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Abstract 

The search for effective solutions to address traffic congestion presents a significant challenge for large urban cities. Analysis 
of urban traffic congestion has revealed that more than 70% of it can be attributed to prolonged searches for parking spaces. 
Consequently, accurate prediction of parking space availability in advance can play a vital role in assisting drivers to find vacant 
parking spaces quickly. Such solutions hold the potential to reduce traffic congestion and mitigate its detrimental impacts on 
the environment, economy, and public health. Machine learning algorithms have emerged as promising approaches for 
predicting parking space availability. However, comparative studies on those machine learning models to evaluate the best 
suited for a large-scale prediction and within a given prediction time period are missing. 
In this study, we compared nine machine learning algorithms to assess their efficiency in predicting long-term, large-scale 
parking space availability. Our comparison was based on two approaches: using on-street parking data alone and 2) 
incorporating data from external sources (such as weather data). We used automatic machine learning models to compare the 
performance of different algorithms according to the prediction efficiency and execution time. Our results indicated that the 
automated machine learning models implemented were well fitted to our data. Notably, the Extra Tree and Random Forest 
algorithms demonstrated the highest efficiency among the models tested. Moreover, we observed that the Random Forest 
algorithm exhibited less computational demand than the Extra Tree algorithm, making it particularly advantageous in terms of 
execution time. Therefore, this work suggests that the Random Forest algorithm is the most suitable machine learning model 
in terms of efficiency and execution time for accurately predicting large-scale, long-term parking space availability. 
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1. Introduction

Recently, traffic congestion has become a major problem 
in large urban cities. Traffic congestion has proven to have 
a considerable impact on the various sectors of activity. In 
the United States, an economic loss of more than 101 
billion dollars was due to traffic congestion in 2020. The 
losses were mainly attributed to increased fuel 
consumption and travel delays [1]. The combustion of fuel 
by vehicles leads to increased release of harmful 
substances proven to negatively impact health [2]. These 

substances have been linked to respiratory and 
cardiovascular diseases as well as premature deaths. 
According to the World Health Organization, China and 
India recorded more than 1 million and 600 thousand 
deaths related to traffic-related air pollution in 2012 [3]. 
Therefore, searching for solutions that will help reduce 
traffic-related air pollution is crucial.  

Studies [4] have shown that more than 40% of traffic 
congestion in most large cities is due to the search for a 
parking space. Indeed, the inefficient search for available 
parking spaces contributes to longer search times and 
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queues, further exacerbating traffic congestion. For 
example, in the United States, drivers spend an average of 
17 hours per year searching for a parking space [5]. Several 
methods, such as machine learning, have been proposed for 
predicting the future occupation of parking spaces to 
effectively assist drivers in their search for parking spaces. 

Our work provides a framework for comparing 
different machine learning models for predicting long-term 
parking space occupancy (i.e., 3 hours) in advance and on 
a large-scale. We used machine learning models for the 
long-term prediction of parking spaces through two 
approaches integrating on-street parking data from the city 
of Los Angeles and metrological data. Furthermore, a 
comparison of the different models' efficiency and 
computation time is also presented. Thus, we provided a 
reference for the most suitable machine learning algorithms 
for the long-term prediction that can serve as a basis for 
designing smart and sustainable parking solutions. 

This article is organized as follows: the first section 
provides an overview of the current research on predicting 
parking space occupancy. Section 2 describes the dataset, 
machine learning algorithms, and methods used for 
modeling and prediction. In section 3, we present and 
discuss the results obtained by comparing the different 
methods in terms of their efficiency and computation time. 
Finally, section 4 concludes this work and gives future 
perspectives.  

2. Related Work

Several methodologies have been suggested for predicting 
parking space availability. Many of these methodologies 
rely on or are compared to conventional machine learning 
models based on their performance. This prediction of 
parking space occupancy can be in the short-term (less than 
30 minutes) or long-term (more than 30 minutes).  

