
DDS-XRCE Standard Performance Evaluation of

Different Communication Scenarios in IoT Technologies

Şevval Şolpan1,* and Kerem Küçük2

1Department of Computer Engineering at Kocaeli University, Kocaeli, Turkey
2Department of Software Engineering at Kocaeli University, Kocaeli, Turkey

Abstract

Although the increasing number of technological products brings many solutions for Internet of Things (IoT) applications,

it also causes some drawbacks, such as whether the product in question would run accordingly to a system structured to

enable high-performance like Data Distribution Service (DDS). Therefore, the capabilities of the products must be defined

to say that they are compatible enough. This paper aims to evaluate the performance of the DDS-XRCE standard while

observing its working mechanism. As test scenarios, we benefit from three DDS-XRCE deployments that occurred due to

the kind of receiver and sender, the path that packets follow, and the protocols used. Test conditions were set by switching

stream modes, transport profiles, and limiting packet deliveries. We obtained the test environment by creating the DDS and

DDS-XRCE objects using several eProsima implementations and tools for the standards. We monitored the network

messages in two ways: 1) Using multiple Gnome Terminator terminals for observation via the human eye during testing. 2)

Using Wireshark to save the information of the packets for further examination. We conducted 36 experiments focusing on

latency, throughput, and packet loss. As a result of our study, the DDS-XRCE standard is deemed suitable for Internet of

Things applications.

Keywords: DDS-XRCE, Latency, Packet loss, Performance evaluation, Throughput.

Received on 12 September 2022, accepted on 05 November 2022, published on 23 November 2022

Copyright © 2022 Şevval Şolpan et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-

SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the

original work is properly cited.

doi: 10.4108/eetiot.v8i4.2691

1. Introduction

The term "Internet of Things (IoT)" comes into question and

is used for systems whose objects are established in the

physical environment and connected over the Internet [1]. In

the last decade, the IoT has gained popularity in several areas,

such as the military, automation, and healthcare. It has

considerable potential due to its technology based on sensors

in the issue of reducing intervention [2]. Thus, it draws the

attention of experts even more. It accomplishes this due to

technology enabling itself.

An IoT system can be described as a vast network whose

devices cooperate and share data. Sensors are the components

of the system that generate data, and the system generates a

massive amount of data in a short period [3]. Simultaneously,

*Corresponding author. Email: 205112004@kocaeli.edu.tr

increasing data results in concerns about its handling or its

protection. Therefore, technologies and disciplines that

enable IoT draw attention in order to improve IoT systems as

well.

For instance, to improve human-machine interaction, some

researchers want machines to be able to identify emotions and

produce their own. The reason is that the IoT does not solely

consist of machine-to-machine interaction. It also includes

human-machine interaction [4]. Some researchers make a

contribution by creating a platform to evaluate a video

streaming service that operates in the cloud-server

environment in the context of cloud computing [5]. Some

researchers focus on the security of IoT systems. Because

attackers mostly try to manipulate the network in assorted

ways, it causes the network to be at risk [6]. Thus, it is thought

that if machine learning algorithms are allowed to learn the

operation of the devices and objects in the system, then the

EAI Endorsed Transactions
on Internet of Things Review Article

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:205112004@kocaeli.edu.tr

Şevval Şolpan and Kerem Küçük

system might be able to prevent corruption caused by

unknown origins by detecting abnormal behaviour [7].

It is seen that an IoT system contains various devices of

different technologies as it is a vast network. However,

maintaining communication between devices becomes quite

challenging when IoT is applied in a heterogeneous

environment whose objects carry unalike purposes and

priorities. The way of communication takes form regarding

the kind of devices, purpose and priorities of the

implementation, area of functioning, location, protocols,

software, and the other end of the connection. The variation

appears as a solution for possible problems in challenging

issues. On the other hand, the harmonious functioning of

things has become difficult as a consequence [8]. There is an

increase in the industry's demands regarding IoT applications

easily affected by latency and data [9]. It contributes to the

burdensome communication issue.

Being able to tell the responsive behaviour of the things to

the data is an important issue apart from the compatibility of

the devices in an IoT system as well. In other words, the

processing time, the amount of data transferred periodically,

the amount of data lost, and the retransmissions of the packet

must be known. For that reason, for example, one can say if

the thing runs at low latency or not. When deciding if the

product will perform as expected or not for a certain

implementation, knowing these kinds of characteristics is

essential.

The IoT structure consists of three layers: the perception

layer in which the sensing devices are established for the

collection of data; the network layer in which the devices

access the network for data transmission; and the application

layer in which the applications run actively [2]. IoT

applications process request and response operations over

application layer protocols. The Constrained Application

Protocol (CoAP), Message Queue Telemetry Transport

(MQTT), Extensible Messaging and Presence Protocol

(XMPP), Advanced Message Queuing Protocol (AMQP),

and Data Distribution Service (DDS) that have been adopted

by Object Management Group Inc. (OMG) are the most well-

known application layer protocols [10], [11]. Although

various protocols exist, communication standards do not meet

all the needs due to a wide range of demands, environmental

conditions, constrained devices, limited resources, budget,

and technological limitations. Their usage is a demanding

topic in the IoT that causes users to think thoroughly [12].

OMG published the Data Distribution Service for

Extremely Resource Constrained Environments (DDS-

XRCE) in 2020 as a solution to these limitations and

constraints. There are implementations of DDS-XRCE called

Micro-XRCE-DDS, Micro-XRCE-DDS-Agent, and Micro-

XRCE-DDS-Client by eProsima [13]. “micro-ROS” is a

version of ROS2 and runs on microcontrollers. It contains the

implementation of DDS-XRCE provided by eProsima [14]. It

is possible to see implementations using DDS-XRCE.

