
EAI Endorsed Transactions
on Internet of Things Research Article

1

Avoiding Congestion for Coap Burst Traffic

Thi Thuy Duong Le1, Dang Hai Hoang2,*, Thieu Nga Pham1

1University of Civil Engineering, Hanoi, Vietnam
2Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

Abstract

Congestion is an important issue in Internet of Things (IoT) networks with constrained devices and a growing number of

applications. This paper investigated the problem of congestion control for burst traffic in such networks. We highlight the

shortcomings of the current constrained application protocol (CoAP) in its inability to support burst traffic and rate control.

Subsequently, we propose an analytical model for CoAP burst traffic and a new rate-control algorithm for CoAP to avoid

congestion. A CoAP sender increases or decreases the transmission rate depending on the congestion detection. Using

simulations, we compared the performance of the proposed algorithm with the current CoAP in various traffic scenarios.

Experimental results show that the proposed algorithm is efficient for burst traffic and provides better performance in

terms of delay, throughput, retransmission, packet duplication, and packet loss compared to CoAP.

Keywords: Congestion control, Internet of Things, Rate control.

Received on 31 August 2022, accepted on 22 December 2022, published on 29 March 2023

Copyright © 2023 Dang Hai Hoang, et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-

NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long

as the original work is properly cited.

doi: 10.4108/eetiot.v9i1.2655

*Corresponding author. Email: haihd@ptit.edu.vn

1. Introduction

Internet of Things (IoT) networks are widely applied in

many fields such as industry, agriculture, healthcare,

transportation, environment, and smart cities. Typically, IoT

networks consist of three main components: (1) a subnet of

various IoT devices to collect data from the environment,

(2) a subnet of gateways for relaying data, and (3) multiple

servers on the Internet to process collected data and provide

services. Typical applications often require sending a large

amount of collected data to a remote server on the Internet.

This transmission can cause congestion, which leads to

unexpected performance degradation. The problem of

congestion control has been extensively studied in

traditional computer networks but still is a challenge in IoT

networks.

In contrast to traditional networks, IoT networks have

different characteristics and dynamic links, with a high bit

error rate. IoT devices typically have limited resource and

processing capability. Therefore, the transmission control

protocol (TCP) has been neglected in IoT networks [1].

Because of the limited resources and constraints, the

development of lightweight protocols is encouraged. Several

lightweight transport protocols have been developed for IoT

networks, such as message queue telemetry transport

(MQTT), advanced message queuing protocol (AMQP), and

constrained application protocol (CoAP) [2]. MQTT and

AMQP rely on TCP to transport data messages. In contrast,

CoAP operates on top of a user datagram protocol (UDP),

but it provides reliable connection-oriented data transport

similar to TCP.

CoAP has been standardized by the Internet Engineering

Task Force (IETF) with RFC 7252 [3]. Similar to TCP,

CoAP provides a congestion control mechanism. However,

the design of CoAP reduces some control facilities

compared with TCP to keep the protocol lightweight. The

congestion control of CoAP simply relies on timeout to

retransmit the lost packet. Because of its shortcomings,

many studies have proposed an enhancement for the CoAP.

However, the remaining issues and limitations have been

outlined in recent studies [2] [4] [5].

In this article, we investigate two remaining issues of the

CoAP: 1) Lack of support for burst data transfer and 2) Lack

of transmission rate control to avoid congestion. We propose

an analytical model for the CoAP burst traffic. Based on this

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:haihd@ptit.edu.vn

 Thi Thuy Duong Le, Dang Hai Hoan, and Thieu Nga Pham

2

model, we developed a control algorithm for CoAP to control

the transmission rate for burst data transfer and alleviate

network congestion. The remainder of this paper is

organized as follows. Section 2 presents the background and

related works. In Section 3, we present the proposed model

and control algorithm. Finally, Section 4 presents the

simulation results. Section 5 concludes the article.

2. Background and related work

This study focuses on the reliable mode of CoAP for burst

traffic. According to [3][5], the reliable mode of CoAP is

similar to that of TCP. CoAP uses acknowledgment (ACK)

packets to confirm the transmission of confirmable (CON)

packets.

Figure 1 shows the data exchange between a CoAP

sender (IoT client) and CoAP receiver (server) in reliable

transport mode. Let Ts denotes the sending time of a CON

packet and Ta be the receiving time of an ACK packet. The

time difference Ta-Ts represents a round-trip time (RTT).

RTT is the time interval between a transmitted CON packet

and the received ACK for the corresponding packet sent

from the receiver. The retransmission timeout (RTO) is a

time variable used to check the ACK. The initial RTO for

each packet is predefined between 2 s and 3 s [3].

