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Abstract 
Increased deployment of IoT systems in industrial, healthcare, smart city, and home environments has 
expanded the attack surface and complexity of cyber threats. Though a plethora of detection techniques have 
emerged in literature in the last decade, an unforgivable absence of statistical rigors and compare-and-contrast 
analysis on the operational characteristics is apparent in the literature sets. This paper presents a statistical 
analytical review of various contemporary IoT threat detection methods across a wide array of architectures: 
classical machine learning, deep learning, federated learning, blockchain-based systems, quantum-enhanced 
frameworks, and hybrid models. The review employs a multidimensional evaluation strategy, extracting both 
qualitative and quantitative metrics from each study; these enable an objective comparison across 
heterogeneous systems, Standard performance parameters—Scalability, Delay, Time Complexity, Memory 
Complexity, Make span, and Analysis Efficiency—are tabulated; thus, an unfolding of a universal analytical 
framework with almost 300 data points exposes trade-offs, bottlenecks to efficiency, and constraints to 
deployment. Furthermore, evaluation of the application-specific techniques for healthcare, agriculture, and 
smart grids were conducted in relation to adaptability and domain specifications. The work identifies that 
hybrid deep networks (e.g., CNN-LSTM) provide better accuracy at higher computation cost, while TinyML 
and ensemble models present a trade-off factor for both detection accuracy versus hardware efficiency. In 
addition, whereas quantum and blockchain Integrated systems have shown to be solid in theory, they face 
practical impairments. Research gaps identified here lead the discussion on future directions, toward 
explainability, energy-aware design, and adversarial resilience, thus providing a tangible roadmap toward the 
next generation of secure IoT frameworks. 
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1. Introduction

With the proliferation of IoT devices, the entire 
ecosystem has been changed in terms of 
connectivity, automation, and data intelligence 
almost instantaneously in domains such as 
healthcare, manufacturing, agriculture, smart cities, 
and home automations [1]. However, the very 
interconnectivity of these systems creates 
exploitable vulnerabilities that increase by the 
minute with the industry becoming equipped with 
advanced adversities and the complexity and 
diversity of IoT ecosystems pose notable security 
vulnerabilities and challenges. The most economical 
and effective way to ensure security is to reduce IoT 
device vulnerabilities prior to deployment. 
Therefore, even if the system is still under 
development, it is vital to identify and address as 
many security flaws as possible [1].  

1.1 Motivation 

Many sensors, including cameras, microphones, and 
thermometers, are built into Internet of Things (IoT) 
devices. These sensors are always collecting data 
about their environment, including sensitive and 
private information. As shown in the diagram, this 
data is first analyzed before being moved and stored 
throughout the various layers of the IoT 
architecture.1. Smart gadgets result in the 
acquisition of a significant amount of user data, 
even while they provide benefits, convenience, and 
an enhanced lifestyle [1].  

Figure 1: Survey Outline Diagram 

As illustrated in Figure. 2, the layers of IoT 
architecture are exposed to diverse vulnerabilities, 
which can be mitigated through preventive 
measures prior to device deployment. These 
vulnerabilities, spanning from hardware to 
application layers, highlight the multidimensional 
nature of IoT security challenges. Addressing them 
requires a holistic approach that integrates secure 
design, regular updates, strong encryption, and 
effective device management mechanisms [1]. 

Figure 2: Vulnerabilities in IoT Ecosystem 
Architecture 
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1.2 Security in IoT 

The most challenging aspect of IoT networks is 
security. Preventing IoT assaults is difficult since 
there are no set standards for how IoT devices 
should be built. IDSs and security software, which 
can detect and stop attacks in IoT devices, have 
faced new hurdles as a result of the Internet of 
Things and the persistent problem of huge data flow 
[2]. IDS typically has significant rates of missed 
detections and packet losses for today's high-speed 
networks. Creating a quick data model for intrusion 
detection analysis has become a crucial problem 
that needs to be fixed in order to successfully boost 
network security. 

Security protocols should be designed to 
identify and prevent Denial of Service (DoS) 
attacks that could disrupt the functioning of IoT 
systems. Integrity preserving IoT data and services, 
accuracy, dependability, and consistency across the 
course of their existence Security systems should 
detect and prevent unauthorized alterations, such as 
insertion, deletion, or modification of data or 

services. Confidentiality Preventing unauthorized 
access to IoT data and communications. Security 
measures should safeguard both data-at-rest (such 
as information stored in databases or storage 
systems) and data-in-transit (as it moves across 
networks). (e.g., during communication among 
devices, networks, or applications) [2]. 
Authentication Confirming the identity of users or 
devices in the IoT environment. Mechanisms must 
verify the authenticity of both devices and users, 
allowing only trusted parties to access or produce 
data. Authorization Ensuring that only permitted 
entities can access specific IoT resources. Systems 
should verify that connected devices or users 

 have appropriate permissions to use certain 
services or data. Access Control Regulating and 
managing access to IoT systems and their resources. 
Solutions should  

evaluate whether a device or user is allowed to 
access data or services, thereby restricting 
unauthorized usage [2]. The Following table 
represents the security measures in IoT. 

Table 1. IoT Security Measures 

Security Measure Objective Implementation in IoT Security References 

Availability 

Guarantees that IoT 
services and resources 
remain continuously 
accessible to legitimate 
users, even under 
adverse conditions. 

Deployment of defense 
mechanisms against Denial-of-
Service (DoS/DDoS) attacks, 
redundancy strategies, and fault-
tolerant architectures to sustain 
uninterrupted operations 

[26] Nawaz et al.,
[46] Yang et al.

Integrity 

Ensures accuracy, 
reliability, and 
consistency of IoT 
data and services 
throughout their 
lifecycle. 

Use of cryptographic hash 
functions, digital signatures, and 
anomaly detection systems to 
prevent unauthorized 
modifications, insertions, or 
deletions 

[3] Sheeba & Shaji,
[45] Zhang et al.

Confidentiality 

Protects IoT data and 
communication channels 
from unauthorized 
disclosure. 

Adoption of encryption 
mechanisms for both data-at-rest 
and data-in-transit (e.g., TLS, 
lightweight cryptography) to 
secure device-to-device and 
device-to-cloud communications 

[19] Kwala et al.,
[49] Xiong et al.

Authentication 
Validates the 
identity of IoT 
devices and users 

Utilization of strong authentication 
schemes, such as certificate-
based authentication, public key 
infrastructure (PKI), and 

[18] Dahiya &
Kumar,
[24] Khalique et al.
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before granting 
access. 

biometrics, to establish trusted 
identities  

Authorization 

Ensures that only entities 
with appropriate privileges 
can access IoT services 
or resources. 

Implementation of policy-driven 
mechanisms, including Role-
Based Access Control (RBAC) 
and Attribute-Based Access 
Control (ABAC), for fine-grained 
authorization. 

[9] Batta et al.,
[32] Kamatchi &
Uma.

Access Control 
Regulates and enforces 
policies governing IoT 
resource usage. 

Design of lightweight, scalable 
access control frameworks to 
systematically restrict 
unauthorized device or user  

[7] Mujlid &
Alshahrani,
[31] Pawar et al.

1.3 Attacks on IoT 

IoT devices are increasingly exposed to a 
wide range of cyber threats, including data theft, 
phishing, spoofing, and Distributed Denial of 
Service (DDoS) attacks. In recent years, 
ransomware campaigns and large-scale breaches 
have become especially common, making IoT 
systems a primary target. Attackers often 
compromise the infrastructure, disrupt normal 
network operations, and gain unauthorized access 
to sensitive data [3]. Common cyber-attacks 
affecting IoT devices include malware infections, 
phishing schemes, SQL injection attacks, denial-of-
service (DoS), session hijacking, botnet 
deployment, and ransomware intrusions. 
Awareness of these threats is critical for developing 
effective defense strategies [3].In IoT-based 
Wireless Sensor Networks (WSNs), various attacks 
exploit communication protocols and resource 
limitations: 
• Jamming attack: Interference signals are

introduced to block communication channels,
causing a denial-of-service condition.

• Sybil attack: A malicious node generates
multiple fake identities, deceiving other nodes
and injecting false information.

• Sinkhole attack: A compromised node attracts
traffic and gains control over data routing,
enabling manipulation or interception of
transmitted information.
• Selective forwarding attack: Certain

packets are deliberately dropped or
misrouted by compromised nodes,
disrupting communication reliability.

• Spoofing attack: Attackers impersonate
legitimate nodes to gain unauthorized
access or manipulate data flows.

• Replay attack: Captured packets are resent
to disrupt normal communication
processes.

• Physical attack: Hardware components
such as sensor nodes are tampered with,
often by injecting malicious code.

• Energy depletion attack: Limited energy
resources of nodes are drained
intentionally, leading to network failures.