Sandeep Saharan et al. [6] conducted a comparative 
study of the performance of linear machine learning (LIN), 
decision tree (DT), neural network (NN), and random 
forest (RF) models for the implementation of intelligent 
on-street parking pricing system in the city of Seattle 
(Washington, USA). In a prediction of parking space one 
hour in advance, the Random Forest proved to be more 
efficient than the others in terms of precision. Goran Jelen 
and al. [7] evaluated the effectiveness of Random Forest 
and CatBoost machine learning models in predicting 
parking space occupancy one hour in advance using two 
approaches. In the basic approach, the model used parking 
space occupancy data only. On the other hand, the 
contextual approach utilized metrological data in addition 
to the data on parking space occupancy. The CatBoost 
proved to be more efficient than the random forest on all 
the approaches considered. In another study, Yanxu Zheng 
et al. [8] compared the performance of three machine 
learning models, regression tree, support vector regression, 
and neural network, using a set of short-term parking 
characteristics. Comparing the performance of these 
feature sets and model combinations for the Melbourne 

(Australia) and San Francisco (California, USA) datasets 
revealed that the regression tree with a feature set 
containing the historical observations, time of day, and day 
of the week provides the best performance.  

However, these previous works have focused on 
prediction models based only on a limited number of 
parking lots and within a time frame of less than an hour. 
The analysis using automatic machine learning models on 
large-scale and long-term predictions of up to 3 hours has 
not been addressed. In addition, methodologies using 
machine learning methods as a benchmark have focused on 
a few prediction models, ignoring or limiting to less than 4 
models benchmarking to find the models that perform the 
best within a given prediction time horizon.  

In this work, we compare more than 10 machine 
learning models to determine the most efficient models, 
based on the accuracy and computation time in the 
prediction, that can be used as a reference for occupancy 
prediction parking spaces in the long term. 

3. Motivation

3.1. Challenges of mobility and smart 
transportation 

The transportation system is undoubtedly one of the main 
pillars of urban cities. The economy, viability, and 
development depend heavily on reliable transportation 
systems. In recent years, the evolution of urban cities 
toward smart cities has highlighted the need to address 
many transportation challenges to keep up with the 
dynamics and emergence of smart cities. 
The integration of new information and communication 
technologies has led to the emergence of transportation 
systems toward more smarter systems (Figure 1). 

Smart transportation systems are composed, on the one 
hand, of basic systems such as traffic control systems, 
circulation signs displaying various messages, and on the 
other hand, advanced systems combining several sources 
of information, including parking guidance information 
and parking reservation systems.  

These systems are mainly based on innovative 
technologies such as: 
- Sensor technologies (CCTV cameras, RFID sensors,
magnetic sensors) interacting with their environments to
collect real-time data on road conditions.
- Short- or long-range reach communication technologies,
such as Wifi, 3G, 4G, and 5G, which allow data sharing.
- Wireless sensor networks are equipped with active or
passive sensors communicating through low-power routing
protocols to route the collected data.
The application fields of these technologies are numerous,
including:

 Road safety
 Fluidification of urban traffic
 Resource management
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 Environment protection

These challenges are intrinsically linked, particularly in the 
context of reducing traffic congestion in urban areas. This 
is mainly attributed to inadequate management of parking 
spaces, with adverse effects on traffic flow and urban 
infrastructure capacity. 

Figure 1. Intelligent transport system 

3.2. Smart parking 

Smart parking provides solutions to reduce traffic 
congestion and facilitate urban mobility. The smart parking 
system is composed of several components [9]. The most 
popular are illustrated in Figure 2. Among these 
components, the parking guidance and information system 
and the parking reservation system are vital in reducing 
urban traffic congestion. 