Figure 1. Data exchange between sender and receiver

The sender sends only the next CON packet after

receiving the ACK from the server. If the sender does not

receive an ACK for a CON packet during RTO, the CON

packet is lost. The CoAP sender must initiate

retransmission. Four retransmissions are allowed for each

retransmitted packet. The RTO variable is doubled for each

retransmission attempt, which is called the binary

exponential backoff (BEB) policy. After four unsuccessful

retransmission attempts, the lost packets are not

retransmitted. The connection can be considered to have

failed, or the sender continues to send subsequent packets.

The higher layer on the server may require the sender to

resend the block of lost packets. The retransmitted packets

can be duplicated or disordered on the server. The higher

layer discards duplicate packets and rearranges the order of

the received packets. However, these issues are beyond the

scope of this article.

Figure 1 shows three unsuccessful retransmissions of a

CON packet and the last successful retransmission of a CON

packet. Similar to TCP, packet loss indicates the occurrence

of network congestion. In contrast to TCP, CoAP did not

support burst traffic. This means that CoAP does not allow

for inflight packets, that is, packets sent but not yet

acknowledged. The CoAP sender can send only a new

packet when it receives an ACK for the previous packet. As

indicated in [3][5], CoAP restricts the number of concurrent

packets that can be sent without receiving an ACK.

Therefore, the CoAP does not support burst data transfer.

Because of this limitation, CoAP exhibits poor performance

if ACK packets are delayed. In this case, the sender remains

in a long idle period, waiting for acknowledgment from the

server. In the case of temporal packet loss, CoAP shows

inefficient data transfer. The link bandwidth is wasted at

long idle intervals.

The second deficiency of CoAP is the lack of rate control

to avoid congestion. The simple control mechanism of

CoAP is activated only when congestion occurs. The CoAP

sender only adjusts the retransmission speed by halving the

retransmission timeout based on the BEB. This implies that

the RTO is doubled for each retransmission attempt. Thus,

the RTO value plays an important role in CoAP. A large

RTO value can lead to long idle delays, which causes

inefficiency and poor performance. If the RTO value is small

in comparison to the propagation delay, the sender can

trigger the early retransmission, resulting in spurious

retransmissions and an additional load for the network. Fixed

RTO values do not reflect the dynamic nature of the

networks, because the propagation delay can fluctuate

according to the load and congestion situation in the network.

The current CoAP uses fixed RTOs and ignores the changes

in the round-trip time. The dynamic network conditions were

not considered.

Because of these shortcomings, various studies have

proposed modifying CoAP. The proposed variants of CoAP

can be classified into three groups: 1) RTO modification [6]–

[11], 2) enhancement of burst transfer [5] [12][13][14], and

3) enhancement of rate control [16]–[19].

Most studies have focused on RTO modifications for

CoAP [6]–[11]. This is because a fixed RTO value of the

CoAP is not suitable for dynamic network conditions. The

authors in [6] proposed a dynamic update of RTO to restrict

the frequency of retransmissions. Because of the variation in

RTT, the authors in [7] proposed using two estimators to

update RTOs. A variable backoff factor (VBF) for RTOs was

used instead of the BEB policy in the CoAP. In [8], the

authors proposed a small RTT multiplicative factor for

computing dynamic RTOs. A probabilistic backoff factor

(PBF) was proposed. A dynamic scaling factor was proposed

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

Avoiding Congestion for Coap Burst Traffic

3

in [9] to estimate RTOs. The authors in [10] proposed a

fuzzy logic system to compute RTOs using smooth RTT

estimation and a flexible backoff mechanism. In [11], the

maximum mean deviation of the RTOs was computed to

avoid the impact of RTT variations and limit the overall RTO

value. As presented, RTO modifications do not consider the

burst transfer and rate control problems. The RTO

adjustment affects only the retransmission rate not the

transmission rate.

Several studies addressed the problem of burst traffic,

such as [5] [12] [13] [14]. Because the basic CoAP [3] does

not support burst traffic, new modifications were proposed in

[5] [12]. Burst transfer has been proposed using block-wise

transfers. The authors in [5] proposed an option for CoAP

headers to transfer large payloads in a block-wise manner. A

similar mechanism has been proposed in [12]. However,

these mechanisms are only used either to separate large

datagrams into blocks [5] or for unreliable data block transfer

[12]. In addition, these mechanisms are used for flow control

rather than for congestion control. In [13], the authors

showed the problem of RTO computation for packets in a

burst. A retransmission counter was proposed as an option

field in the packet header to estimate the RTT for every

packet of burst traffic. The burst transfer of streaming data

was investigated in [14][15]. The impact of RTOs on video

streaming applications was investigated.