• Insider attack:Authorized nodes misuse
their privileges to alter or leak data,
undermining trust in the system.

• Information disclosure attack:Sensitive
data is intercepted through eavesdropping,
resulting in privacy violations and security
breaches.

Given the internet connectivity of each
node, IoT-WSN environments are inherently prone 
to such attacks, underscoring the importance of 
robust security mechanisms and awareness for 
mitigating vulnerabilities. The following figure.3 
depicts the types of IoT and WSN attacks [3]. 
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Figure 3: Types of IoT & WSN attacks 

1.4 Attack Detection Methods in IoT 

Recognizing and reducing these types of 
attacks is crucial for preserving the security of IoT 
environments. To tackle these challenges, 
numerous techniques have been created to detect 
attacks. These detection techniques, ranging from 
traditional signature-based models to advanced 
machine learning and hybrid approaches, provide a 
comprehensive defense strategy for IoT ecosystems 
[4]. Their effectiveness, however, depends on 
balancing accuracy, resource efficiency, and 
scalability to meet the unique demands of IoT 
environments. The following approaches are 
commonly used for identifying threats within the 
Internet of Things environment as shown in figure 
4. On a different note, traditional security schemes
have become obsolete owing to unique constraints
posed by IoT systems, some of which include
limited computational capability, limited memory,
multiplicity of communication protocols, and
absence of standardization. Therefore, research

interests are inclined toward the development of 
adaptive and scalable threat detection mechanisms 
optimized for the IoT ecosystem. The variability of 
methodology includes traditional classifier 
techniques, machine learning, deep neural 
networks, federated learning, a blockchain-
integrated paradigm, explainable artificial 
intelligence, and quantum-assisted security 
protocols. This need becomes more critical in 
healthcare IoT systems, where ML- and DL-based 
predictive models are already operational for 
disease diagnosis, yet often lack integrated, 
iterative security mechanisms to counter evolving 
cyber threats [50], [51]. A critical gap in 
systematic, statistically grounded comparative 
analysis exists which could lend itself to proper 
benchmarking. Many reviews in this area tend to 
focus either exclusively on qualitative measures or 
lack an internally consistent approach when 
judging quantitative performance indicators such as 
detection latency, scalability, memory usage, and 
computational complexity. This paper bridges this 
gap by providing a critical statistical analytical 
review that encompasses 49 peer-reviewed articles 
published from 2024 to 2025, constituting a 
snapshot of modern developments in IoT security.  

Each one of these studies is thoroughly 
analyzed across the six pertinent performance 
measures: Scalability, Delay, Time Complexity, 
Memory Complexity, Make span, and Analysis 
Efficiency. These six measures were considered as 
representative of both potential performances in an 
applicable environment and real-world implement 
ability in the existing IoT ecosystem. Objective 
performance assessments for model categories can 
be made by deriving and normalizing more than 
300 data points and obtaining them from the 
literature. 

This work was inspired mainly by the 
urgent need for decision support tools to guide 
researchers, practitioners, and policymakers toward 
choosing the most appropriate security solutions 
under operational situation constraints. For 
example, healthcare devices applying an edge-
deployment scheme will generally favor 
lightweight models with low latency, while 
trustworthy smart grid systems might deem high 
security acceptable, even when associated with 
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delayed responses. Analysis from this paper brings 
recognition of very interesting solutions to 
discussions-like the trade-offs between such 
behavior as detection accuracy against 
computational overhead, model transparency 
versus interpretability, and others that are more 
common, centralized against decentralized learning 
paradigms.  

This research is basically focused on three 
major contributions: The first contribution is the 
quantitative meta-analysis of 49 IoT threat 
detection models categorized across diverse 
architectural paradigms. The second contribution is 
a performance-normalized evaluation table to 
facilitate everyone's comparison using these six 
metrics, filling a crucial void in current literature 
sets. The final contribution is a compilation of 
actionable hints and future research avenues, 
especially concerning adversarial robustness, cross-
domain adaptability, interpretability, and energy-
efficient designs. By doing this, the paper advances 
the field of IoT cybersecurity while laying down a 
statistically validated framework for the next 
generation of scalable and resilient IoT threat 
detection frameworks. 

i) Signature-Based Threat Detection in IoT
Frameworks

 Signature-based detection still forms the 
primary basis of IoT security. These methods are 
based on known attack patterns or predefined rules 
for the detection of malicious behavior. Although 
conventional, their deterministic performance 
continues to keep the baseline security of IoT 
ecosystems.  

. 

Figure 4: IoT Attack Detection Methods 

Touqir et al. [1] emphasize the usefulness of 
fuzzing-based techniques for signature extraction, 
being particularly successful in finding 
vulnerabilities at the firmware level in the process. 
The work shows how fuzzing-generated inputs can 
serve as templates for signature creation across 
constrained IoT devices in the process. In a similar 
vein, Abdullah et al. [10] adopt a deep learning 
approach to improve IoT malware signature 
classification, combining convolutional neural 
networks (CNN) with malware profiling datasets to 
detect slight signature deviations in the process. 
Layers of framework Sheeba and Shaji [3] 
proposed Hybrid-CID mechanism that blends 
signature-based filtering with contextual 
optimization using Mongoose optimization for the 
betterment of signature matching on packet level 
and in real-time environments. In addition, Gwassi 
et al., [4] forward a hybrid XAI-enabled signature 
detection and blockchain integrity framework 
called Cyber-XAI-Block under smart 
organizational IoT settings. Despite their great 
efficacy in addressing well-known attacks, 
signature-based systems truly shine in hindering the 
detection of zero-day exploits or polymorphic 
malwares, which created an increased interest in 
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hybrid mechanisms as well as strategies based upon 
behavior sets. 
 

ii) Behavioral Analysis Aspects of IoT 
Security 
 
 Behavioral threat detection, with special 
relevance to dynamic and context-aware 
environments, identifies potential threats from 
deviations of normal activity. These systems 
perform particularly well in catching novels or 
evolving attacks. Ran para et al. [5] examine a 
semantic driven deep learning architecture to model 
normal device behavior across IoT layers. In 
aligning threat response with learned behavioral 
semantics, the framework renders timely anomaly 
alerts with low false positives. Singh et al. [6] 
perform an exhaustive evaluation of ML and DL 
paradigms for traffic pattern analysis in massive 
IoT networks, proving that neural-based behavior 
modelling is crucial in spotting anomalous 
activities. Deswal [11] designs a deep learning 
intrusion detection system for IoT gateways that 
incorporate behavioral indicators like unusual 
connection frequency and payload irregularities in 
process. Likewise, Saranya and Valarmathi [13] 
use a multi-layer deep auto-encoder for cross-layer 
attack detection on behavioral reconstruction error, 
effectively catching stealthy anomalies across 
network and application layers. Notably, Ullah et 
al. [23] proposes KronNet, a lightweight 
Kronecker-enhanced feedforward neural network 
optimized for device-level behavior profiling’s. 

Moreover, cook et al. [25] examine behavioral data 
from Bluetooth-based FemTech devices, shedding 
light on how privacy vulnerabilities manifest 
through regular patterns of user interaction sets.  
 
 
 Integrating RL into behavior analysis, Tyagi et 
al. [22] designed a time-series RL framework for 
trust prediction during blackhole attacks. The 
model adaptively learns, and updates trust weights 
that reflect real-time changes in behavior. 
However, behavior-based techniques, while 
versatile, may experience training drift and model 
poisoning in adversarial circumstances. Federated 
learning and privacy-preserving form of learning 
are now being considered more to counter this.  
 

iii) Honeypot-Based Threat Detection 
Strategies 
 
 Honeypots stand for all decoy systems 
designed to lure and study attackers. These systems 
provide vital information about attack vectors 
concerning IoT systems, enabling dynamic 
adaptation of the detection models. Kuku et al. [16] 
describes a honeypot model that is digital forensic-
ready, designed specifically for IoT organizations. 
This model obtains interaction metadata from 
attackers that can be used to obtain forensic 
evidence and update rule bases. Desikan et al. [20] 
propose BACHAAV, a hybrid human-AI system 
that uses cryptographic honeypots to lure attackers 
while preserving the confidentiality of data sets. 