Nevertheless, there is a lack of studies concerned with the

DDS-XRCE standard. For that reason, the network

performance characteristics of the DDS-XRCE remain

undetermined, which causes confusion about how to decide

whether the DDS-XRCE will function in a system

harmoniously or not. Therefore, the problem this study aims

to solve is that the DDS-XRCE's unknown performance

characteristics remain unrevealed. In this paper, we evaluated

the performance of DDS-XRCE on its implementation

provided by eProsima. The contributions of this paper are as

follows:

• Analysis of the DDS standard, its objects, and working

mechanism

• Analysis of the DDS-XRCE standard, its objects, and

functioning mechanism

• Analysis of integration between DDS and DDS-XRCE

standards

• Performance evaluation experiments and results of the

evaluation of the DDS-XRCE standard

This paper is expressed as follows: Recent similar studies

mainly concerned with the performance of application layer

protocols were examined and summarised in the second

section. The DDS and DDS-XRCE standards were examined

in the third section. In the fourth section, the experiments

were explained in more detail in three phases: 1) the

preparation phase, 2) the simulation and data collection

phase, and 3) the analysis phase. The information about the

tools used in the experiments was given in the fifth section.

The results of the experiments were presented as tables in the

sixth section. The conclusions that are related to the

behaviours of the DDS-XRCE objects were explained in the

seventh section.

2. Related Work

In [15], Dehnavi et al. modelled an application of the DDS-

XRCE and implemented the model in multi-processor real-

time embedded systems. Additionally, they conducted some

experiments on the systems, which have a soft real-time side

for the DDS-XRCE Agent and a hard real-time side for the

DDS-XRCE Client. The worst-case response times of the

publisher and subscriber were measured using the Scenario

Aware Data Flow (SADF) model, which they proposed to

analyse the expected value of throughput in the long term.

Kang et al. were concerned about the problems that IoT

applications, which are easily affected by data and latency,

cause for the edge and cloud implementations of

publish/subscribe utilities [9]. They utilised the DDS and

Kubernetes (K8s), which manage containerised applications

in the cloud, to come up with a solution to these problems.

The evaluation was maintained by running DDS applications

in the K8s cluster, and they observed the impact of K8s on

the DDS performance by focusing on throughput and latency

when different QoS policies were enabled.

Chul-Hwan Kim et al. developed a simulator to evaluate

the performance of DDS [16]. The development of the

simulator was carried out on the simulation platform called

QualNet, which enables the use of several network protocols.

The performance metrics that the authors focused on are

discovery-completion time, message transmission delay, the

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

quantity of the data messages, and the time spent processing

the user data.

In [17], Krinkin et al. evaluated the performance of DDS.

The experiments were conducted focusing on latency and

jitter in comparison to different open-source implementations

of DDS such as OpenDDS by Prismtech, OpenSplice by

Vortex, and FastRTPS by eProsima.

Thulasiraman et al. evaluated the performance of DDS,

focusing on throughput and latency in a certain scenario [18].

It is because US Naval autonomous systems were in search

of a communication protocol that could work with all network

assets and the DDS was considered a major candidate. They

modelled an experiment system including Satellite

Communications (SATCOM) and Wi-Fi links. Also, Mininet

was used during network emulation and network parameter

arrangement processes.

In [19], Andrei et al. evaluated the performance of DDS

and AMQP. The evaluation was conducted using OpenSplice

and FastRTPS implementations of DDS and the RabbitMQ

implementation of AMQP, focusing on latency, investigation

of message queues, and what the message sizes and

frequencies are when the throughput has reached its highest

level.

Similarly, Profanter et al. evaluated open62541 of OPC

UA, ROS C++ of ROS, eProsima FastRTPS of DDS, and

Eclipse Paho MQTT C of MQTT implementations

comparatively [20]. The evaluation was conducted by

measuring the round-trip time of messages when the systems

were idle, with high CPU load, and under high network load

conditions.

Chen and Khun evaluated the performance of MQTT,

CoAP, DDS, and a custom protocol, which relies on UDP, for

medical purposes using a network emulator [21]. They

focused on the bandwidth consumed by the system, latency,

and packet loss.

Web performance of web implementations and IoT

protocols were evaluated by experimenting on two test

applications by Babovic et al. [22]. In the first application,

various Web platform implementations were evaluated in the

first application on various metrics. In the second application,

MQTT, AMQP, XMPP, and DDS IoT protocols were

evaluated, focusing on latency and throughput.

The aim of Chen et al. is to check if DDS works according

to real-time essentials [23]. It is a study that evaluates the

performance of DDS on the PREEMPT_RT Linux system

and Loongson platform in terms of latency, jitter, and data

throughput. As a result, there is a relationship between the

performance of DDS and the network card.

In [24], MQTT and CoAP protocols were evaluated

theoretically and practically by Palmese et al. Another form

of MQTT, which is MQTT-SN, works according to the

Publish/Subscribe communication scheme. Consequently,

some changes were made to CoAP to follow the same

communication scheme as MQTT-SN to compare them

fairly. Both protocols rely on the UDP protocol in

communication.

According to Sasaki et al., cooperation between IoT

protocols and other protocols of OSI layers is a curious topic

and worth evaluation. For example, IP and associated

protocols perform the work of MQTT. Additionally, MQTT

comes with a Quality of Service (QoS). The performance of

MQTT-TCP cooperation and the MQTT QoS mechanism on

data transmission were analysed [25].

E-health is an area that IoT is crucially interested in, and

the performance of e-health applications is particularly

thought about. Therefore, Kassem and Sleit examined CoAP

and MQTT protocols over e-health scenarios and evaluated

their performance comparatively on the past time that the

authors chose as a metric [26].

MQTT is a protocol whose messages are brokered by an

MQTT Broker between publisher and subscriber. Since

messages pass over the broker, the broker is considered the

point at which blockage is most likely to happen in the

network. Based on that fact, the broker's performance

indicates the performance of MQTT. The performance of

MQTT v5.0 and its new functionalities were evaluated over

its broker using MQTTLoader, which Banno et al. developed

for load testing [27].