Few studies have addressed transmission rate control for

CoAP. The authors in [16] proposed a control mechanism

for CoAP based on the TCP BBR (bottleneck bandwidth

round-trip propagation time) protocol. This mechanism

estimates the bottleneck bandwidth and round-trip

propagation time to determine the new RTO and adjust the

transmission rate. However, this mechanism cannot be used

for burst traffic. In [17], the authors proposed a rate-based

mechanism for regulating the sending rate of the CoAP

sources. This mechanism is not feasible because it requires

knowledge of bandwidth information along the connection

path. A rate-based scheme was proposed in [18] using probe

packets to estimate bottleneck bandwidth. However, the

authors indicated the difficulty in estimating the bottleneck

bandwidth.

3. Control algorithm for CoAP

As presented, modifications and enhancements of CoAP did

not satisfy the requirements of burst data transfer and control

of the transmission rate. In this section, we present the

proposed control algorithm for CoAP to solve the mentioned

problem. First, we present an analytical model for the CoAP

burst traffic. Subsequently, we presented a control algorithm

based on the proposed model.

3.1. Analytical model for CoAP burst traffic

Referring to Figure 1, the sequences of the CON and ACK

packets can be described using a discrete-time model. This

model was typically used in computer networks [19] [20]. In

[19], Kleinrock analyzed the congestion control using

queueing systems for TCP. In [20], Keshav used a discrete

time model to illustrate TCP conversation over a series of

network nodes in an end-to-end path. In this study, we used a

discrete-time model for CoAP transactions. However, this

model differs from TCP [19] [20] in various aspects. First,

the TCP model describes throughput and delay as functions

of the congestion window. The control decision increases or

decreases window size. By contrast, the CoAP model uses

inflight packets and adjusts the sending rate. The sending rate

and delay are functions of the inflight packets. Second, the

TCP model uses triple ACKs as indicators of packet loss. In

contrast, CoAP considers ACK loss as a packet loss

according to RFC 7252 [3]. Third, the control objective of

the TCP model was the window size, whereas it was the

sending rate in the proposed CoAP model.
Figure 2 presents the periods of sending and receiving

packets for the CoAP burst traffic. Let k denote an RTT
period and T(k) be the time duration of this period. A CoAP
sender can send several inflight packets during each period k.
The sending rate was adjusted in a discrete time manner.
That is, the decision on rate control can be made at the time
of packet sending.

Figure 2. Periods of burst traffic

Let (k) denote the sending rate during period k, µ(k) the
delivery rate computed at the receiver in period k, and T(k)
the time interval of period k. The amount of data packets
(inflight packets) transmitted in period k can be computed as
follows:

L(k) = (k)×T(k) (1)

Among transmitted packets L(k), there are µ(k) x T(k)
packets that have been processed by the receiver (i.e., the
received packets and ACKs). Let n(k) denote the
instantaneous number of packets that arrive at the destination

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

 Thi Thuy Duong Le, Dang Hai Hoan, and Thieu Nga Pham

 4

waiting for processing. The cumulative number of packets in
the next period (k+1) is denoted as n(k+1). We have:

n(k+1) = n(k) + (k) ×T(k) - µ(k) × T(k) (2)

From (1) and (2), we have:

n(k+1) = n(k) + L(k) - µ(k) × T(k) (3)

From (3), we have:

 (4)

Using (1) and (4), we can have:

 (5)

where n = n(k+1) - n(k) (6)

n represents the number of increased or decreased
packets between the periods. This amount depends on the
sending rate of the sender and processing capability of the
receiver. According to [20], we can define a utilization factor

 as follows:

 (7)

The system is stable if 1, which means that µ .
That is, the sending rate must be less than or equal to the
delivery rate under stable conditions. In other words, the
delivery rate must be greater than or equal to the sending rate
to avoid congestion. Without loss of generality, we can
assume that the minimal delivery rate µ(k) at step k is equal

to the sending rate (k-1) at step k-1 because of a small time
interval between k-1 and k. We can rewrite (5) as follows:

 (8)

The quotient in (8) represents the amount of

increased or decreased packets in each period k. The smallest

increase is one if n is equal to one. If we do not want to
make the control more aggressive, we can choose the value

n = 1 for the increase of the sending rate in case of no
congestion. Thus, we can rewrite (8) as follows:

 (9)

The increase of one packet per T(k) is reasonable owing
to a possible large number of inflight packets at this moment.
As indicated in [21], senders can treat the network as a black
box and interact with the receiver using only requests and
responses. In [20], Kleinrock showed that it is possible to
model an end-to-end connection in the form of a physical
pipe. The diameter of the pipe describes the maximum
bottleneck bandwidth for all flows. The pipe length describes
the propagation delay. Intuitively, the delivery rate must be
less than or equal to the maximum bottleneck bandwidth to
avoid congestion.