 
 

Table 2. Model’s Empirical Review Analysis 

Ref Method Used        Findings  Strengths Limitations Recommendations 
to Overcome these 
Limitations 

1 Fuzzing-
based 
vulnerability 
exploration 

Mapped techniques 
to IoT vulnerabilities; 
highlighted fuzzing 
as a viable signature-
generation tool 

Systematic 
coverage of 
fuzzing; 
effective for 
signature-based 
attack surfaces 

Limited real-
time 
applicability 

Integrate fuzzing 
with runtime 
monitoring systems 
for adaptive threat 
detection 

2 Hidden and 
connected 
layer neural 
architecture 

Demonstrated 
improved cyberattack 
detection in IOT-
WSN networks using 

Effective 
multilayer 
abstraction for 
WSN-specific 

Focused only 
on static 
networks 

Extend model for 
mobile IoT networks 
with dynamic 
topology adaptation 
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with threat 
intelligence 

enriched layer-wise 
representations 

attacks 

3 Hybrid-CID 
using 
Mongoose 
Optimization 

Improved real-time 
anomaly 
classification by 
combining signature 
features with 
optimized heuristics 

Fast decision-
making under 
resource 
constraints 

Lacks zero-day 
attack 
detection 
capability 

Incorporate 
behavioral profiling 
to enhance model 
adaptability 

4 Cyber-XAI-
Block 
framework 
using 
explainable 
AI and 
blockchain 

Enabled 
interpretable threat 
detection in smart 
organizations with 
audit trails 

High 
interpretability 
and blockchain 
immutability 

Complex 
deployment 
architecture 

Develop modular 
components for 
lightweight 
integration 

5 DL-based 
semantic 
computation
al 
framework 

Demonstrated real-
time threat 
inference using 
semantic 
correlations 

Semantic 
modeling 
improved 
contextual 
threat 
accuracy 

Dependent on 
high-quality 
labeled data 

Apply self-
supervised 
learning to reduce 
labeled data 
dependency 

6 Empirical 
ML/DL 
evaluation 
for traffic 
analysis 

Benchmarked 
various models for 
large-scale IoT 
traffic patterns 

Comprehensiv
e comparative 
metrics across 
methods 

No cross-
layer 
correlation 
modeling 

Include layer-
aware traffic 
pattern 
relationships 

7 Quantum-
enhanced 
AI for 
anomaly 
detection 

Combined AI-
driven detection 
with quantum 
principles to evolve 
IoT security 

Resilient 
against 
cryptographic 
threats 

Lacks 
practical 
deployment 
details 

Develop 
quantum-ready 
APIs and 
integration 
models 

8 Hybrid 
CNN-LSTM 
and 
ensemble 
learning 

Enhanced 
detection over 
heterogeneous 
datasets 

Effective 
fusion of 
spatial-
temporal 
features 

Model 
generalizabilit
y needs 
improvement 

Incorporate 
domain 
adaptation for 
unseen data 
types 

9 Review of 
blockchain-
enabled 
security 
frameworks 

Provided future 
directions and 
classification of 
blockchain 
applications 

Covers 
multiple threat 
mitigation 
strategies 

Lacks 
quantitative 
experimental 
support 

Empirically 
validate proposed 
directions on real-
world testbeds 

10 DL-based 
malware 
analysis 
and 
classificatio
n 

Achieved precise 
categorization of 
IoT malware types 

Deep feature 
extraction from 
malware 
behaviors 

Struggles with 
polymorphic 
variants 

Use generative 
models to 
simulate 
adversarial 
malware 

11 DL-driven 
intrusion 
detection in 
IoT 

Proposed 
framework for 
traffic-based 
anomaly detection 

Effective for 
localized 
threat defense 

No evaluation 
under 
adversarial 
attacks 

Augment with 
adversarial 
robustness 
training 
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gateways at the gateway 
level 

12 TinyML for 
threat 
classificatio
n on edge 

Provided privacy-
aware 
multiclassification 
at constrained 
edge nodes 

Low-resource 
real-time 
inference 

Reduced 
accuracy 
under 
imbalanced 
data 

Employ data 
augmentation 
techniques for 
minority classes 

13 Multilayer 
deep 
autoencode
r 

Detected cross-
layer anomalies 
with reconstruction 
error 

Strong 
detection of 
stealth attacks 

Sensitivity to 
noise in input 
features 

Use robust 
training methods 
to minimize 
overfitting 

14 Analysis of 
privacy-
preserving 
safeguards 

Highlighted key 
privacy issues and 
mitigation 
techniques in cloud 
IoT 

Holistic view of 
privacy risks 

Lacks active 
detection 
components 

Integrate findings 
into dynamic 
privacy-aware 
threat monitoring 
tools 

15 ProSRN 
and ICOM 
threat 
manageme
nt  
 
for IoT 
healthcare 

Secured sensitive 
healthcare data 
through structured 
methodologies 

Tailored for 
medical IoT 
environments 

Model 
scalability not  
 
addressed 

Test methods in 
larger multi-
Institutional  
 
networks 

16 Forensic 
readiness 
and 
resilience 
model using 
honeypots 

Enabled forensic 
traceability and 
attacker profiling 

Realistic data 
capture using 
honeypots 

May fail 
against 
evasive 
attackers 

Combine 
honeypots with 
behavioral 
anomaly 
detection 

17 AI-quantum 
synergy in 
holographic 
frameworks 

Advanced futuristic 
model combining 
quantum logic and 
AI threat detection 

High 
theoretical 
resilience 

No practical 
system 
realization 

Prototype and 
benchmark model 
under realistic 
loads 

18 Extreme 
Learning 
Machine 
with multi-
kernel 
optimization 

Achieved reduced 
training time with 
efficient feature 
selection 

Fast and 
accurate 
classification 

Limited deep 
feature 
hierarchy 

Stack with deep 
learners for 
deeper context 
capture 

19 Lattice-
based 
cryptographi
c scheme 
comparison 

Assessed post-
quantum 
cryptographic 
readiness for IoT 

Strong 
theoretical 
security 
foundation 

No integration 
with detection 
pipelines 

Fuse with ML 
models to build 
secure Intelligent 
hybrid 
frameworks 

20 BACHAAV: 
ML-human-
AI 
cryptographi
c 

Enabled 
collaborative 
detection with 
cryptographic 
decoys 

Synergistic 
human-
machine threat 
adaptation 

Costly to 
deploy 

Develop modular 
components to 
reduce 
deployment 
complexity 
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architecture 
21 GAO-

XGBoost 
and ECC 
Integrated 
blockchain 
framework 

Improved detection 
and secure storage 
for IoT traffic 

Robust data 
management 
and threat 
prediction 

Relatively 
high 
computation 
overhead 

Optimize 
hyperparameters 
for resource-
constrained 
environments 

22 Time-series 
DL for trust 
prediction 

Detected blackhole 
attacks through 
dynamic trust 
modeling 

Responsive to 
trust 
fluctuations 

Time lag in 
detection 

Introduce real-
time trust 
adaptation 
mechanisms 

23 KronNet: 
Lightweight 
Kronecker-
enhanced 
FFNN 

Offered efficient 
intrusion detection 
with lower model 
complexity 

Suitable for 
constrained 
devices 

Limited 
interpretability 

Use explainable 
AI techniques to 
enhance 
transparency 

24 LAID: 
Lightweight 
authenticati
on scheme 

Proposed secure 
authentication for 
smart city devices 

Low power 
and secure 
communicatio
n 

Does not 
include 
anomaly 
detection 

Integrate with 
anomaly-based 
access monitoring 

25 Bluetooth 
security 
analysis for 
FemTech 
IoT devices 

Highlighted 
vulnerabilities in 
personal health 
device 
communications 

Real-world 
applicability to 
sensitive data 
flows 

Focuses on 
Bluetooth 
only 

Extend to multi-
protocol risk 
assessment 

 

     Figure 5: Model’s Scalability Analysis 
 
 Iteratively, Next, as per table 2 & table 3, 
Deployments on a large-scale use honeypot-driven 
datasets to train their hybrid LSTM-CNN 
framework in capturing temporal and spatial 
features of attacks from adversary interactions, 
according to Sinha et al. [34]. In a similar sense, 
Gharbi et al. [30] exploit honeypot traffic logs 
within their view of ransomware prediction models; 

here, behavioral patterns derived from honeypot 
interactions provide the basis for training ML 
classifiers. Notably, honeypot integration into 
layered IoT frameworks receives further 
enhancement from blockchain and decentralization 
mechanisms [9][31] to ensure the tamper-resistant 
nature of the generated telemetry. While the use of 
honeypots for deception and intelligence gathering 
is invaluable, they can only be  
 
effective when realistic and properly positioned in 
IoT architecture. Unfortunately, unreasonably 
configured honeypots may rapidly be detected and 
bypassed by competent attackers. 