Bender et al. evaluated the performance of MQTT over its

several open-source implementations using a test system that

they created, focusing on interoperability, resource

consumption, and latency [28]. These implementations are

Mosquitto, HiveMQ, EMQX, VerneMQ, MQTT.js, and

Paho. The test system they used can work free of MQTT

implementations or language.

Protocols of the application layer have critical significance

in decreasing network traffic in IoT applications. Choosing

them properly might ease the load of network traffic and

increase successful message delivery. For that reason, in [29],

the performance of CoAP, MQTT, and REST is discussed,

which Tandale et al. measured by implementing them on the

Raspberry Pi3 as a gateway and evaluated by focusing on the

bandwidth that protocols consume and time that operations

spend.

In [30], Basavaraju et al. evaluated the AMQP protocol by

comparing RabbitMQ and ActiveMQ message brokers,

focusing on latency, data rate, different payloads, and the

number of messages. One of the message brokers implements

AMQP version 0-9-1. The other implements AMQP version

1-0.

Pohl et al. evaluated AMQP, MQTT, and XMPP protocols,

focusing on bandwidth usage, reliability, latency, and

throughput as performance metrics in a business application.

The test system they designed has three layers, along with

changeable latency and packet loss rate [31].

Previous studies mostly maintained their evaluation by

comparing different protocols or focusing on a single

protocol. Studies focusing solely on one protocol evaluated it

using its several implementations or features. This paper can

be categorised as a study focusing on one protocol, although

it examines two protocols: DDS and DDS-XRCE. The DDS-

XRCE operates by integrating with the DDS. Hence, the use

of DDS-XRCE makes the use of DDS essential in some ways.

It is also what distinguishes this study from previous works.

A necessary integration between protocols rarely occurs.

Even though the DDS appears in the evaluation steps, the

main focus is on the DDS-XRCE. The DDS-XRCE standard

is the subject of this study as a result. The evaluation

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

proceeded while the DDS-XRCE was operating under several

configurations. Since the main goal is to evaluate the

performance of a protocol, there are many evaluation criteria.

As we researched in this paper, these criteria mostly appear

as latency, data packet loss, and throughput. The test system

takes shape depending on the evaluation criteria as much as

the problem. It is possible to see that some studies contain

creations developed or designed by the authors. These

creations vary as simulators or applications. Our creations are

different topics and clients we produced using code

generation tools. In addition, clients create the network of our

study.

3. The DDS Standard

Data Distribution Service (DDS), which is known commonly

nowadays since it was published in 2006, is also a standard

of OMG that provides high-performance communication

along with efficient delivery of information. OMG is a

standard establishment active in the computer industry [32].

An application in which the DDS is used is Robot Operating

System 2 (ROS2). It uses DDS as DDS is more acceptable for

real-time embedded systems due to its configurations [33].

3.1. The Structure of the DDS

The structure of the DDS occurs due to the connection of two

parts: DDS Global Data Space (DDSGDS) at the centre and

DDS Participants, which communicate with each other using

the Real-Time Publish-Subscribe (RTPS) protocol only over

DDSGDS. Thus, the structure takes the shape of a star

topology. The structure is shown in Fig. 1.

Figure 1. The structure of DDS

3.2. The Objects and Concepts of the DDS

To have a better understanding, common objects and

concepts in the DDS are explained.

A publisher is an object that sends data to the endpoint that

must be reached. A datawriter is an object that is used by

applications to inform the publisher about data and its

information. A publication is a relation between a publisher

and datawriter. A subscriber is an object that receives data

sent from a publisher. A datareader is an object that is used

by data-receiving applications by attaching it to subscriber. A

subscription is a relation between a subscriber and datareader.

A topic is a concept between publication and subscription.

Quality of Service is a policy list of adjustable features that

manage some actions of the system. Each QoS policy

concerns with particular entity or several entities. A domain

is a set of conceptual links between the domain members

which helps them communicate with each other. A domain

participant is an application that is a member of a domain. An

application can be a member of more than one domain.

3.3. Data-Centric Publish-Subscribe (DCPS)

The DDS was examined in terms of entities, operations, and

functioning mechanisms. DDS defines the Data Centric

Publish Subscribe (DCPS) model, which consists of five

modules. The DCPS is the object model in the DDS, and the

model categorises its objects and interfaces with modules. For

example, listener interfaces belong to the Infrastructure

Module.

3.3.1. The Infrastructure Module
The Infrastructure Module, which contains Entity,

DomainEntity, QosPolicy, Listener, Status, WaitSet,

Condition, GuardCondition, and StatusCondition classes and

interfaces, helps the middleware to provide notification and

wait-based interactions. The classes and interfaces of the

Infrastructure Module are all abstract and processed by other

modules.

3.3.2. The Domain Module
The Domain Module, working like a factory for many classes,

is also to which the DomainParticipant class belongs. The

Domain Module contains the DomainParticipantFactory class

and the DomainParticipantListener interface in addition to the

DomainParticipant class.

3.3.3. The Topic-Definition Module
The Topic-Definition Module contains TopicDescription,

Topic, ContentFilteredTopic, MultiTopic, TopicListener, and

TypeSupport classes and interfaces. They are the things that

will be used during the topic creation process, and the QoS

policies of the topic are also attached.

3.3.4. The Publication Module
The Publication Module consists of classes and interfaces that

will be used for and help the publication process. These are:

Publisher, DataWriter, PublisherListener,

DataWriterListener.

3.3.5. The Subscription Module
The Subscription Module consists of classes and interfaces

that will be used for and help the subscription process. These

are Subscriber, DataReader, DataSample, SampleInfo,

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

SubscriberListener, DataReaderListener, ReadCondition, and

QueryCondition.