Figure 2. Smart parking system 

The primary purpose of the parking guidance and 
information system (PGI) is to provide information on the 
availability of parking spaces and guidance in finding those 
available spaces. Such a system will allow drivers to spend 

less time looking for a parking space, reducing traffic 
congestion in certain areas. In recent years the information 
provided on the availability of parking spaces has become 
more and more accurate thanks to the collection of multi-
source data and the use of deep learning techniques. For 
better applicability of the PGI system, several related 
questions need to be answered. Among these questions is 
how to avoid the race of several drivers toward the same 
parking space. The parking reservation system guarantees, 
in addition to intelligent pricing management, a booking 
management system including bookings for parking 
spaces, which helps avoid many vehicles continuing to 
circulate in search of available parking spaces. The 
intelligent management of parking spaces is made possible 
by using techniques to dynamically price parking spaces 
and make information on current availability more reliable. 
Most smart parking components mentioned previously, 
such as ERP and PRS, rely mainly on the efficient 
prediction of parking space availability. Making this 
prediction as effective as possible is inevitable for 
overcoming some of the significant transportation system 
challenges, such as traffic congestion in urban areas.   

4. Materials and methods

We opted for two approaches to compare the various 
models considered in this study. The first approach 
evaluates the different algorithms based only on parking 
data. The objective of this first approach aims to analyze 
and identify the most efficient models based solely on 
historical parking data. The second approach explores how 
the first approach reacts to the integration of external data. 
In this second approach, our objective is to evaluate 
whether or not the result of the first approach remains valid 
even after integrating external data. The latter approach 
seems more critical because incorporating external data, 
such as meteorological data or traffic flow, to increase the 
efficiency of availability prediction has been suggested by 
some authors [7,10]. 

4.1. Data acquisition and pre-processing 

The majority of methodologies suggested for predicting 
parking space availability have utilized historical data on 
parking space occupancy collected through various sources 
to construct the prediction models. However, studies have 
shown that the use of external data sources that can impact 
parking space occupancy, such as meteorological data, 
increases the prediction efficacy [7,10,11]. Therefore, in 
this study, we use historical on-street parking data from 
Los Angeles in the United States and incorporate the 
meteorological data as external data in our prediction 
models to examine how our models react to incorporating 
these data types. 
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Parking Data 
Parking data were obtained from the Los Angeles 
Department of Transportation (LADOT) website [12]. 
LADOT manages all the on-street parking spaces 
throughout the city. We observed that on-street parking 
data from Los Angeles were recorded at irregular time 
intervals. Since we aim to make hourly predictions, we 
started by aggregating the parking data by hours. Then, 
each sensor represented by an ID is linked to a specific 
street using information about the geographical position of 
the sensors. Finally, at each street level and for each hour 
t, a value representing the number of free parking spaces 
(NPL) is calculated using the formula: 

NPLstreet(k)(t) = ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖)(𝑡𝑡)𝑛𝑛
𝑖𝑖+1        (1) 

Where k represents the index of a specific street, n is the 
total number of parking spaces belonging to a street k, and 
Space(i), a value equal to either 0 or 1, which represents 
the state of a space of parking i at time t depending on 
whether the space is respectively occupied or free. This 
NPL quantity at each instant represents the value to be 
predicted for each hour on a given street.  

Next, an aggregation process that consists in 
aggregating the arteries belonging to the same alley is 
carried out to reduce the relatively high number of streets. 
After aggregation, a total of 101 arteries is obtained, and 
the availability of parking spaces for these arteries will be 
the basis of our comparative study. Figure 3 shows an 
overview of data on the availability of parking spaces by 
hour on the first day of the year 2018 on three arteries in 
the city of Los Angeles 

Meteorological data 
Meteorological data for the city of Los Angeles were 
obtained using the Visual Crossing API [13]. These 
weather data were retrieved hourly and contained 
temperature, atmospheric pressure, and precipitation 

information. The only processing to be performed on the 
data was the conversion of the variables to the format 
specific to each variable. The weather information taken 
into account in our study were: temperature, precipitation, 
wind speed, atmospheric pressure, gusts of wind, and 
visibility. 