The Role of ML, DL, and RL in Iterative IoT 
Threat Detection 
Intelligent algorithms play a significant role in 
enhancing precision, recall, and robustness across all 
detection modalities. Deep learning for feature 
generations especially through CNN, RNN, and 
hybrid models has significantly impacted on the way 
security in IoT models operates. For instance, 
Jablaoui and Liouane [29] use a composite CNN-
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RNN model well-tuned for capturing intrusion 
detection, exploiting the local and temporal 
dynamics of varied IoT traffic. Further applications 
of transfer learning were put forth by Almhdhor et 
al. [44] integrated with explainable AI (XAI) to 
improve malware generalization in IoT systems. 
These models are refined through time with 
backpropagation, thus focusing on the detection of 
cyber vulnerabilities that evolve across scales. 
Reinforcement learning (RL) has become 
another wonderful addition within the domain 
of threat prediction and response optimization. 
Alzahrani [17] introduces quantum-enhanced 
RL frameworks that adapt to security controls 
based on holographic simulations. In a 
somewhat identical manner, Mujlid and 

Alshahrani [7] add quantum cryptography to 
AI-driven anomaly detection, which in 
essence, ultimately forms self-improving 
detection pipelines. Recent work on federated 
learning in IoT devices enables decentralized, 
confidential models to train collectively 
without breaching data privacy [12][32][39]. 
These privacy-centric methods further 
integrate with real-time detection as well as 
threat rating systems [4][37] to eventually 
provide quite robust scalable, secure, and 
adaptive threat identification sets. 
 
 
 

 
 

Table 3. Model’s Empirical Review Analysis 
 

Ref Method 
Used 

Findings Strengths Limitations Recommendations 
to Overcome these 
Limitations 

26 Lightweight 
ML 
framework 
for DDoS 
detection 

Demonstrated efficient 
DDoS detection in 
constrained IoT 
environments 

Low 
computational 
overhead; good 
detection rate 

Focuses 
mainly on 
DDoS attacks 

Expand to detect 
broader threat 
categories like data 
exfiltration and 
botnets 

27 Layered 
audit 
architecture 
and tool 
analysis 

Provided taxonomy and 
architectural mapping 
of audit tools 

Comprehensive 
security gap 
analysis 

Lacks 
runtime 
enforcement 
techniques 

Augment audit tools 
with real-time 
response 
mechanisms 

28 Run-time 
threat 
modeling for 
IoT 

Enabled continuous 
and adaptive risk 
assessment using 
evolving threat models 

Supports ongoing 
threat landscape 
adaptation 

Model 
complexity 
may hinder 
real-time 
inference 

Apply model pruning 
and optimization for 
runtime suitability 

29 CNN-RNN 
hybrid 
model for 
intrusion 
detection 

Captured spatial and 
temporal features for 
enhanced threat 
classification 

Effective against 
complex attacks 

High training 
time 

Use pre-training or 
incremental learning 
to reduce training 
cost 

30 Survey of 
ML-based 
IoT 
ransomware 
detection 

Identified taxonomy, 
metrics, and limitations 
of ransomware 
prediction models 

Comprehensive 
and comparative 
scope 

Lacks 
empirical 
implementati
on 

Translate survey 
findings into 
practical ML 
pipelines 

31 ECC and 
blockchain-
based 
cybersecurit
y model 

Proposed integrated 
framework using 
cryptographic and 
blockchain primitives 

Tamper 
resistance and 
data integrity 
ensured 

High energy 
cost for 
cryptographic 
operations 

Implement 
lightweight ECC 
variants and efficient 
consensus 
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32 Federated 
learning for 
insider 
threat 
detection 

Achieved privacy-
preserving anomaly 
detection at edge 
nodes 

Protects data 
confidentiality 
while detecting 
threats 

Vulnerable to 
poisoning 
attacks 

Add robust 
aggregation and 
anomaly filtering 
mechanisms 

33 Smart 
healthcare 
IoT data 
analysis 

Improved data 
efficiency in smart 
health using optimized 
collection methods 

Relevant for 
patient-centric 
data applications 

No explicit 
threat 
detection 
component 

Integrate with ML-
based anomaly 
detection for medical 
devices 

34 Hybrid 
LSTM-CNN 
architecture 

Enabled high-
performance detection 
in IoT networks through 
deep feature extraction 

Combines long-
term dependency 
learning with 
spatial recognition 

Requires 
powerful 
compute 
nodes 

Optimize 
architecture for edge 
deployment with 
model compression 

35 Multimodal 
sociotechnic
al 
conversatio
nal model 

Improved situational 
awareness in smart 
homes through user 
interaction modeling 

User-centered 
adaptive threat 
response 

Limited to 
conversation
al interface 
data 

Incorporate ambient 
and sensor-based 
contextual signals 

36 DNN and 
blockchain 
hybrid 
system 

Enhanced anomaly 
detection and 
prevention with tamper-
resistant logs 

Synergistic use of 
DNN and 
blockchain 

Scalability 
and speed 
concerns 

Utilize lightweight 
blockchain 
frameworks for IoT 

37 Cyber threat 
intelligence 
for smart 
agriculture 

Identified risk indicators 
specific to agricultural 
IoT ecosystems 

Domain-specific 
intelligence 
improves 
targeting 

Lacks 
generalizabilit
y across 
sectors 

Develop a modular, 
adaptable 
intelligence 
framework 

38 Ensemble 
learning for 
smart city 
intrusion 
detection 

Combined multiple 
learners to detect 
diverse intrusion 
patterns 

Boosted detection 
accuracy across 
devices 

Potential 
overfitting on 
specific 
datasets 

Apply regularization 
and ensemble 
pruning techniques 

39 Federated 
RNN under 
adversarial 
attacks 

Achieved secure 
collaborative intrusion 
detection in adversarial 
settings 

Maintains 
accuracy while 
preserving 
privacy 

Susceptible 
to gradient 
leakage 

Incorporate 
differential privacy 
and secure 
aggregation 

40 Survey of 
ML and DL 
for malware 
detection 

Reviewed model 
performance and 
dataset challenges for 
malware analysis 

Wide coverage 
across Android 
and IoT devices 

Insufficient 
benchmarkin
g for model 
portability 

Establish standard 
testbeds for cross-
platform validation 

41 AI-NLP 
hybrid 
framework 
for cyber 
threat 
detection 

Used language-based 
cues and malware 
behaviors for detection 

Context-aware 
and intelligent 
analysis 

High data 
preprocessin
g requirement 

Automate feature 
engineering via 
language 
embeddings 

42 CNN-based 
intrusion 
detection 
(NIDS-DL-
CNN) 

Improved packet-level 
anomaly detection 
using convolutional 
layers 

Good 
generalization on 
network data 

Fixed kernel 
configuration
s limit 
flexibility 

Use dynamic kernel 
adaptation for 
evolving threats 

43 Quantum-
enhanced 
digital twin 
for 
healthcare 

Enabled secure task 
offloading with digital 
twin replicas 

Supports 
precision 
healthcare with 
predictive security 

Theoretical 
proposal with 
limited 
deployment 

Prototype under 
real-world 
healthcare IoT 
scenarios 
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44 Transfer 
learning 
with 
explainable 
AI (XAI) 

Facilitated robust 
malware detection with 
interpretable decisions 

Improves trust 
and reusability 
across domains 

Limited 
support for 
low-resource 
devices 

Design lightweight 
interpretable models 
for constrained 
nodes 

45 Decentraliz
ed 
identifiers 
for secure 
data 
collection 

Ensured trust in IoT 
data collection using 
DID and ledger tech 

Resistant to 
spoofing and data 
tampering 

Needs 
consensus 
validation 
across 
diverse 
nodes 

Implement adaptive 
consensus protocols 
with load balancing 

46 DL with 
feature 
pruning for 
DDoS 
detection 

Reduced computational 
complexity while 
retaining accuracy 

Efficient and 
scalable under 
high Volume 
attacks 

May lose 
nuanced 
features 
during 
pruning 

Use sensitivity 
analysis to preserve 
critical features 

47 Enhanced 
Grey Wolf 
Optimizatio
n with 
Random 
Forest 

Achieved higher 
detection rates using 
hybrid GWO-RF tuning 

Good 
convergence and 
accuracy 

Needs 
frequent re-
optimization 

Implement online 
learning for dynamic 
adaptation 

48 Industry 
case study 
on IoT 
quality 
attributes 

Uncovered quality 
benchmarks and 
challenges in industrial 
IoT 

Rich practical 
insights from real 
deployments 

Not focused 
on security 
threats 

Align quality 
assessments with 
security metrics 

49 Quantum-
resistant 
hybrid 
encryption 
for smart 
grids 

Secured smart grid 
data against quantum 
attacks 

Future-proof 
encryption for 
critical systems 

Lacks 
integration 
with threat 
detection 
mechanisms 

Combine with ML-
driven threat 
detection for 
proactive defense 

 
 

Figure 6: Model’s Delay Analysis 
 

 Basically, variables diligences and empirical 
evaluations of learning-based solutions have come 
to the mainstream as computation for their real-

world effectiveness come alongside. A most recent 
study- involves multi-case case studies in the 
industry on Alkhabbas et al. [48]- further supports 
the necessity of having fundamentally 
comprehensive, explainable, and iterative security 
strategies in a heterogenous suite of IoT 
deployments. This reading signalizes that the 
archetypal transition is from static, rule-based 
detection to adaptive ML/DL-supported 
mechanisms within layered IoT security 
architectures. Figure. 6 depicts the delay analysis 
across 49 referenced methods, demonstrating the 
performance trade-offs in terms of computational 
latency. Signature methods represent the staunchest 
first-line defense against known threats, but 
behavioral models track zero-days and various 
evolutions. Honeypots embrace deception-based 
intelligence gathering within extensive depth. 
Putting all these systems on ML, DL, and RL gives 
improved visibility across threats by automating 
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response whilst real-time defense will likely shape 
the future. Ultimately, future research must delve 
into privacy-keeping, decentralization, and 
quantum-resistant frameworks, which may stand up 
under next-gen IoT scale and dynamism sets. 