3.4. The DDS Entity and Interface Creations

The DomainParticipant Entity is produced by

DomainParticipantFactory. DomainParticipant creates

Publisher, Subscriber, Topic, and MultiTopic Entities as it

works like a factory for them. DataWriter is created by the

Publisher, and DataReader is created by the Subscriber.

Based on the fact that an entity is created by what, it can be

said that the creator works like a factory for what it creates.

All objects in the tree, except for MultiTopic objects, belong

to the Entity class. Fig. 2 shows the creation tree of some of

the DDS Entities.

Figure 2. The creation tree of DDS Entities

Fig. 3 shows the creation tree of the Listener interfaces of

the DDS.

Figure 3. The creation tree of DDS Listener interfaces

The Listener interface, which helps entities monitor

network traffic, is exclusive to the DDS and does not exist in

the DDS-XRCE. The Listener interface takes place in the

Infrastructure Module, and the Listener class of the

Infrastructure Module works like an abstract root for other

Listener interfaces. DomainParticipantListener,

TopicListener, PublisherListener, SubscriberListener,

DataWriterListener, and DataReaderListener are all derived

from the root Listener and are coupled to the respective entity

later. For example, DataReaderListener is attached to the

respective DataReader after the creation process.

Although they are not considered entities or listener

interfaces, there are objects of other classes that are assistive

to the DDS system and operations. Moreover, some of them

have no factory and are created directly. For example, the

WaitSet object postpones processes of an application until

some condition objects, which are coupled with the

application, provide the necessary conditions.

3.5. The DDS Message Structure

Communication between DDS DomainParticipants

(DDSDP) over DDS Global Data Space is maintained using

RTPS protocol, which is a wire protocol for DDS

participants, objects, and devices to communicate in a

coordinated way [32]. The RTPS message structure consists

of two parts: Header and Submessage. The message structure

of an RTPS message is shown in Fig 4.

Figure 4. An RTPS message structure

Every RTPS message has to contain the Header part at the

start. The Header carries information about the protocol,

protocol version, vendorId, and guidPrefix, which is a prefix

that is used for reconstruction later. All messages have

submessage parts, and the number of submessages is different

for messages. Submessage, which is shown as the purple

rectangle, also consists of two parts: SubmessageHeader and

SubmessageElement. The Header is a part that a submessage

has to have and contains information about submessageId,

flags, and submessageLength. SubmessageElements are

building blocks that the system uses to build submessages.

They are predefined.

RTPS version 2.2 defines some submessages that are

categorized into two groups: Entity and Interpreter

submessages. Entity submessages are summarised as follows:

Data, DataFrag, Heartbeat, HeartbeatFrag, Gap, AckNack,

and NackFrag. Interpreter submessages are summarised as

follows: InfoSource, InfoDestination, InfoReply,

InfoTimestamp, and Pad.

4. The DDS-XRCE Standard

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

The DDS-XRCE is a wire protocol following the client-

server paradigm, which is a branch of DDS. The DDS-XRCE

is adopted essentially to involve resource-constrained devices

in the DDSGDS [32].

4.1. The Objects and Concepts of the DDS-
XRCE

The DDS-XRCE has XRCE Clients and Agents in addition to

the objects and concepts of the DDS.

An XRCE Client utilises the Agent by requesting

publication, subscription, managing resources, etc. For

example, XRCE Clients sleep and wake up periodically

because they are resource-constrained devices. When an

XRCE Client is in the sleep cycle, the Agent connected to the

XRCE Client saves the messages to transmit them during its

wake-up cycle.

The Agent acts as a server in DDS-XRCE and as a

participant in DDS. It maintains the communication between

XRCE-Clients and DDS Participants by connecting to the

members of DDSGDS over DDSGDS and acts as a bridge.

Making connections over DDSGDS is the ability of an Agent

in the DDS-XRCE. Distributing resources, converting

between protocols while transferring data, configuring

parameters and profiles, and maintaining communication

within the DDS-XRCE model are other duties and behaviours

of the Agent.

4.2. The Integration Between the DDS and
DDS-XRCE

Fig. 5 represents the integration between DDS-XRCE and

DDS. In DDSGDS, peers of the DDSGDS do not categorise

other peers, such as peers of the DDS model or peers of the

DDS-XRCE model. Every peer seems solely like a DDS

Participant although the Agent of the DDS-XRCE

communicates with the other members of the DDSGDS.

Figure 5. The integration between the DDS-XRCE and
DDS

This integration can be explained simply by saying "plug

and play" as a solution for compatibility issues. In DDS

World, participants also have to be involved in a domain to

access topic messages for that domain. The Agent makes the

connections by creating a proxy DDSDP in the DDSGDS and

keeps communication.

We have mentioned that DDSDPs monitor the network

traffic continuously. Monitoring or processing the messages

continuously requires a significant amount of resources.

Accordingly, the devices which DDS is concerned with can

be said to be highly equipped and advanced devices.

However, the devices which the DDS-XRCE is concerned

with are resource-constrained, as DDS-XRCE stands for Data

Distribution Service for Extremely Resource-Constrained

Devices. Furthermore, XRCE-Clients sleep and wake up

periodically. While XRCE-Clients are in the sleep cycle, an

Agent operates for them, such as storing topic messages for

XRCE-Clients to transmit messages during their wake cycle.

QoS policies, which DDS supports twenty-two of them, are

also in common between standards. They are also supported

by the DDS-XRCE. DDS-XRCE usually works with DDS. It

can be said that the DDS-XRCE even requires work with the

DDS to be implemented in some ways when one observes the

deployments. Therefore, DDS-XRCE is mostly dependent on

the DDS and it has to have the ability to work with the DDS

properly. In addition, the DDS-XRCE defines ten profiles

that provide configuration abilities to some extent, including

the configuration of QoS policies for the XRCE Entities.