Assume that the pipe can be described in a Cartesian
coordinate system, where the x-axis represents the
propagation delay, and the y-axis represents the diameter of
the pipe. Let Y denote the portion of the diameter used by a
CoAP flow and X be the propagation delay of the flow. The
product of X and Y represents the number of inflight packets

of such a flow. Thus, we can define a function that represents
the number of inflight packets for each flow. Owing to the
non-linear characteristics of the parameters, we must use an
exponential function. Using an exponential function is the
best way to model a nonlinear variable [20]. We define a
utility function U(L) for inflight packets as follows:

 (10)

where (L) is a function of L representing the delivery
rate at the receiver, L is the number of inflight packets, T(L)

is the delay function of L, is a control factor, and > 0.

The utility function U(L) represents the relationship
between delivery rate and packet delay with variable L
(inflight packets). Delivery rate is defined as the ratio of the
number of received packet at the destination and the time
unit. This ratio corresponds to the receiving flow rate. From
(10), we have

log(U(L)) = log(T(L)) – log((L) (11)

By taking the differential for both sides, we can have:

 (12)

The utility function U(L) is maximum if its derivative is
equal to zero. That is,

 (13)

Therefore, we have:

 (14)

The quotient represents the relative variation in the

delivery rate, whereas the quotient represents the

relative variation of the packet delay with the number of

inflight packets L. The value represents a relative variation
ratio of both presented quantities.

The utility function increases with the delivery rate and
packet delay. This function reaches its maximum at point, as
described by (14). Subsequently, the function decreases. This
is the case of congestion when the number of inflight packets
becomes too large. The goal of control is to limit the number
of inflight packets before the maximum point of the utility

function. The meaning of the control factor is as follows:

- If < 1, the increase speed of the delay variation is faster
than that of the delivery rate variation. The objective of the
control will be in the direction of a lower delay.

- If > 1, the increase speed of the delay variation is slower
than that of the delivery rate variation. The objective of this
control will be in the direction of higher delivery rate.

- If = 1, the packet delay increases according to the
delivery rate. The objective of this control is to maintain a
balance between the delivery rate and packet delay.

Let B(L) denote the number of inflight packets at the end
of period k. We consider two cases: 1) without packet loss
and 2) with packet loss.

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

Avoiding Congestion for Coap Burst Traffic

5

In the case without packet loss, all transmitted packets L
arrive at the destination in period k. The number of received
packets is denoted by B(L). At the maximum point of U(L),
we can determine the delivery rate (L) as follows:

 (15)

Thus, from (14), we can have:

 (16)

 (17)

Because of the assumption of no packet loss, from
Equation (1) we can deduce that:

 (18)

Thus, from (17) and (18), we can obtain:

 (19)

Equation (19) indicates the amount of inflight packets
B(L) at the maximum point of the utility function in the case
of no packet loss.

We now consider the case of packet loss. Suppose that
packet loss occurs owing to congestion during period k. Let
B(L) denote the number of inflight packets at the maximum
of utility function U(L) in case of packet loss. The delivery
rate (L) at packet loss time is determined as follows:

 (20)

By substituting (L) into (11), we have:

log(U(L)) = (1+)log((L)) – log(B(L)) (21)

The utility function U(L) is maximum if its derivative is
equal to zero. That is,

 (22)

Thus, we can compute B(L) as follows:

 (23)

As explained above, the sending rate must be less than or
equal to the delivery rate to avoid congestion. The maximum
sending rate just before packet loss occurs, is determined as
follows:

 (24)

By substituting (24) into (23), we have:

 (25)

By comparing (25) and (19), we can conclude that B(L)
in case of packet loss must be less than B(L) in case without

packet loss by a factor of . If we choose = 1, we have

 (26)

This means that B(L) in case of packet loss is half of B(L)

in case without packet loss. That is, the sending rate must be
adjusted to maintain half of inflight packets to obtain a
maximum of the utility function in case of packet loss.
Because the same number of inflight packets occurs before
and after packet loss, the sending rate must be reduced to a
half in case of packet loss.

Therefore, we obtain the following control mechanism.

- Without packet loss, the CoAP sender can increase the
sending rate by one as follows:

 (27)

- In the case of packet loss, (i.e., when congestion
occurs), the CoAP sender must decrease the sending rate by
half.