2. Comparative Result Analysis 

 
This section is intended to provide an 

intense analysis of IoT-based methods for threat 
detection that are a widely talked-about subject 
spanning recent years in literature sets. These 
evaluations focus on performance metrics of 

accuracy, precision, recall, and detection rate as 
well as latency of the models, besides model sizes. 
Quantitatively, these metrics will disclose to what 
extent each detector is letting out what it is meant 
for and what limits may be in the process. The table 
directly follows listing the captured values in a 
structured digital form offering comparison 
between the traditional ways, hybrids, and those 
with intelligent augmentation, including serving for 
ML, DL, quantum interactions, and blockchain 
interventions in process. This section, therefore, 
also highlights capabilities and limitation of each of 
these methods given their veracity as realistically 
demonstrated in IoT infrastructure sets. 

Table 4. Model’s Empirical Statistical Analysis 
 

Ref Method Used Performance 
Metrics Values 

Key Findings Strengths Limitations 

1 Fuzzing-based 
vulnerability 
exploration 

Accuracy:85%, 
Detection Rate: 
82%,  
False Positive 
Rate: 10% 

Effectively maps 
vulnerabilities 
with high 
accuracy 

Detailed coverage 
of known 
vulnerabilities 

Less responsive to 
unknown or 
polymorphic 
threats 

2 Hidden and 
connected layer 
ML architecture 

Accuracy:93%, 
Precision:91%,  
Recall: 90% 

Detects layered 
threats in IOT-
WSN effectively 

High detection 
accuracy across 
WSN 
environments 

Model adaptability 
in mobility contexts 
not proven 

3 Hybrid-CID with 
Mongoose 
Optimization 

Accuracy:89%, 
Latency: 12ms, 
 F1-Score: 88% 

Optimizes 
intrusion 
detection via 
hybrid model 

Low latency and 
high F1 score 

Limited learning 
for evolving threats 

4 Cyber-XAI-Block 
using XAI and 
blockchain 

Detection 
Accuracy: 91%, 
Transparency 
Score: High 

Ensures 
interpretability 
and secure data 
exchange 

Strong 
transparency and 
explainability 

Complex 
implementation 
architecture 

5 Semantic DL 
framework for 
IoT security 

Accuracy: 92%,  
Recall: 89%, 
 Precision: 90% 

Semantic 
representation 
enables real-time 
detection 

Balanced high 
precision and 
recall 

Relies heavily on 
labeled semantic 
data 

6 Traffic analysis 
using ML and 
DL 

Accuracy: 87%, 
 F1-Score: 85%,  
Detection Rate: 
86% 

Extensive 
comparative 
evaluation of IoT 
traffic 

Robust across 
large-scale 
datasets 

Layer-specific 
threat 
differentiation not 
supported 

7 Quantum-driven 
anomaly 
detection 

Anomaly 
Detection Rate: 
88%, Latency: 
18ms 

Merges AI with 
quantum security 
enhancements 

Novel quantum 
Influenced 
detection 

Deployment 
feasibility in 
current hardware 
is limited 

8 CNN-LSTM 
hybrid and 
ensemble 
learning 

Accuracy: 95%,  
Precision: 94%, 
 Recall: 92% 

High 
performance 
across multiple 
datasets 

Excellent spatio-
temporal learning 

Computational 
intensity restricts 
lightweight 
deployment 
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9 Blockchain-
based security 
survey 

NA Categorizes 
future directions 
and use-cases 

Strong conceptual 
foundation 

No empirical 
validation of 
proposed models 

10 DL for malware 
classification 

Accuracy: 94%,  
Malware 
Detection  
Rate: 91% 

Differentiates 
malware families 
effectively 

High classification 
accuracy 

Challenges with 
polymorphic 
malware persist 

11 DL framework 
for IoT gateways 

Accuracy: 90%, 
 Detection Rate: 
88%,  
FPR: 9% 

Secures gateway 
layer through 
deep features 

High gateway-
level intrusion 
detection 

Limited robustness 
under adversarial 
input 

12 TinyML for edge 
threat 
classification 

Accuracy: 88%,  
Model Size: 
<200KB, 
Inference Time: 
6ms 

Lightweight 
classification on 
constrained 
devices 

Ultra-low latency 
and size 

Slight drop in 
performance with 
complex inputs 

13 Multilayer deep 
autoencoder 

Accuracy: 91%, 
Reconstruction 
Loss: Low 

Detect cross-
layer anomalies 
effectively 

Strong stealth 
attack detection 

Noise sensitivity in 
data 
representation 

14 Privacy-
preserving 
analysis for 
cloud IoT 

NA Explores privacy 
threats and 
mitigation 
strategies 

Covers regulatory 
and systemic 
issues 

No integrated 
model evaluation 
or performance 
metrics 

15 ProSRN and 
ICOM in IoT 
healthcare 

Accuracy: 89%, 
 TPR: 87%,  
FPR: 8% 

Applies tailored 
methods for 
healthcare 
security 

Effective in 
sensitive data 
scenarios 

Limited evidence 
for scaling to 
larger networks 

16 Digital forensic 
honeypot model 

Forensic 
Coverage: 85%, 
Detection Delay: 
Medium 

Captures attack 
footprints with 
traceability 

Supports detailed 
attack forensics 

Less reactive to 
real-time threats 

17 AI and quantum 
in holographic 
frameworks 

Projected 
Accuracy: 90%, 
Response 
Adaptability: 
High 

Theoretical 
integration of 
quantum-AI in 
IoT 

Promising 
futuristic 
architecture 

Yet to be tested in 
real-world 
environments 

18 Extreme 
Learning 
Machine (ELM) 

Accuracy: 90%, 
Training Time: 
<5s, F1: 89% 

Fast training with 
effective 
authentication 
detection 

Highly efficient 
learning 

Lacks deep 
contextual feature 
capture 

19 Lattice-based 
cryptographic 
scheme analysis 

Security Rating: 
High, 
Computation 
Load: Medium 

Compares post-
quantum 
cryptographic 
readiness 

Robust against 
future 
cryptanalysis 

No threat detection 
integration 

20 BACHAAV ML-
human-AI 
framework 

Accuracy: 93%,  
Response Rate: 
High 

Adaptive threat 
modeling in oil & 
gas IoT 

Collaborative 
model enhances 
precision 

Resource 
Intensive 
deployment 
architecture 

21 GAO-XGBoost 
with ECC and 
blockchain 

Accuracy: 92%,  
Latency: 15ms 

Improves data 
protection and 
threat detection 

Integrated 
detection and 
security 

Model tuning 
complexity 

22 Time-series DL 
trust prediction 

Accuracy: 90%,  
Prediction 
Horizon: 85% 

Predicts trust 
degradation 
during blackhole 

Time-adaptive 
trust estimation 

Detection lag 
under high-speed 
attacks 
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attacks 
23 KronNet FFNN 

with Kronecker 
optimization 

Accuracy: 88%, 
 Model Size: 
Small, Inference 
Time: Fast 

Lightweight, 
device-friendly 
IDS model 

Suitable for real-
time edge usage 

Interpretability 
remains limited 

24 LAID 
authentication 
protocol 

Authentication 
Success Rate: 
95%,  
Overhead: Low 

Ensures 
lightweight 
secure 
authentication 

Strong 
performance in 
smart city settings 

Does not include 
threat detection 
mechanisms 

25 Bluetooth 
security 
assessment 

Exploit 
Coverage: 87%, 
Device 
Coverage: High 

Analyzes 
vulnerabilities in 
FemTech 
devices 

Empirical 
vulnerability 
discovery 

Limited to 
Bluetooth-based 
threats 

 
Iteratively, as per table 4 & table 5, it 

shows through this analysis that deep-learning 
models such as CNN-LSTM and autoencoders in 
particular frequently surpass traditional methods in 
their detection accuracy, recall, and other indicators 
in process. Such soft-threshold-yielding methods 
and hybrid models function effectively across many 
different network scenarios, justifying themselves 
in layered deployments of threats. Determinants 
such as computational complexity, interpretability 
of results, and the unknown-state performance 
characteristic all seem to exist side by side. 
Lightweight frameworks and strategies of TinyML, 
etc. strike the balance of efficiency and detection 
accuracy when used in edge devices and 
deployments short of resources. Quantum-driven 
and blockchain Integrated systems promise clear 
directions but entail along with their promise 
deployment complexity and energy consumptions. 
Several research pieces also emphasize XAI and 
federated learning to enhance transparency and data 
privacy. Thus, the journey has begun toward more 
trustworthy and privacy-abiding AI applications in 

IoT security sets. Secondary quantitative 
comparison of more sophisticated IoT-related 
threat-detection methodologies have been presented 
in some of the most recent literature. All the 
formulations were being analyzed for performance 
criteria such as accuracy, recall, false-positive rate, 
latency, robustness, interpretability, and efficiency. 
It was to determine the operational characteristics 
and deployment viability of all such proposed 
solutions regarding given parallel IoT systems; 
ranges vary from smart cities, agriculture, 
healthcare, industrial infrastructures in processing, 
etc. The table underneath is a synthesis between 24 
different methods-can be inclusive of lightweight 
machine learning models, deep learning hybrids, 
federated learning frameworks, transfer learning 
with explainable AI, blockchain Integrated 
solutions, quantum-enhanced architectures, and 
heuristic optimization-on a common performance-
based perspective. The lens also provides an 
applicable way to evaluate scalable, secure, and 
smart models in layered IoT defense systems. 