Some of these profiles provide advanced abilities that give

entities the authority to set parameters, such as configuring

the QoS policy of the Topic. Having this kind of authority

makes the clients advanced. Thus, it shows that although the

main purpose of the DDS-XRCE is to provide access to

resource-constrained devices from frequently used other

devices, the DDS-XRCE is also concerned with advanced

devices and/or clients. DDS-XRCE categorises devices as

simple devices, more capable devices, advanced clients, and

complex clients. Variation of devices and clients occurs due

to differentiation in needs of XRCE-Clients.

4.3. The Structure of the DDS-XRCE

While the DDS model is similar to a star topology, it is

different in the DDS-XRCE. Six formations that are called

"deployments" occur due to the transmission path, kind of

sender and receiver, and transmission protocol. Objects

communicating with each other, the transmission path

focused on deployments, which are illustrated in Fig. 6, are

listed in Table 1.

In the transmission path column of Table 1, the ":::" refers

to the DDS-XRCE protocol in which objects are used for

communication. The “=” refers to the RTPS protocol in

which objects are used for communication.

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Table 1. Deployments list

No Deployment Details

Objects Transmission Path in Fig. 6

1 XRCE-Client
and DDSDP

XRCE-Client-12:::Agent-8
=DDSDP-1

2 XRCE-Clients XRCE-Client-11:::Agent-8=Agent-7
:::XRCE-Client-10

3 XRCE-Clients XRCE-Client-10:::Agent-7=Agent-7
:::XRCE-Client-9

4 XRCE-Clients XRCE-Client-1:::Agent-1:::Agent-3
=Agent-3:::Agent-2:::XRCE-Client-4

5 XRCE-Client
and Agent

XRCE-Client-6 of Application1
:::Agent-6 of Application2

6 XRCE-
Clients,
Agents and
DDSDPs

implementation of all or several
paths at the same time

Figure 6. DDS-XRCE deployments and their
transmission paths

In deployments, we encounter some characteristics worthy

of mention. There is uncertainty about the transmission path

of the third. Where the packets travel after being received by

the Agent connected to the publisher XRCE Client is unclear.

Three possible paths were listed for this uncertainty. 1) The

Agent creates proxy DDS Entities for XRCE-Clients

separately and maintains clients' communication as if

different proxy DDSDPs communicate with each other. 2)

The Agent creates one proxy DDSDP and maintains the

communication as if the proxy DDSDP communicates with

itself over DDSGDS. 3) The Agent creates a short path over

itself for XRCE-Clients, which communicate with each other.

The first and/or second possible paths are shown in Table 1.

The transmission paths of the third and fourth have one

thing in common, which is an Agent managing different

clients. Hence, encountering the uncertain transmission path

of the third deployment is possible in the same way for the

fourth deployment, as well.

In the fifth deployment, an application has to create an

XRCE-Client to communicate with the Agents of other

applications. Moreover, an application creates an Agent to

maintain communication with XRCE-Clients of other

applications. Each connection between applications can be

accepted as a transmission path, so the transmission path of

the fifth deployment may be multiple due to the formation of

the fifth deployment on a system. Implementation of the fifth

deployment is usually not suitable for resource-constrained

devices. Because the application cannot sleep and wake

periodically due to the Agent processing messages coming

from XRCE-Clients. As an exception, the fifth deployment is

the only implementation of the DDS-XRCE without any

integration with the DDS model.

4.4. The DDS-XRCE Object Model

When one looks at the object model of DDS-XRCE, there are

five classes. They are the Root singleton, ProxyClient,

Application, AccessController, and DomainParticipant. In

the DDS-XRCE, the object model does not contain modules

and it does not have a particular name different from the DDS.

At the highest level, it only includes classes.

4.4.1. Root Singleton
The Root singleton works like a factory for all the objects,

and the Agent is in charge of these objects. Besides, the Root

singleton is an entrance point to the system.

4.4.2. ProxyClient
When the XRCE-Client application and Agent communicate

with each other over the XRCE protocol, the ProxyClient

class represents the XRCE-Client application. Each

Application object obtains the rights of a ProxyClient by

being related to a single XRCE ProxyClient.

4.4.3. Application
The Application class represents a software application,

which is in charge of the DDS objects used for publication

and subscription processes on DDS Domains by associating

with the XRCE-Client. An XRCE Application can be related

to many DomainParticipants or none. Based on that fact, an

XRCE Application can be active on many DDS Domains or

none by using proxy objects.

4.4.4. AccessController
An XRCE ProxyClient has limited authority relating to

resources and operations to function. This authority is

determined and provided by AccessController for an XRCE

ProxyClient since it holds the rules relating to a client with

rights. These rights give the holders authority, such as

choosing the DDS domain when an application intends to

create and run proxy entities for a client, and deciding DDS

topics when an application wants to publish and subscribe.

4.4.5. DomainParticipant

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

The DomainParticipant of DDS-XRCE, which works as a

proxy in DDSGDS, represents the connection with a DDS

Domain and what the Application can do running on that

domain.

4.5. The DDS-XRCE Entity Creations

Fig. 7 shows the creation tree of DDS-XRCE objects and

entities.

Figure 7. The creation tree of DDS-XRCE Entities

XRCE Root, which represents an agent, creates an XRCE

ProxyClient. XRCE ProxyClient creates a QosProfile, Type,

Application, DomainParticipant, Publisher, Subscriber,

DataWriter, and DataReader. In DDS-XRCE, the Publisher

does not create a DataWriter and the Subscriber does not

create a DataReader, unlike in DDS. The only object working

like a factory in DDS-XRCE is the Root singleton since it is

responsible for all the objects controlled by Agent.

4.6. The DDS-XRCE Message Structure

The structure of a DDS-XRCE message is shown in Fig. 8.

Figure 8. A DDS-XRCE message structure

A DDS-XRCE message contains Header and submessage

parts. The Header carries information about the sessionId,

streamId, sequence number, and clientKey. A submessage

consists of submessageHeader and payload parts.