 (28)

where (k) is the sending rate at step k, (k-1) is the
sending rate at the previous step k-1, T(k) is the round-trip
time measured at step k, and k is the time when the sender
receives an ACK. The equations (27) and (28) represent the
proposed rate control mechanism for CoAP in this paper.

3.2. A rate control algorithm for CoAP

Based on the developed model, we propose a rate control
algorithm for CoAP burst traffic, as follows:

Start-up phase

• The CoAP sender starts with an initialized transmission

rate. This rate is unimportant, because it is replaced at

the end of the start-up phase.

• During two estimated RTTs, the sender transmits

packets and counts the number of received ACKs

(nACK). The lost packets are not retransmitted.

• The sender updates the RTT estimation for each

received ACK.

• The start-up phase is completed after two estimated

RTTs. The transmission rate is computed as the ratio of

nACK and 2 x RTT. If nACK is equal to zero, the sender

assumes that all transmitted packets have been lost. In

this case, the sender must restart the connection.

• Subsequently, the sender enters the steady phase.

Steady phase

• The CoAP sender sends packets continuously using the

computed transmission rate at the end of start-up. The

sender sets an RTO for each transmitted packet.

• If RTO expires and no ACK is received for the

transmitted packet, the timeout function retransmit the

lost packet. Four retransmissions are allowed for each

packet. The RTO is updated for each retransmission

attempt using BEB. After four unsuccessful packet

retransmissions, the packet is considered lost.

Subsequently, the timeout function marks packet loss

for loss detection.

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

 Thi Thuy Duong Le, Dang Hai Hoan, and Thieu Nga Pham

 6

• If packet loss is detected, the sender enters the backoff

phase. In case without packet loss, the sender increases

the transmission rate using Eq. (27) after each RTT.

• The steady phase repeats the subsequent loop.

Backoff phase

• At the beginning of this phase, the sender immediately

reduces the transmission rate by half using Eq. (28) to

avoid congestion.

• Subsequently, the sender performs a backoff loop to

check ACK.

• If an ACK is received, the sender assumes that

congestion has been resolved. Subsequently, the sender

sends a new packet and returns to the steady phase.

• If no ACK is received, the sender assumes that the

congestion remains. Accordingly, the sender must

reduce the current transmission rate by half after each

estimated RTT, to avoid further congestion.

• The backoff loop is repeated if the sender does not

receive an ACK during the maximum transaction time,

as defined in [3]. If no ACK is received when this

maximum time is reached, the transaction is considered

to have failed. Subsequently, the sender must restart.

4. Simulation experiments

Because of its lightweight design, the proposed control

algorithm can be easily implemented in the protocol stack of

an IoT device and a remote server, as shown in Figure 3.

CoAP+ is the modified version of CoAP that uses the

proposed control algorithm.

Figure 3. Implementation of the proposed algorithm

We used the Network Simulator NS-3.36 [22] for the

simulation evaluation of the proposed CoAP+ and basic

CoAP. All the simulation scenarios used a star network

topology, as shown in Figure 4.

Figure 4. Simulation model

All senders, including ten basic CoAP and ten CoAP+

flows, were implemented at the wireless nodes of a Wi-Fi

network. This Wi-Fi network uses a base station (BS) and is

connected to the Internet through a gateway. The senders

transmit the collected packets to a central server. We assume

that all senders had sufficient collected data to simulate burst

traffic. The Wi-Fi network was established using the

standard parameters of IEEE 802.11 in NS-3 [22]. We

evaluated CoAP+ and CoAP using two simulation scenarios:

occasional congestion and heavy congestion. Although

various link bandwidths and delays can be selected for the

simulation experiments, the aim of these experiments was to

compare the schemes under the same network conditions.

All measured values were computed using average values for

all ten flows. The simulation time was 1000 s. We conducted

each experiment ten times to compute confident

measurements.

Occasional congestion scenario
In these scenarios, the link bandwidth between the base

station (BS) and gateway was 300 Kbps, with a delay of 70

ms. The link bandwidth between the gateway and server was

1 Mbps with a delay of 50 ms. These parameters are used to

create occasional congestion conditions.
Figure 5 shows comparison of the average delays for

CoAP+ and CoAP flows. As indicated, the delay in CoAP
was larger than that in CoAP+ because of the congestion.
Large delays were observed for CoAP during 20 and 420 s
because of retransmissions. For CoAP, many packets did not
arrive at the server because of timeout. CoAP retransmitted
these packets using a doubled RTO at each retransmission
attempt. In contrast, CoAP+ did not require retransmission
owing to its rate control. The average delay was 844.76 ms
with confidence intervals of (826.19, 863.33) in CoAP+ and
was 18702.23 ms with confidence intervals of (17320.67,
20083.79) in CoAP, respectively. Confidence intervals were
computed at a confidence level of 99%.