Input data for the different models 
The calculation of autocorrelation and partial 
autocorrelation based on the ARIMA methodology and 
inspired by previous work [10], showed that the 
information on the parking spaces availability of the last 24 
hours is necessary to predict the next 3 successive hours. 
As illustrated in Figure 4, the parking data at the level of 

each artery is in the form of time series where each hour is 
linked to the availability of parking spaces. A sliding 
window of 24 elements with a time step of 1 traverses the 
time series to create the input matrix of the different 
models. For every 24 elements, extract the next 3 
availabilities-hours representing the values to be predicted. 
For our first approach, at the level of each artery, for every 
24 elements to extract defined as explanatory variables, the 
following 3 hourly occupations represent the target values 
to be predicted. For the second approach, the explanatory 
variables are defined by the 24 elements extracted plus the 
meteorological variables: temperature, precipitation, wind 
speed, atmospheric pressure, gusts of wind, and visibility. 
The set of all the explanatory variables extracted 
constitutes the input matrix of the models, and the set of all 
the following 3 hourly availabilities represents the matrix 
of values to be predicted. 

Figure 3. Overview of hourly parking availability at Boyd Street, South Main Street and North Highland 
Avenue. 
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Machine learning methods 
The performances of various popular machine learning 
algorithms were compared based on their efficiency and 
training cost in prediction. In addition, the ability to predict 
occupancy for the next 3 hours was tested. Our choice is 
justified by the understanding that a long-term prediction, 
such as three hours in advance, can significantly benefit 
drivers in trip planning. By providing more advanced 
information, drivers gain valuable insights into the 
likelihood of finding an available parking space on a 
specific street, allowing them to plan their trips more 
effectively. 

Multi-output prediction 
The models compared in this study can be classified into 
two categories: the model intrinsically supporting multiple 
output prediction: Random Forest [14], K Neighbors 
Regressor [15], Linear Regressor [16], Ridge Regression 
[17], Decision Tree Regressor [18], and those that do not 
support this type of prediction: Extreme gradient boosting 
regression (XG-Boost) [19], Extra Tree [20], Gradient 
Boosting Regression[18], Stochastic gradient descent 
Regression[21], Support Vector Machine Regression 
(SVR) [22]. To overcome the limitation of these later 
models, we used an encapsulation technique, which 
consists of encapsulating several models to predict each 
element of the output sequence. In addition, encapsulating 
models can predict independent outputs or dependent 
outputs. For the models with independent outputs, each 
model independently predicts an element of the sequence 
according to the input data. In contrast, for the models with 
dependent output (Figure 5), the models receive the 
sequence element predicted by the previous model to 
predict the current sequence element during the prediction 
in addition to the input data. 

Figure 5. Encapsulation of models for multiple-
output regression 

Although in our case, the assumption that the sequence 
element is independent may not be correct because the 
parking availability for the next three hours probably has a 
dependency relationship between them. Nevertheless, we 
included both types of versions of each model in the 
comparison. The complete list of models used in this 
comparison is provided in Table 1. 

Parameter optimization 
Machine learning methods comprise numerous 
hyperparameters that require optimization to enhance the 
predictive model's efficiency. In this study, Bayesian 
optimization is employed to determine the optimal 
parameters. Initially, an exhaustive search is conducted for 
each model to identify the most significant parameters. 
Subsequently, Bayesian optimization is utilized to obtain 
the optimal values for the various parameters.  