SubmessageHeaders occur with submessageId, flags, and

submessageLength. The payload provides information about

the submessage according to submessageId. The DDS-XRCE

submessage types are as follows: Create_Client, Create,

Get_Info, Delete, Status_Agent, Status, Info, Write_Data,

Read_Data, Data, Acknack, Heartbeat, Reset, Fragment,

Timestamp, and Timestamp_Reply.

5. Methodology

Initially, we need an environment in which the DDS-XRCE

has been used. We benefit from deployments for the

formation of the test environment to determine the

performance of the DDS-XRCE. Thus, we have decided to

use the first, second, and third deployments.

The DDS-XRCE is a multi-functional one that has many

parameters and provides many options to adjust the quality of

communication. We decided to utilise the transport profile,

stream mode, and network layer protocol features of DDS-

XRCE for the test environment conditions. The transport

profile is a choice that the DDS-XRCE provides to the user

about the transportation protocol to transmit messages. The

user decides if to use UDP/TCP, CAN FD, serial, or custom

protocol by utilizing the transport profile feature. We utilised

UDP and TCP protocols. As to streams, a stream is an

independent flow of topic messages, and there are two kinds

of streams in the DDS-XRCE protocol: reliable and best

effort. The streams also take place as one of the QoS policies

under the name of reliability. In best-effort streams, if the

messages have been received or not, it is not controlled,

whereas it is controlled in reliable streams. In addition, extra

messages are sent to notify the sender of successful delivery

in reliable streams. We have utilised both streams. At the

network layer, IPv4 and IPv6 are provided for the user to

choose from. We have utilised only IPv4.

5.1 Preparation Phase

Layouts of deployments given in the DDS-XRCE

specification are provided as examples of the application of

the DDS-XRCE. We have reformed the given deployments

without corrupting their main focus by adding extra XRCE-

Clients, Agents, and DDS participants to obtain a test

environment.

Meanwhile, tracking the source, destination, and other

information of messages has become difficult because of

increasing client numbers and having only the HelloWorld

topic, which will cause the same messages to circulate in the

network. Thus, we created workspaces for different topics to

distinguish messages. Workspaces contain a publisher, a

subscriber, and other files for a specific topic. The creation of

unalike topics is completed by following the instructions

provided by eProsima about the usage of Micro-XRCE-DDS-

Gen and Fast-DDS-Gen libraries.

Fig. 9 represents our reformation of the first deployment

of DDS-XRCE for our study. Two Agents, four XRCE-

Clients, and a DDSDP were utilised for the formation of

Deployment-1.

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Figure 9. DDS-XRCE Deployment-1 scenario
formation for our study

Agents are members of DDSGDS and are directly

connected to their respective XRCE-Clients. They

communicate over the RTPS protocol with other DDSDPs at

DDSGDS and over the DDS-XRCE protocol with respective

XRCE-Clients. They have different port numbers that help

XRCE-Clients distinguish the respective Agents from each

other when connecting. The port numbers of Agent-1 and

Agent-2 are 2018 and 2019, respectively. Other objects of

Deployment-1 are listed in Table 2 with the topic that they

are concerned with, the objects that they connect with, and

the objects that they communicate with.

Table 2. The objects of Deployment-1 scenario
formation and their details

Objects Deployment-1 Object Details

Pub./Sub. Topic Connect Com.
with

DDSDP Pub. Humidity Agent-1
(proxy
DDSDP)

XRCE-
Client-2

XRCE-
Client-1

Pub. Temperature Agent-1 -

XRCE-
Client-2

Sub. Humidity Agent-1 DDSDP

XRCE-
Client-3

Pub. Altitude Agent-2 -

XRCE-
Client-4

Sub. Pressure Agent-2 -

We have focused on the communication between DDSDP

and XRCE-Client-2 during tests of Deployment-1. They

communicate with each other via the Agent connected to the

respective XRCE-Client.

Fig. 10 represents our reformation of the second

deployment of DDS-XRCE. Two Agents, seven XRCE-

Clients, and three DDSDPs have been utilised for the

Deployment-2 formation.

The features of the Agents of Deployment-2 are the same

as the features of the Agents of Deployment-1. Other objects

of Deployment-2 are listed in Table 3. The topics that they

are concerned with, the objects that they connect with, and

the objects that they communicate with are listed as well.

Figure 10. DDS-XRCE Deployment-2 scenario
formation for our study

Table 3. The objects of Deployment-2 scenario
formation and their details

Objects Deployment-2 Object Details

Pub./Sub. Topic Connect Com.
with

DDSDP-
1

Sub. Helloworld Agent-1
(proxy
DDSDP)

XRCE-
Client-1,
XRCE-
Client-2

DDSDP-
2

Sub. Humidity Agent-1
(proxy
DDSDP)

XRCE-
Client-5

DDSDP-
3

Sub. Humidity - -

XRCE-
Client-1

Pub. Helloworld Agent-1 DDSDP-
1,
XRCE-
Client-3,
XRCE-
Client-4

XRCE-
Client-2

Pub. Helloworld Agent-1 DDSDP-
1,
XRCE-
Client-3,
XRCE-
Client-4

XRCE-
Client-3

Sub. Helloworld Agent-1 XRCE-
Client-1,
XRCE-
Client-2

XRCE-
Client-4

Sub. Helloworld Agent-1 XRCE-
Client-1,
XRCE-
Client-2

XRCE-
Client-5

Pub. Altitude Agent-1 XRCE-
Client-6,
DDSDP-
2

XRCE-
Client-6

Sub. Altitude Agent-2 XRCE-
Client-5

XRCE-
Client-7

Sub. Humidity Agent-2 -

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

We have focused on the communication between XRCE-

Client-5 and XRCE-Client-6 during tests of Deployment-2.

XRCE-Client-5 and XRCE-Client-6 communicate with each

other via their respective Agents.