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

Avoiding Congestion for Coap Burst Traffic

7

Figure 5. Average delay in occasional congestion

Figure 6 shows a comparison of the average throughputs
of CoAP+ and CoAP. The throughput fluctuated owing to
the occasional congestion. CoAP+ attempted to leverage
bandwidth to improve its performance when congestion was
resolved, whereas CoAP did not. Therefore, CoAP+ can
achieve better throughput in the case of congestion. The
average throughput was 0.669 Kbps with confidence
intervals of (0.657, 0.680) for CoAP+, and was 0.664 Kbps
with confidence intervals of (0.591, 0.737) for CoAP,
respectively. The confidence intervals were computed using
a confidence level of 99%.

Figure 6. Throughput in occasional congestion

The results show that CoAP+ shows better performance
in terms of delay, throughput, retransmission, packet
duplication, and loss rate than CoAP under the same network
conditions with occasional congestion. Table 1 shows a
performance comparison between CoAP+ and CoAP. The
average values were computed for ten flows for each scheme.

Table 1. Performance evaluation

Average CoAP+ CoAP

Packets sent 703 201

Packets acknowledged 703 199

Retransmitted packets 2 (0.03%) 180 (90.81%)

Duplicated packets 0 (0.0%) 174 (87.44%)

Successful received
packets

703 (100%) 195 (97.89%)

Lost packets 0 (0.0%) 2 (0.10%)

Average delay 844.76 ms 18702.33 ms

Average throughput 844.76 Kbps 0.664 Kbps

During the simulation, we classified the collected packets

in the tracing data according to their types: 1) packets sent, 2)
packets acknowledged (including acked and retries), 3)
retransmitted packets, 4) duplicated packets, 5) successful
received packets (only successful acked), and 6) lost packets.
The values in Table 1 presents the average number of packets
of each type for one flow (i.e., total packets of each type
divided by 10 flows) using rounded integers. Let i denote the
packet type (i=1: sent packets sent, i=2: acknowledged
packets, i=3: retransmitted packets, i=4: duplicated packets,
i=5: successful received packets, i=6: lost packets). Let Mi
denote the total number of packets of type i from ten flows.
All values Mi were measured during the simulation time for
each scheme.

Let Ni be the average number of packets of type i of each
flow. We compute the average values for each of ten flows as
follows:

Ni = Mi / 10 (29)

Let Xi denote the percentage of measured packets of type
i for each of ten flows, we have:

 with i = 3,4,5,6 (30)

where N2 is the average number of acknowledged packets
for one of ten flows.

In this experiment, the number of packets measured for
CoAP+ was as follows: Mi = {7036, 7036, 2, 0, 7036, 0}
with i = 1,2,…,6. Therefore, we have Ni = {703.6, 703.6, 0.2,
0, 703.6, 0} with i = 1,…,6. Accordingly, we have Xi =
{0.03%, 0.0%, 100%, 0.0%} with i = 3,4,5,6 for the CoAP+
scheme. In the CoAP, the number of packets was measured
as follows: Mi = {2012, 1991, 1808, 1741, 1949, 20} with i =
1,…,6. Therefore, we have Ni = {201.2, 199.1, 180.8, 174.1,
194.9, 2} with i = 1,2,…,6. Accordingly, we have Xi =
{90.81%, 87.44%, 97.89%, 0.10%} with i = 3,4,5,6. Note
that Table 1 shows the rounded integers of the average values
for a flow.

Heavy congestion scenarios
In these scenarios, the link bandwidth between the base

station (BS) and gateway was 300 Kbps, with a delay of 70

ms. The link bandwidth between the gateway and server was

1 Mbps with a delay of 140 ms. This link delay was doubled

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

 Thi Thuy Duong Le, Dang Hai Hoan, and Thieu Nga Pham

 8

to cause a large RTT resulting in a high likelihood of heavy

congestion.

Figure 7 shows a delay comparison between CoAP+ and

CoAP. As indicated, the CoAP+ and CoAP flows became

congested quickly after the start-up. The CoAP had more

delayed packets than CoAP+ because more packets were

required to be retransmitted in CoAP. In contrast, CoAP+

was quickly recovered after congestion. Therefore, CoAP+

had fewer delayed packets.
Large delays and retransmissions were observed for

CoAP during 0 and 270 s because of the high number of
packet losses. In contrast, CoAP+ had fewer retransmissions
owing to its rate control. The average delay was 3651.53 ms
with confidence intervals of (2606.36, 4696.35) in CoAP+
and was 32207.25 ms with confidence intervals of
(28878.25, 355536.24) in CoAP, respectively. All
confidence intervals were computed with a level of 99%.