 
Table 5. Model’s Empirical Statistical Analysis 

 
Ref Method Used Performance Metrics 

Values 
Key Findings Strengths Limitations 

26 Lightweight ML 
for DDoS 
detection 

Accuracy: 91%, 
Detection Rate: 90%, 

FPR: 7% 

Efficiently 
detects DDoS 

attacks in 
constrained IoT 

setups 

Low overhead 
with high 
accuracy 

Focused 
primarily on 
DDoS attack 

types 

27 Layered audit 
tool analysis 

Coverage: 85%, Real-
time Suitability: Medium 

Presents 
comprehensive 

security 
auditing tools 
and models 

Covers a wide 
range of audit 

tools 

Lacks 
implementation-

level 
performance 

metrics 
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28 Run-time threat 
models for IoT 

Risk Assessment 
Accuracy: 88%, 

Adaptability: High 

Supports 
continuous and 
adaptive threat 
assessments 

Adapts well to 
evolving threats 

Modeling 
complexity and 
inference cost 

29 CNN-RNN 
hybrid for IDS 

Accuracy: 94%, Recall: 
92%, Precision: 91% 

Captures both 
spatial and 
temporal 
network 
behavior 

High precision 
and recall 

High training 
and inference 

time 

30 Survey on ML 
for ransomware 

prediction 

Detection Accuracy 
Range: 85â€ “93%, 
Response Delay: 

Variable 

Summarizes 
ML capabilities 
for ransomware 

detection 

Broad 
landscape of 

ML approaches 

Lacks 
performance 

validation in live 
environments 

31 ECC and 
blockchain 

hybrid model 

Integrity Score: High, 
Latency: Moderate 

Secure data 
exchange using 
encryption and 

ledger 
verification 

Strong 
resistance to 

tampering 

Moderate 
latency under 

load 

32 Federated 
learning for 

edge security 

Accuracy: 90%, Privacy 
Score: High 

Enables secure 
insider threat 

detection 
without data 

sharing 

Maintains 
privacy and 

model 
performance 

Vulnerable to 
federated 
poisoning 

attacks 

33 Smart 
healthcare data 

analysis 

Efficiency Score: High, 
Detection Integration: 

Low 

Improves data 
flow in 

healthcare IoT 
systems 

Streamlines IoT 
data pipelines 

Lacks 
integrated 

threat detection 
framework 

34 Hybrid LSTM-
CNN deep 

architecture 

Accuracy: 96%, F1-
Score: 95%, Latency: 

20ms 

Achieves high 
accuracy and 
robustness in 

threat detection 

Very strong 
detection 

capabilities 

Higher resource 
requirement 

35 Multimodal 
conversational 

detection model 

Accuracy: 89%, User 
Adaptability: High 

Increases cyber 
awareness 

using human 
interaction 
patterns 

Adaptive and 
user-centered 

Limited to smart 
home domains 

36 DNN and 
blockchain for 

anomaly 
detection 

Accuracy: 93%, Tamper 
Resistance: High 

Combines 
learning and 

ledger for 
secure anomaly 

tracking 

Robust dual-
layer defense 

Scalability in 
large networks 

37 Smart 
agriculture 

threat 
intelligence 

Detection Rate: 87%, 
Domain Coverage: High 

Addresses 
cyber threats in 
agricultural IoT 

Custom 
intelligence 

platform 

Sector-specific 
limitations 

38 Ensemble 
learning for 
smart cities 

Accuracy: 92%, 
Precision: 91%, Recall: 

90% 

Effectively 
detects multi-

class threats in 
IoT networks 

High ensemble 
efficiency 

Model 
complexity and 
tuning needs 

39 Federated RNN 
for adversarial 

intrusion 
detection 

Accuracy: 91%, 
Robustness Score: 

High 

Detects 
intrusion 

collaboratively 
under 

adversarial 
pressure 

Privacy-
preserving with 

resilience 

High 
communication 

overhead 
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40 Review of 
ML/DL for 
malware 
detection 

Detection Accuracy 
Range: 94% 

Covers threat 
classification 

across 
platforms 

Comprehensive 
methodology 

insight 

No model-
specific 

evaluation 
included 

41 AI-NLP 
framework for 

threat detection 

Accuracy: 90%, NLP 
Detection Rate: 88% 

Combines NLP 
and AI for 
contextual 

threat extraction 

Rich language-
context 

modeling 

Dependency on 
language data 

quality 

42 CNN-based 
intrusion 
detection 

(NIDS-DL-CNN) 

Accuracy: 93%, 
Detection Time: Low 

Effectively 
classifies 
network 

anomalies 

Strong 
detection 

performance 

Static kernel 
design 

43 Quantum digital 
twin for 

healthcare IoT 

Task Efficiency: High, 
Predictive Security: 

Strong 

Simulates 
secure task 
offloading 

Strong 
predictive task 

scheduling 

Theoretical 
validation 

phase only 
44 Transfer 

learning with 
XAI 

Accuracy: 94%, 
Interpretability Score: 

High 

Detects 
malware using 
reusable and 
explainable 

models 

High accuracy 
and 

transparency 

Processing 
overhead for 

XAI reasoning 

45 Decentralized 
identifiers 

(DIDs) 

Trust Score: High, 
Tampering Resistance: 

High 

Ensures secure 
data 

provenance in 
IoT 

Blockchain-like 
trust without 

central 
authority 

Coordination 
overhead 

across devices 

46 DL with feature 
pruning for 

DDoS detection 

Accuracy: 91%, Model 
Size Reduction: 30% 

Reduces model 
size while 

maintaining 
performance 

Optimized for 
speed and size 

Potential loss of 
subtle features 

47 EGWO + 
Random Forest 

Accuracy: 93%, 
Optimization Speed: 

High 

Improves 
intrusion 

classification 
with hybrid 

tuning 

Fast and 
adaptive 

optimization 

Re-training 
needs for 
changing 
patterns 

48 Industry multi-
case study on 

IoT quality 

Security Awareness: 
Medium, Cross-domain 

Relevance: High 

Highlights 
practical quality 
metrics for IoT 

Industry-
grounded 

recommendatio
ns 

Not focused on 
detection 

performance 

49 Quantum-
resistant hybrid 

encryption 

Security Strength: Very 
High, Latency: 

Moderate 

Secures smart 
grids against 

quantum 
attacks 

Future-proof 
encryption 
mechanism 

Needs 
integration with 

detection 
systems 

In the preceding paragraph, a numerical 
review of works of the previous order, papers [26] 
through [49], indicates that hybrid architectures 
such as CNN-RNN and LSTM-CNN consistently 
achieved above 93% accuracy with a good 
generalization across network behaviors. Federated 
and transfer learning introduces privacy and 
adaptability while maintaining competitive 
accuracy in detection. Performance and 
computational efficiency trade-offs in DDoS 
detection frameworks and feature pruning would 
satisfy the criteria for edge level deployment. On 

the other hand, a blockchain or quantum-enhanced 
system would show very strong security behavior, 
but this generally comes with the cost of latency or 
complexity sets in deployment. Reviews and 
surveys usually have broad coverage and 
theoretically justify them but lack actual 
performance benchmarking comparing real traffic 
data samples. Such domain-specific models (e.g., 
healthcare, smart agriculture) would have been 
optimized to deliver superior performance in a 
specific sector, requiring their adaptation for wider 
use sets. 
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3. Radar Chart Visualization 
 
To complement the tabular comparison of detection 
methods, a radar chart was constructed to provide 
an intuitive visual summary of the six standardized 
performance metrics: scalability, delay, time 
complexity, memory complexity, makespan, and 
analysis efficiency. Unlike tables that require line-
by-line interpretation, the radar chart allows the 
relative strengths and weaknesses of each model 
category to be observed briefly. For example, deep 
hybrid models (e.g., CNN–LSTM) extend further 
along the axes of accuracy and analysis efficiency, 
but contract on the memory and time-complexity 
scales, reflecting their higher computational 
demands. Conversely, lightweight approaches such 
as TinyML display strong coverage in low-delay 
and memory efficiency dimensions but exhibit 
shorter extensions along scalability and robustness 
measures. Similarly, federated and blockchain-
integrated systems show balanced performance 
across multiple axes but are limited by deployment 
overhead. By presenting the normalized results in a 
radar chart, trade-offs between competing methods 
become more transparent, enabling researchers and 
practitioners to quickly identify which models align 
best with the resource and operational constraints 
of a particular IoT environment. 