Fig. 11 represents our reformation of the third deployment

of DDS-XRCE for our study. An Agent, five XRCE-Clients,

and two DDSDPs have been utilised for the Deployment-3

formation.

The features of the Agent of Deployment-3 are the same

as Agent-1's features of Deployment-1. Other objects in

Deployment-3 are listed in Table 4 with the topic that they

are concerned with, the objects that they connect with, and

the objects that they communicate with.

Figure 11. DDS-XRCE Deployment-3 scenario
formation for our study

Table 4. The objects of Deployment-3 scenario
formation and their details

Objects Deployment-3 Object Details

Pub./Sub. Topic Connect Com.
with

DDSDP-
1

Sub. Helloworld Agent
(proxy
DDSDP)

XRCE-
Client-1,
XRCE-
Client-5

DDSDP-
2

Sub. Humidity Agent
(proxy
DDSDP)

XRCE-
Client-2

XRCE-
Client-1

Pub. Helloworld Agent DDSDP-
1,
XRCE-
Client-3

XRCE-
Client-2

Pub. Humidity Agent DDSDP-
2,
XRCE-
Client-4

XRCE-
Client-3

Sub. Helloworld Agent XRCE-
Client-1,
XRCE-
Client-5

XRCE-
Client-4

Sub. Humidity Agent XRCE-
Client-2

XRCE-
Client-5

Pub. Helloworld Agent DDSDP-
1,
XRCE-
Client-3

We have focused on the communication between XRCE-

Client-2 and XRCE-Client-4 during tests of Deployment-3.

XRCE-Client-2 and XRCE-Client-4 communicate with each

other via the same Agent, to which they are connected.

It will come to one's attention that some XRCE-Clients

will not receive any messages on their respective topics. All

subscribers may not receive messages continuously, even in

real-time applications. Consequently, XRCE-Clients who do

not receive any messages will not affect experiments.

We emphasise that transport profile options, streams, and

network layer protocols are configurable via source codes of

publisher and subscriber of DDS-XRCE using respective

functions. These options have to be chosen and configured

before compilation. Thus, we have created publishers and

subscribers for each topic to send and receive messages over

the UDP protocol at the transport layer and the IPv4 protocol

at the network layer in the reliable stream. Also, it goes the

same for transport profile-stream mode pairs like UDP-BE-

IPv4, TCP-R-IPv4, and TCP-BE-IPv4.

Since these are test environment conditions, it means that

each deployment will be tested according to four different

conditions. We indicate that while tests were carried out

under a respective condition, for example, UDP-R-IPv4, all

XRCE-Clients in the deployment have been configured to

transport messages over UDP protocol at the transport layer

and IPv4 protocol at the network layer in the reliable stream.

However, we have encountered a function dissimilarity at

further stages of the UDP-BE-IPv4 tests. Because of the

function dissimilarities, we have written additional codes for

publishers and subscribers, which we focused on their

communication, running according to the UDP-BE-IPv4 pair.

The purpose of these actions will be explained in the analysis

phase of the methodology.

5.2 Simulation and Data Collection Phase

We have twelve different scenarios in total, and all software

products are ready to run. Fig. 12 shows the steps of the

simulation. All experiments have been conducted on a

computer operated by Ubuntu 18.04.6 LTS.

As the first step of the simulation, source code directories

of Publishers, Subscribers, Agents, and DDSDPs were set on

multiple Gnome Terminator windows, and all commands,

which will make Wireshark and all units of the deployment

work, have been written on each respective terminal.

In the second step, Wireshark was run through the

command line to track messages in the network and

configured through its interface to record them for analysis.

We run Agents, later XRCE-Clients, which we have not

focused on, and DDSDPs in order when it comes to the third

step.

In the fourth step, we ran Subscriber and Publisher, in

which we focused on their communication with each other, in

order through the command line.

Then we stopped Publisher and Subscriber through the

command line after enough messages had been received.

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Figure 12. Steps of our evaluation study

We have limited the messages to be transferred to 50, 100,

and 150 packets to decide if enough messages were received.

In the final step, we saved the simulation data for analysis.

We obtained data from thirty-six tests shown in Table 5 by

the end of the simulation and data collection phase.

Table 5. Tests and their limits

Cond. Deployments

Deployment-1 Deployment-2 Deployment-3

UDP-R 50 100 150 50 100 150 50 100 150

UDP-
BE

50 100 150 50 100 150 50 100 150

TCP-R 50 100 150 50 100 150 50 100 150

TCP-
BE

50 100 150 50 100 150 50 100 150

5.3 Analysis Phase

Latency is described as the time needed to transfer some data

from one end to another. Hence, we needed to know when to

start and end the transfer of each message to measure network

latency. We used Wireshark to monitor the network and could

track network packets by knowing their timestamp and size.

However, Wireshark adds the beginning time of sending

each packet as a timestamp with various formats. Still, we had

to know the ending time to measure latency. As a function of

reliable streams, when a message is successfully transferred,

the receiver sends a confirmation message back to the sender.

Since to send a confirmation message, another message needs

to be transferred successfully earlier. Based on that fact, we

assumed that we could utilise the timestamp of the receiver's

confirmation message that the receiver sends back to the

sender as the ending time of the data transfer. We observed

that confirmation messages still exist in TCP-BE scenarios,

although they use a best-effort stream. The time of the

received message refers to the future relative to the time of

the sent message. We calculated the duration between the

times of the received messages and the sent messages. Each

duration value represents the latency of packets. The latency

of a packet is shown as follows,

 (1)

TCM is the time of the confirmation message, which the

receiver sends back to the sender; TDP is the time of the data

packet sent initially; and L is the latency of a packet, which

the difference between TCM and TDP gives in Equation (1).

