strategy therefore remains a critical component in
blockchain-integrated ~ security =~ mechanisms, demonstrating  the  practical ~ relevance  and
TinyML-enabled lightweight models, and privacy- robustness of modern IoT intrusion detection
preserving federated learning systems. An research.

examination of these studies reveals that the choice
of data is closely aligned with the specific
objectives of each work. For instance, approaches
cantered on protocol robustness often rely on
datasets containing malformed or fuzzed packets,
while learning-based IDS solutions typically utilize
benchmark collections that include labelled normal
and attack traffic. Blockchain-oriented frameworks

8. Discussion and Insights

The combined use of radar visualization, metric-
wise graphs, ROC analysis, and the comparative
summary table provides a holistic perspective on
IoT threat detection methods. The findings clearly
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demonstrate that while advanced deep learning This work brings forth a study for an in-depth
frameworks such as CNN-LSTM maximize review cum numerical comparison of 49 state-of-
detection accuracy, their deployment is constrained the-art approaches taking into consideration machine
by  computational  overheads.  Conversely, learning, deep learning, blockchain, quantum
lightweight approaches like TinyML optimize cryptography, federated learning, and hybrid
resource efficiency but sacrifice robustness in intelligent systems.

handling complex attacks. Federated and
blockchain-assisted  systems offer balanced
performance yet introduce additional
communication and deployment costs, whereas
quantum-ready ~ frameworks remain largely
conceptual at this stage.

These insights underscore the absence of a
universally optimal solution and highlight the need
for adaptive, context-aware, and hybrid approaches
that can dynamically balance efficiency, accuracy,
and scalability in heterogeneous IoT ecosystems.

9. Conclusion

Millions of connected devices and things keep
increasing exponentially towards advancing the IoT
ecosystem for threats at fast pace with all area attack
surfaces. Thus, there is a need for timely and
intelligent threat detection and mitigation strategies.
The sophistication of cyber-attacks against limited
constraint IoT environments is established for the
urgent requirement of a complete and well-grounded
technical evaluation of new methodologies.

Table 7. Datasets employed in selected |oT threat detection papers

Ref Method Dataset(s) Used Attack Types / Classes
[1] Tougqir et al Fuzzing-based vulnerability None (conceptual N/A
exploration study)
[8] Nazir et al CNN-LSTM Hybrid 10T-23, N-BaloT, Botnet (Mirai), DoS/DDoS,
CICIDS2017 Port Scan, Web, Infiltration
[10] Abdullah et al DL for loT Malware Custom loT Malware Malware family
classification
[12] EI Haddouti & TinyML for Edge IDS ToN-loT 10 categories: DDoS,
Lazraq ransomware, data
exfiltration,
scanning, etc.
[19] Kwala et al Lattice-based Cryptography None N/A
(cryptographic
comparison)
[21] Nandanwar GAO-XGBoost + CICIDS2017 DoS, DDoS, Botnet, Brute-
& Katarya Blockchain force,
Infiltration, Web attacks
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[39] Rezaei et al. Federated RNN IDS

NSL-KDD 4categories: DoS,

Probe, R2L, U2R

Most of the review articles in this domain are all
either- very narrowly confined to specific
technologies such as either machine learning or
blockchain alone- or qualitative with respect to the
above comparison metrics that several -earlier
reviews use benchmarking against unified criteria
such as for diplomacy on scalability, delay, time
complexity, memory complexity, make span, or
even analysis efficiency. Often, these works ignore
cross-domain applicability, sector-specific
constraints  (e.g., smart cities, healthcare,
agriculture), and how models would adapt under
adversarial environments. This lack of a common
set of standards would systematically hamper the
ability to differentiate and compare existing models
among researchers and practitioners.

The present review would then address all
these challenges by providing a holistic analysis,
combining qualitative findings with quantitative
metrics across six dimensions that matter most. In
building consensus around a framework for
assessing performance uniformly, this study
formats a clear trade between resource usage and
the threat detection potentiality of systems-it shows
the exact point at which, for instance, LSTM-CNN
hybrids [34] registered the highest metrics for
precision (96%) and F1 score (95%)

while incurring increased latency and resource
demands. On the other hand, lightweight models
like TinyML [12] and KronNet [23] fared
extremely well at very low memory levels but had
average detection accuracy sets. Furthermore,
inclusion of contemporary paradigms such as
quantum-enhanced architecture [7, 43, 49],
federated RNNs under adversary settings [39], and
explainable Al with transfer learning [44] would
give a fresh perspective on the emerging
technological frontier. The multidisciplinary
coverage is further enhanced by conducting a
critical evaluation of domain-specific models such
as those tailored to healthcare [15, 33], agriculture
[37], and industry IoT [20]. That makes this review
more useful for future benchmarking and
standardization efforts given its

multidimensionality and maintaining numerical
consistency across all entries.

10. Future Scope

While this research provides a broad evaluation of
detection techniques available for threatening IoT
applications, several interesting avenues remain
unexplored for future research. Real-World
Deployment Validation: Most of the approaches
reviewed rely heavily on benchmark datasets and
do not account for real-time deployment across a
wide range of heterogeneous IoT environments
focused on  validation under real-world
environments. Future efforts should include
validation in the field under live traffic from
industrial, urban, or medical IoT deployments.
Cross-Model Hybridization: Many approaches are
still separated from their algorithmic philosophy.
Combining explainable models (e.g., XAl-based
CNNs) with very fast learning systems (e.g., ELM
or TinyML) might produce synergistic gains in
both their explainability and their effective
execution sets. Quantum-ready Architectures: With
the advent of quantum computing, security models
should be updated to withstand attacks on a
quantum level. While promising frameworks have
been proposed [17,49], real-world adaptability,
scalability under quantum threats, and backward
compatibility with classical devices remain critical
research gaps. Adversarial Robustness and
Poisoning Defense: Federated learning models
[32,39] have substantial potential contributions to
make in privacy-preserving intrusion detection;
however, they are still vulnerable to attacks of
poisoning and inference. There needs to be further
exploration of mechanisms putting forth trust-
aware aggregation, anomaly detection in updates,
and adversarial training. Unified Evaluation
Benchmarks: The research community needs to
adopt standardized evaluation frameworks across
key metrics-above mentioned parameters like
detection delay, inference cost, memory usage, and
sets of cross-platform adaptability. Better
reproducibility and comparison of techniques
across research groups would thus be possible.
Ethical AI and Design That Consider Regulations:
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Future intrusion detection systems need to embrace
the principles of privacy-by-design, explainability,
and compliance because of the development of
increasing regulatory frameworks like GDPR and
HIPAA. Low-Power and Self-Healing Systems:
Future requirements include designing self-healing

IoT

security frameworks that can recover

autonomously from breaches, as well as the
integration with ultra-low-power models, for nodes
that are battery-restricted for the process.
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