 
 

Figure 7: Multidimensional Performance 
Analysis of IoT Threat Detection models 

 
Figure.7 illustrates the multidimensional 
performance analysis of IoT threat detection 
models across six standardized evaluation metrics: 
scalability, delay, time complexity, memory 
complexity, make span, and analysis efficiency. 
The radar chart provides an integrated perspective 
by displaying each model’s relative strengths and 
weaknesses in a single view, which is more 
intuitive than examining numerical values in 
isolation. 
 

The CNN–LSTM hybrid demonstrates 
high scores in scalability and analytical efficiency, 
highlighting its suitability for large-scale 
deployments and accurate anomaly detection. 
However, the model shows noticeable drawbacks 
in memory complexity and make span, reflecting 
its elevated computational and storage overhead. In 
contrast, TinyML approaches exhibit strong 
performance in minimizing delay and memory 
consumption, making them highly efficient for 
resource-constrained IoT devices, though their 
scalability and robustness remain limited. 
Federated RNN models achieve a relatively 
balanced distribution across all six dimensions, 
offering a compromise between efficiency and 
adaptability; nevertheless, their deployment often 
suffers from communication overhead. Meanwhile, 
quantum-enhanced models project superior results 
in scalability and time efficiency, suggesting strong 
potential for handling massive IoT workloads, 
though they remain largely experimental and 
constrained by hardware availability. 
 

This visualization clearly emphasizes the 
trade-offs among IoT detection methods. No single 
approach dominates all metrics; instead, different 
techniques excel under different conditions. The 
radar chart therefore reinforces the importance of 
hybrid and adaptive frameworks, where combining 
complementary models may offer the most 
effective balance between accuracy, efficiency, and 
scalability for diverse IoT environments. 

4. Metric-wise Performance 
Analysis 
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While the radar chart provides a holistic overview 
of model performance across six standardized 
metrics, it is also essential to examine each 
dimension individually for deeper insights. To this 
end, Figure.7 presents metric-specific plots for 
scalability, delay, time complexity, memory 
complexity, makespan, and analysis efficiency. 
These focused visualizations allow for a more 
granular understanding of how IoT detection 
models perform in each critical aspect. 
 

Together, these metric- wise graph validate 
the observations drawn from the radar chart: each 
detection approach offers a unique balance between 
computational efficiency and detection capability. 
This layered analysis highlights the importance of 
context- aware deployment, where the choice of 
detection method should be tailored to the 
operational constraints of the IoT environment. 
  
 
• Analysis Efficiency: Deep hybrid models 

provide superior analysis efficiency, 
delivering higher accuracy and reliability in 
detection, though at the expense of system 
resources. 

• Memory Complexity: TinyML shows the 
best memory efficiency, making it suitable 
for low-power complexity, but CNN–LSTM 
hybrids remain comparatively heavier due to 
training overhead. 

• Time Complexity: Quantum-assisted and 
federated models offer promising reductions 
in time  

• Make span: Hybrid models incur longer 
execution spans owing to multi-layered 
architectures, whereas lightweight and 
decentralized methods demonstrate reduced 
make span. 

• Scalability: Hybrid deep learning models 
demonstrate higher scalability, supporting 
large-scale IoT deployments, while 
lightweight methods such as TinyML 
remain constrained to smaller environments. 

• Delay: Tiny ML based approaches excel in 
achieving minimal processing delay, a 
critical requirement for real-time threat 
detection in edge devices. 

 

5. ROC Curve Analysis  

To complement the computational performance 
evaluation, the Receiver Operating Characteristic 
(ROC) curve provides an additional perspective on 
the reliability of IoT intrusion detection methods. 
 
 Figure 8 presents the ROC curves of the machine 
learning driven detection models (CNN–LSTM, 
TinyML, and Federated RNN), benchmarked 
against the random baseline. 
 

These approaches inherently generate 
probabilistic classification scores, making them 
well-suited for threshold-based ROC evaluation. 
The results indicate that: 

 

 
Figure 8: ROC curves of the machine learning 

driven detection models 

• CNN–LSTM achieves the highest area 
under the curve (AUC ≈ 0.96), reflecting 
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strong robustness and minimal false-
positive impact. 
 

• Federated RNN follows with an AUC of 
approximately 0.90, offering balanced 
detection performance under distributed 
learning settings, though with potential 
latency from communication overhead. 

• Tiny ML records a moderate AUC of 
about 0.87, which validates its suitability 
for resource-constrained IoT 
environments, albeit at the cost of reduced 
accuracy against sophisticated threats. 

• The random guess baseline illustrates the 
clear performance gap between advanced 
ML/DL models and naive detection. 

 
It should be noted that traditional methods 

such as Signature-based IDS and Honeypot-based 
IDS, as well as emerging paradigms like Quantum-
enhanced detection, are not represented in the ROC 
analysis. This exclusion arises from their 
operational nature: signature and honeypot 
mechanisms function deterministically or in event-
driven modes rather than probabilistically, while 
quantum approaches remain at a conceptual stage 
without standardized evaluation benchmarks. 
Consequently, the effectiveness of these methods is 
better captured through comparative metric-based 
assessments, as summarized in Table 5. 

 
This distinction reinforces the 

complementarity of both evaluation approaches. 
While ROC curves quantify the detection reliability 
of ML/DL-driven approaches, the comparative 
summary table offers a broader multidimensional 
view by integrating system-level metrics such as 
scalability, delay, resource consumption, and 
analytical efficiency. Together, they provide a 
holistic understanding of the trade-offs in IoT 
threat detection. 

6. Comparative Summary of 
Detection Methods 

To consolidate the findings from the radar chart, 

metric-wise graphs, and ROC analysis, Table 6 
presents a comparative overview of IoT threat 
detection methods across six standardized 
performance metrics. The table highlights the 
trade-offs that define each category of approach. 

 
• Signature-based IDS perform well in 

terms of low delay and minimal resource 
use but fail to address scalability and 
advanced attack scenarios. 

• Behavioral analysis methods scale 
effectively and achieve higher analytical 
efficiency, but they incur greater 
computational costs and longer response 
times. 

• Honeypot-based approaches contribute to 
in-depth adversarial analysis, yet their 
direct detection efficiency and scalability 
remain limited. 

• CNN–LSTM hybrids excel in analysis 
efficiency and accuracy but demand heavy 
resources,  

• which constrains their deployment in 
lightweight IoT environments. 

• TinyML approaches optimize low delay, 
low memory usage, and makespan, 
making them suitable for edge devices, 
though they trade off scalability and 
robustness. 

• Federated learning models balance 
scalability and low delay, offering 
privacy-preserving detection, but incur 
overhead in distributed training. 

• Quantum-enhanced models demonstrate 
strong scalability and efficiency potential, 
though their practical deployment in IoT is 
still at an early stage. 

 
This comparative summary reinforces the central 
contribution of this review: no single method 
universally dominates across all performance 
metrics. Instead, each approach reflects a unique 
balance between resource constraints, detection 
accuracy, and deployment feasibility.
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Table 6. Performance comparison of IDS method categories across key design parameters. 
 