Figure 4. Illustration of parking availability time series data 
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Table 1. Models and optimal parameters considered 
in the comparison 

Model Optimal Parameters 

Ridge (RDG) Default parameters 
Decision Tree Regressor 
(DTR) 

max_depth = 56, 
min_samples_split = 
16, 
min_samples_leaf = 2, 
max_features = 17,  
max_leaf_nodes = 101 

XG Boost with 
independent output 
(XGB1) 

max_depth = 5,  
n_estimators = 100, 
gamma = 0.02 

XG Boost with dependent 
output (XGB2) 
Extra Trees Regressor 
with independent output 
(EXT1) 

Bootstrap = False, 
max_depth = 46, 
min_samples_leaf = 2, 
min_samples_split = 6, 
n_estimators = 651 

Extra Trees Regressor 
with dependent output 
(EXT2) 
Gradient Boosting 
Regressor with 
independent output 
(GBR1) 

random_state = 0, 
alpha = 0.3671, 
learning_rate = 0.08012, 
max_depth = 4,  
min_samples_split = 13, 
min_samples_leaf = 3, 
n_estimators = 271 

Gradient Boosting 
Regressor with dependent 
output (GBR2) 

Stochastic gradient 
descent Regressor with 
independent output 
(SGDR1) 

Alpha = 0.0, 
eta0 = 0.29,  
n_iter_no_change= 478, 
power_t = 0.3, tol = 0.58 

Stochastic gradient 
descent Regressor with 
dependent output 
(SGDR2) 
SVM Regressor with 
independent output 
(SVR1) 

C = 5.5, epsilon = 0.07, 
max_iter = 1570, tol = 
0.1 

SVM Regressor with 
dependent output (SVR2) 
Random Forest Regressor 
(RF) 

max_depth = 10, 
min_samples_leaf = 2, 
min_samples_split = 4, 
n_estimators = 352 

Table 1 presents a summary of the parameters utilized for 
each model, along with the values obtained through 
Bayesian optimization for each parameter. Certain models 
exhibited similar results irrespective of the considered 
parameter values. Hence, the default parameters were 
selected as the optimal parameters for these models. 

5. Results and discussion

We have chosen the R2 and the RAE as evaluation metrics 
to compare the different models. The R2 metric shows how 
the model fits the prediction task. The formula for R2 is 
given by equation (2), a maximum R2 value of 1 indicates 
that the predictions of the regression model match the data 
perfectly. RAE indicates the error rate between the 
predicted and actual values, as defined by equation (3). 
Finally, k-fold cross-validation with k=5 is employed to 
assess the models and evaluate their robustness against data 
variations. This approach provides a reliable estimation of 
the models' generalization capability by considering 
different training and testing set configurations. 

𝑅𝑅2 = 1 − ∑ (ŷ𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−ӯ𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

   (2) 

𝑅𝑅𝑅𝑅𝐸𝐸 = ∑ |𝑦𝑦𝑖𝑖− ŷ𝑖𝑖|
𝑛𝑛
𝑖𝑖=1

∑ |𝑦𝑦𝑖𝑖−ӯ𝑖𝑖 |
𝑛𝑛
𝑖𝑖=1

        (3) 

Where ŷi is the predicted number of free parking spaces, yi 
is the actual number of available parking spaces, and  
ӯ𝑖𝑖  represents the average (mean). 

We used the Python programming language and the sklearn 
library to implement the different learning models. For the 
encapsulation of the models, the MultiOutputRegressor 
and RegressorChain functions of the multioutput module 
of the sklearn library were used respectively for the models 
with independent outputs and the models with dependent 
outputs. The Google Colab environment was used as the 
runtime environment. 
The average R2 and RAE provided by the different models 
during training on the parking data are presented in Table 
2. We noticed on the parking data that all the models
reached a minimum R2 of 0.6, proving that all the
algorithms adapt well to the data. Among the models
considered, the Extra Tree and the Random Forest were the
ones that best adapted to parking space availability data
with a maximum R2 of 0.70, i.e., 10% more than the
minimum R2 reached by the Ridge. By comparing the RAE 
of the different algorithms, we also noticed that the latter
algorithms provided the best accuracy with the lowest error
rate. On the other hand, we observed that the encapsulated
models with dependent and independent output gave
approximately the same result. This proved that although
the different models predicted the future availability of
three consecutive hours probably dependent on each other,
taking this information into account did not significantly
improve the prediction.
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Table 2. Model’s performance 

Observing the R2 and the average RAE of the different 
algorithms following the incorporation of meteorological 
data (Table 2), the Extra Tree and the Random Forest are 
also the models that fitted the data the best and provide the 
best prediction even after the incorporation of external 
data.  
It is noted that the two versions of SVR did not provide 
results after the incorporation of meteorological data. 