Figure 7. Average delay in heavy congestion

Figure 6 shows a throughput comparison of CoAP+ and
CoAP under heavy-congestion conditions. CoAP+ flows
attempted to leverage bandwidth to improve the performance
when congestion was resolved. In contrast, the CoAP flows
were not controlled to alleviate congestion. The average
throughput was 0.668 Kbps with confidence intervals of
(0.533, 0.802) for CoAP+ and 0.667 Kbps with confidence
intervals of (0.592, 0.763) in CoAP, respectively.
Confidence intervals were computed at a confidence level of
99%.

Figure 7. Throughput in heavy congestion

Note that, although the average throughput was the same
for both CoAP+ and CoAP, CoAP+ sent more packets than
CoAP. The number of packets sent was 227 for CoAP+, and
161 for CoAP. CoAP had more retransmitted and duplicated
packets than those of CoAP+. CoAP+ successfully received
166 packets, whereas CoAP had only 124 successful
received packets. CoAP+ had a higher number of lost packets
than CoAP because CoAP+ sent more packets than CoAP
under the same conditions. Although CoAP received a high
number of packets, most of them were retransmitted
(86.25%) and duplicated (86,25%). Table 2 shows a
performance evaluation of CoAP+ and CoAP under heavy
congestion conditions.

Table 2. Performance evaluation in heavy congestion

Average CoAP+ CoAP

Packets sent 227 161

Packets acknowledged 226 160

Retransmitted packets 93 (41.15%) 138 (86.25%)

Duplicated packets 78 (34.51%) 138 (86.25%)

Successful received
packets

166 (73.45%) 124 (77.50%)

Lost packets 57 (25.22%) 31 (19.38%)

Average delay 3651.33 ms 32207.25 ms

Average throughput 0.668 Kbps 0.667 Kbps

The values in Table 2 were calculated similar to Table 1

using equation (29) and (30). All packets were collected
during the simulation time according to their types and
divided by the number of flows (i.e., by ten) to calculate the
average value for a flow. The values reflected the real
number of packets that were traced during the simulation. In
this experiment, the measured average values in CoAP+
were: Ni = {227, 226, 93, 78, 166, 57} with i = 1,2,…,6.
Accordingly, we have Xi = {41.15%, 34.51%, 73.45%,
25.22%} with i = 3,4,5,6 for the CoAP+ scheme. In the
CoAP, the measured average values were: Ni = {161, 160,
138, 138, 124, 31} with i = 1,2,…,6. Accordingly, we have
Xi = {86.25%, 86.25%, 77.50%, 19.38%} with i = 3,4,5,6.

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

Avoiding Congestion for Coap Burst Traffic

9

All values were rounded integers. Note that, some packets
might not reach the destination because of their long delays
and they were dropped when the simulation ended.

The results indicate that CoAP+ exhibits better
performance in terms of delay, throughput, retransmission,
packet duplication, and received packets than CoAP under
the same network conditions with heavy congestion
conditions.

5. Conclusion

Congestion is an important issue in IoT networks with

constrained devices and a growing number of applications.

This paper investigates the problem of congestion control

for CoAP burst traffic. Because the current CoAP uses a

simple congestion algorithm, it does not support burst data

transfer and lacks rate control to avoid congestion. By

analyzing the shortcomings of CoAP, this paper proposes an

analytical model for CoAP burst traffic and a rate control

algorithm. The proposed CoAP+ algorithm provides a

suitable solution by controlling the transmission rate to

avoid congestion. The simulation results showed that

CoAP+ provides better performance for burst traffic than the

current CoAP under the same network conditions.
Future studies can investigate bottleneck bandwidths to

detect congestion early for advanced congestion control.

References

[1] Gomez C., Archia-Moret A., Crowcroft J., et.al., TCP in the

Internet of Things: from ostracism to prominence, IEEE

Internet Computing, 2018, vol. 22, Issue 1, pp. 29-41.

[2] Tariq M.A., Khan M., Khan M.T.R., Kim D., Enhancements

and Challenges in CoAP–A Survey, Sensors, 2020, DOI:

10.3390/s20216391, vol. 20, 2020 (6391), pp. 1-29.

[3] RFC 7252, The Constrained Application Protocol (CoAP),

available: https://rfc-editor.org/info/rfc7252.