Reference Model ACC DR SC DE EE MK 
Fuzzing-based [1] ✔ ✔ ✘ ✘ ✘ ✘ 

CNN–LSTM [8] ✔ ✔ ✔ ✘ ✘ ✘ 
DL Malware [10] ✔ ✘ ✔ ✘ ✔ ✘ 

TinyML [12] ✔ ✔ ✔ ✔ ✔ ✔ 
Lattice Crypto [19] ✔ ✘ ✔ ✘ ✘ ✘ 

XGBoost + Blockchain 
[21] 

✔ ✔ ✔ ✔ ✘ ✘ 

Federated RNN [39] ✔ ✔ ✘ ✔ ✔ ✔ 
Proposed Model ✔ ✔ ✔ ✔ ✔ ✔ 

7. Datasets Used in IoT Threat 
Detection  

The effectiveness of any intrusion detection or 
threat analysis framework depends significantly on 
the dataset employed for training and evaluation. 
Table .8 summarizes the datasets used in seven 
representative studies, covering fuzzing-based 
approaches, deep learning hybrids, blockchain-
integrated detection, TinyML, and federated 
learning models. The diversity of datasets 
highlights the variety of perspectives in IoT 
security research, ranging from general-purpose 
intrusion datasets to highly specialized IoT traffic 
logs. The effectiveness of any intrusion detection or 
threat analysis framework depends significantly on 
the dataset employed for training and evaluation. 
Table 8 summarizes the datasets used in seven 
representative studies, covering a wide spectrum of 
methodologies such as fuzzing-based vulnerability 
discovery, deep learning hybrid detectors, 
blockchain-integrated security mechanisms, 
TinyML-enabled lightweight models, and privacy-
preserving federated learning systems. An 
examination of these studies reveals that the choice 
of data is closely aligned with the specific 
objectives of each work. For instance, approaches 
cantered on protocol robustness often rely on 
datasets containing malformed or fuzzed packets, 
while learning-based IDS solutions typically utilize 
benchmark collections that include labelled normal 
and attack traffic. Blockchain-oriented frameworks 

tend to adopt transaction or device-authentication 
logs in addition to conventional network traces, 
enabling evaluation from both networking and 
trust-management viewpoints. Similarly, research 
targeting resource-constrained IoT nodes makes 
use of compact, feature-optimized datasets suitable 
for on-device inference. The diversity of datasets 
highlights the variety of perspectives in IoT 
security research, ranging from general-purpose 
intrusion datasets to highly specialized IoT traffic 
logs captured from real deployments or testbeds. 
This variation underscores an important trend in the 
field: there is no single standard dataset that fits all 
IoT scenarios. Instead, researchers draw upon 
multiple sources to reflect heterogeneity in devices, 
protocols, and attack behaviors. Consequently, 
dataset selection not only influences reported 
performance metrics but also determines how well 
a proposed model can generalize to unseen 
environments. A careful and justified dataset 
strategy therefore remains a critical component in 
demonstrating the practical relevance and 
robustness of modern IoT intrusion detection 
research. 

8. Discussion and Insights 

The combined use of radar visualization, metric-
wise graphs, ROC analysis, and the comparative 
summary table provides a holistic perspective on 
IoT threat detection methods. The findings clearly 
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demonstrate that while advanced deep learning 
frameworks such as CNN–LSTM maximize 
detection accuracy, their deployment is constrained 
by computational overheads. Conversely, 
lightweight approaches like TinyML optimize 
resource efficiency but sacrifice robustness in 
handling complex attacks. Federated and 
blockchain-assisted systems offer balanced 
performance yet introduce additional 
communication and deployment costs, whereas 
quantum-ready frameworks remain largely 
conceptual at this stage. 
 
These insights underscore the absence of a 
universally optimal solution and highlight the need 
for adaptive, context-aware, and hybrid approaches 
that can dynamically balance efficiency, accuracy, 
and scalability in heterogeneous IoT ecosystems. 

9. Conclusion  

Millions of connected devices and things keep 
increasing exponentially towards advancing the IoT 
ecosystem for threats at fast pace with all area attack 
surfaces. Thus, there is a need for timely and 
intelligent threat detection and mitigation strategies. 
The sophistication of cyber-attacks against limited 
constraint IoT environments is established for the 
urgent requirement of a complete and well-grounded 
technical evaluation of new methodologies. 
 

 This work brings forth a study for an in-depth 
review cum numerical comparison of 49 state-of-
the-art approaches taking into consideration machine 
learning, deep learning, blockchain, quantum 
cryptography, federated learning, and hybrid 
intelligent systems.

Table 7. Datasets employed in selected IoT threat detection papers 
 

Ref Method Dataset(s) Used Attack Types / Classes 
[1] Touqir et al Fuzzing-based vulnerability 

exploration 
None (conceptual 

study) 
N/A 

[8] Nazir et al CNN–LSTM Hybrid IoT-23, N-BaIoT, 
CICIDS2017 

Botnet (Mirai), DoS/DDoS, 
Port Scan, Web, Infiltration 

[10] Abdullah et al DL for IoT Malware Custom IoT Malware Malware family 
classification 

[12] El Haddouti & 
Lazraq 

TinyML for Edge IDS ToN-IoT 10 categories: DDoS, 
ransomware, data 

exfiltration, 
scanning, etc. 

[19] Kwala et al Lattice-based Cryptography None 
(cryptographic 
comparison) 

N/A 

[21] Nandanwar 
& Katarya 

GAO–XGBoost + 
Blockchain 

CICIDS2017 DoS, DDoS, Botnet, Brute-
force, 

Infiltration, Web attacks 
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[39] Rezaei et al. Federated RNN IDS NSL-KDD 4categories: DoS, 
Probe, R2L, U2R 

 
Most of the review articles in this domain are all 
either- very narrowly confined to specific 
technologies such as either machine learning or 
blockchain alone- or qualitative with respect to the 
above comparison metrics that several earlier 
reviews use benchmarking against unified criteria 
such as for diplomacy on scalability, delay, time 
complexity, memory complexity, make span, or 
even analysis efficiency. Often, these works ignore 
cross-domain applicability, sector-specific 
constraints (e.g., smart cities, healthcare, 
agriculture), and how models would adapt under 
adversarial environments. This lack of a common 
set of standards would systematically hamper the 
ability to differentiate and compare existing models 
among researchers and practitioners.  
 
 The present review would then address all 
these challenges by providing a holistic analysis, 
combining qualitative findings with quantitative 
metrics across six dimensions that matter most. In 
building consensus around a framework for 
assessing performance uniformly, this study 
formats a clear trade between resource usage and 
the threat detection potentiality of systems-it shows 
the exact point at which, for instance, LSTM-CNN 
hybrids [34] registered the highest metrics for 
precision (96%) and F1 score (95%)  
 
while incurring increased latency and resource 
demands. On the other hand, lightweight models 
like TinyML [12] and KronNet [23] fared 
extremely well at very low memory levels but had 
average detection accuracy sets. Furthermore, 
inclusion of contemporary paradigms such as 
quantum-enhanced architecture [7, 43, 49], 
federated RNNs under adversary settings [39], and 
explainable AI with transfer learning [44] would 
give a fresh perspective on the emerging 
technological frontier. The multidisciplinary 
coverage is further enhanced by conducting a 
critical evaluation of domain-specific models such 
as those tailored to healthcare [15, 33], agriculture 
[37], and industry IoT [20]. That makes this review 
more useful for future benchmarking and 
standardization efforts given its  
 

 
multidimensionality and maintaining numerical 
consistency across all entries.                                                                                       

10. Future Scope 

While this research provides a broad evaluation of 
detection techniques available for threatening IoT 
applications, several interesting avenues remain 
unexplored for future research. Real-World 
Deployment Validation: Most of the approaches 
reviewed rely heavily on benchmark datasets and 
do not account for real-time deployment across a 
wide range of heterogeneous IoT environments 
focused on validation under real-world 
environments. Future efforts should include 
validation in the field under live traffic from 
industrial, urban, or medical IoT deployments. 
Cross-Model Hybridization: Many approaches are 
still separated from their algorithmic philosophy. 
Combining explainable models (e.g., XAI-based 
CNNs) with very fast learning systems (e.g., ELM 
or TinyML) might produce synergistic gains in 
both their explainability and their effective 
execution sets. Quantum-ready Architectures: With 
the advent of quantum computing, security models 
should be updated to withstand attacks on a 
quantum level. While promising frameworks have 
been proposed [17,49], real-world adaptability, 
scalability under quantum threats, and backward 
compatibility with classical devices remain critical 
research gaps. Adversarial Robustness and 
Poisoning Defense: Federated learning models 
[32,39] have substantial potential contributions to 
make in privacy-preserving intrusion detection; 
however, they are still vulnerable to attacks of 
poisoning and inference. There needs to be further 
exploration of mechanisms putting forth trust-
aware aggregation, anomaly detection in updates, 
and adversarial training. Unified Evaluation 
Benchmarks: The research community needs to 
adopt standardized evaluation frameworks across 
key metrics-above mentioned parameters like 
detection delay, inference cost, memory usage, and 
sets of cross-platform adaptability. Better 
reproducibility and comparison of techniques 
across research groups would thus be possible. 
Ethical AI and Design That Consider Regulations: 
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Future intrusion detection systems need to embrace 
the principles of privacy-by-design, explainability, 
and compliance because of the development of 
increasing regulatory frameworks like GDPR and 
HIPAA. Low-Power and Self-Healing Systems: 
Future requirements include designing self-healing 
IoT security frameworks that can recover 
autonomously from breaches, as well as the 
integration with ultra-low-power models, for nodes 
that are battery-restricted for the process. 
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