Therefore, these results are not presented in Table 2.  
In addition, the comparison of the results of the models  
with meteorological data and those without meteorological 
data (Table 2) shows a decrease in R2 and RAE after 
incorporating meteorological data for particular models. 
This proves that the incorporation of meteorological data 
does not contribute to the improvement of the prediction. 
By comparing the execution time of the different 

algorithms, we found that the Extra Tree (Figure 6) is the 
algorithm that takes a higher execution time due, in 
particular, to the relatively high number of parameters to 
train during the training phase. Therefore, the Random 
Forest algorithm is more adopted than the Extra Tree in 
efficiency and computational cost. 

6. Conclusion and perspective

Major urban cities face several challenges related to traffic 
congestion. Part of this congestion in urban areas is 
attributed to the unassisted and prolonged search for 
parking spaces, which frequently leads to frequent traffic 
jams. To solve this problem, predicting parking space 
availability appears to be a promising alternative to make 
parking management smarter and facilitate smoother urban 
road traffic. In this regard, several solutions have been 
developed to address the congestion problem associated 
with parking. These solutions involve predicting current 
and future availability and providing users with 
information to find vacant parking spaces easily. Adapting 
such approaches will reduce search time for parking spaces 
while improving traffic flow, minimizing fuel 
consumption, and reducing traffic-related air pollution in 
urban areas. In this study, we compared the performance of 
machine learning algorithms for large-scale and long-term 
parking availability prediction. Based on two approaches 

incorporating multi-output prediction techniques and data 
from the city of Los Angeles, our comparative study 
evaluated the performance of over 10 machine learning 
algorithms. Our experiments revealed that Extra Trees and 
Random Forest algorithms outperformed other models in 
predicting parking space availability. Furthermore, 
comparing the different algorithms in terms of execution 
time showed that Random Forest had the best execution 

Model Parking Parking + weather 
Mean R2 Mean RAE Mean R2 Mean RAE 

RDG 0.66 0.49 0.63 0.50 
DTR 0.60 0.51 0.59 0.52 
XGB2 0.69 0.45 0.68 0.46 
XGB1 0.69 0.45 0.68 0.46 
EXT1 0.70 0.44 0.70 0.45 
EXT2 0.70 0.44 0.70 0.45 
GBR1 0.68 0.46 0.67 0.47 
GBR2 0.68 0.45 0.67 0.47 
SGDR1 0.66 0.49 0.47 
SGDR2 0.66 0.49 0.47 
SVR1 0.65 0.49 0.61 0.50 
SVR2 0.65 0.50 0.61 0.51 
RF 0.70 0.45 0.70 0.45 

Figure 6. Execution cost of each model per second 
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time compared to Extra Trees. Several authors have 
highlighted the possibility of integrating external data 
sources for improved prediction accuracy. Nevertheless, 
our experiments revealed that incorporating weather data 
did not enhance prediction. In future work, we plan to 
explore integrating other external data sources, such as 
event data, to assess their effect on predicting parking 
availability. Also, with the advancements in deep learning 
and its tremendous success across various domains, such as 
the prediction of time series, we envision the emergence of 
algorithms based on this type of learning for large-scale 
parking availability prediction. Thus, it will be interesting 
to compare the performance of deep learning models with 
that of Random Forest and Extra Trees algorithms. 
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