[4] Haile H., Grinnemo K., Ferlin S., et.al., End-to-end

congestion control approaches for high throughput and low

delay in 4G/5G cellular networks, Computer Networks, 2021,

vol. 186.

[5] Bormann C., Shelby Z., Block–Wise Transfers in the

Constrained Application Protocol (CoAP), [Online].

Available: https://rfc-editor.org/info/rfc7959.

[6] Betzler A., Gomez C., Demirkol I., Paradells J., CoAP

congestion control for the internet of things, IEEE Commun.

Mag., 2016, vol. 54, no. 7, pp. 154–160.

[7] Bormann C., Betzler A., Gomez C., Demirkol I., CoAP

Simple Congestion Control/Advanced, Internet-Draft, Feb.

2018. [Online]. Available: https://tools.ietf.org/id/draft-

bormann-core-cocoa-03.txt.

[8] Betzler A., Gomez C., Demirkol I., Paradells J., CoCoA+: An

advanced congestion control mechanism for CoAP, Ad Hoc

Netw., Oct 2015, vol. 33, pp. 126–139.

[9] Deshmukh S., Raisinghani V.T., AdCoCoA–Adaptive

Congestion Control Algorithm for CoAP, in Proc. of 11th

IEEE Int. Conf. on Computing, Communication and

Networking Technologies (ICCCNT), Kharagpur, India, Jul.

2020, pp. 1-7.

[10] Aimtongkham P., Horkaew P., So-In C., An Enhanced CoAP

Scheme Using Fuzzy Logic with Adaptive Timeout for IoT

Congestion Control, IEEE Access, Apr. 2021, vol. 9,

pp.58967-58981.

[11] Bolettieri S., Tanganelli G., Vallati C., Mingozzi E.,

pCoCoA: A precise congestion control algorithm for CoAP,

Ad hoc Network, Nov. 2018, vol. 80, pp.116-139.

[12] Boucadair M., Shallow J., Constrained Application Protocol

(CoAP) Block-Wise Transfer Options Supporting Robust

Transmission, Internet-Draft, May 2021. [Online].

https://tools.ietf.org/id/draft-ietf-core-new-block-14.

[13] Lee J.J., Kim K.T., Youn H.Y., Enhancement of congestion

control of Constrained Application Protocol/Congestion

Control/Advanced for Internet of Things environment, Int. J.

of Distributed Sensor Networks, Nov. 2016, vol. 12 (11), pp.

1-13

[14] Rahman W.U., Choi Y.S., Chung K., Performance Evaluation

of Video Streaming Application Over CoAP in IoT, IEEE

Access, Apr. 2019, vol. 9, pp.39852-39861.

[15] Jung J.H., Gohar M., Koh S.J., CoAP–Based Streaming

Control for IoT Applications, Electronics, Aug. 2020, vol. 9

(8) 1320, DOI: 10.3390/electronics9081320, pp. 2-19.

[16] Ancillotti E., Bruno R., BDP–CoAP: Leveraging Bandwidth-

Delay Product for Congestion Control in CoAP, in Proc. of

5th IEEE World Forum on Internet of Things (WF-IoT),

Ireland, Apr. 2019, pp. 656-661.

[17] Ancillotti E., Bruno R., Vallati C., Mingozzi E., Design and

Evaluation of a Rate–Based Congestion Control Mechanism

in CoAP for IoT Applications, in Proc. 19th IEEE Int.

Symposium on “A World of Wireless, Mobile and Multimedia

Networks” (WoWMoM), Greece, Jun. 2018, pp. 14–15.

[18] Hoang D.H., Le T.T.D., RCOAP: A Rate Control Scheme for

Reliable Bursty Data Transfer in IoT Networks, IEEE Access,

2021, vol. 9, doi: 10.1109/ ACCESS.2021. 3135435, pp.

169281-169298.

[19] Kleinrock L., Internet congestion control using the power

metric: Keep the pipe justfull, but no fuller, Ad Hoc

Networks, 2018, 05-015, pp.1-16.

[20] Keshav S., A Control-theoretic Approach to Flow Control, in

ACM SIGCOMM, Computer Communication Review, Sept.

1991, Vol. 21, Issue 4, pp 3–15.

[21] Jain R., A delay-based approach for congestion avoidance in

interconnected heterogeneous computer networks, CM

SIGCOMM Computer Communication Review, Oct. 1989,

Volume 19, Issue 5, pp 56–71.

[22] NS-3 Network Simulator, version 3.36, available:

https://www.nsnam.org

EAI Endorsed Transactions
on Internet of Things

01 2022 - 04 2023 | Volume 9 | Issue 1 | e2