Nevertheless, there are UDP-BE scenarios that need to be

tested. During the simulations, it is observed that there is no

confirmation message for UDP-BE scenarios to determine the

ending time of messages. This is what we mentioned in the

preparation phase as the function dissimilarity of the UDP-

BE tests. As a solution, initially, we analysed the source codes

of publishers and subscribers and added some code between

specific lines. When it is run, the code returns the time in

seconds and minor values than seconds since the Epoch.

For publisher source code, extra code calculating the time

was written right before the code line sent the data message,

and extra code returning the time, which was calculated

earlier, was written right after the code line sent the data

message. For subscriber source code, extra code calculating

and returning the time was written right after the code line

that publishes the message that the subscriber received.

Aiming to look like data messages come first, and timestamps

of the data messages come second in the terminal window.

Again, one timestamp refers to the future according to the

other. The duration between the time of the sent and the

received messages was calculated for all transferred packets.

Thus, we obtained the latency of each message in UDP-BE

scenarios.

Throughput answers the question of how much data is

transferred successfully from one point to the other in the

network for a particular period. It is measured in bits per

second. Nevertheless, there is confusion when it comes to

throughput and bandwidth. The bandwidth corresponds to the

maximum throughput.

Wireshark monitored network traffic during all of our

scenarios. It has herewith provided for our study the size of

packets as bytes for each message. However, a packet size

may change several times on the transmission path due to

protocol conversions. Fig. 13 shows Deployment-2 with

some points on the transmission path we have focused on and

information about the thirty-fourth packet transferred in

Deployment-2 with TCP-R-50-p. The first row in the table is

packet information that was transferred from Point A to Point

B over the DDS-XRCE protocol. The second row in the table

is information on the confirmation message, which was sent

back from B to A for the packet that was sent earlier. The

third row in the table is packet information that was

transferred from Point B to Point C over the RTPS protocol.

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

The fourth row in the table is packet information that was

transferred from Point C to Point D over the DDS-XRCE

protocol. The fifth row in the table is the confirmation

message, which informs the sender about successful delivery.

Point A is where the transmission starts. Point B is where the

DDS-XRCE protocol is converted to the RTPS protocol.

Point C is where the RTPS protocol is converted to the DDS-

XRCE protocol. Point D is where the transmission ends.

Figure 13. Protocol and size information of a packet
when a message is published

The values of the “size” column show the sizes of the

packets transferred from Point A to Point B, B to C, and C to

D, respectively. The change in the size of the packet occurs

due to protocol conversion. A successful delivery has to

happen between a sender and a receiver, and the packet size

must be known to calculate throughput. If the latency of a

delivered packet can be thought of as the time spent by a

vehicle that goes from one point to another. If total packet

size can be thought of as the total length of the road that the

vehicle goes on. The calculation of throughput can be

associated with the calculation of the vehicle's velocity.

Therefore, the throughput has been calculated using this

similarity. The throughput is shown as follows in Equation

(2),

 (2)

The total size of the packet for the calculation of the

throughput is obtained by summing up all sizes of the packet

between protocol conversions. SAB is the size of the packet

transferred from A to B. SBC is the size of the packet

transferred from B to C. SCD is the size of the packet

transferred from C to D. L is the latency of the packet, and

the total size of the packet is divided by the latency of the

respective packet to obtain a value in bits per second (bps).

We have calculated the bps values for each successfully

transferred packet on the transmission path on which we have

focused. In this context, N refers to the number of successful

deliveries on the transmission path. Eventually, the sum of

the bps values of the packets on the transmission path gives

the total throughput, as shown as Th in Equation (2).

6. Used Tools

6.1. eProsima Software Products
eProsima provides networking, high-performance

middleware solutions. As a member of OMG, eProsima

creates and implements middleware standards. These are

DDS, RTPS, DDS-XRCE, CDR, RPC over DDS, etc. In

addition, eProsima publishes the source codes of some

products they provide on Github under the Apache 2.0

licence.

The DDS-XRCE is the standard we mainly focused on in

this study. While evaluating the performance of the DDS-

XRCE on network latency and throughput, we have used

some of the other products eProsima provides. It is important

to state that we ran all performance evaluation tests in an

environment that is run by the Ubuntu 18.04 LTS operating

system. Thus, the installation process of all eProsima

products is followed according to the installation manual for

Ubuntu [34].

6.1.1. eProsima Micro-XRCE-DDS-Agent v2.0.0
Client and server communication is essential in the DDS-

XRCE protocol. The server is represented by an agent whose

function is to become a bridge between XRCE-Clients and

the DDS world to ensure safe and secure communication. In

more detail, the agent receives messages from the DDS world

to transmit them to XRCE-Clients and receives messages

from XRCE-Clients to transmit them to the DDS world.

The library implementation of the agent in the DDS-XRCE

protocol is the Micro-XRCE-DDS-Agent source code, which

is provided by eProsima on Github. This implementation

allows devices like microcontrollers and microsensors to

communicate with the DDS world. Also, a feature of agent

library implementation is the ability to provide some built-in

transports such as UDPv4, UDPv6, TCPv4, TCPv6, and

Serial communication. Communication between the XRCE-

Client library and Agent library is implemented via built-in

transports aforementioned [13]. In our study, we used the

Micro-XRCE-DDS-Agent source code without making any

changes.

6.1.2. eProsima Micro-XRCE-DDS-Client v2.0.0
We mentioned that client and server communication is

essential in the DDS-XRCE protocol and what the function

of the Agent is. Thus, it is clear that XRCE-Clients are the

other transmission end while the Agent is communicating

with the DDS world. The Agent publishes and subscribes to

topics on behalf of XRCE-Clients according to their requests.

Entities like Topics, Publishers, Participants, and Subscribers

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

that may be needed by XRCE Clients in the DDS world are

created by an assigned ProxyClient.

The Micro-XRCE-DDS-Client library is configurable. It

has changeable features such as profile options, which can be

enabled or disabled by changing some CMake flags. It has

some other parameters that can be used to control the

capabilities of the library. Moreover, the XRCE-Client library

provides the built-in transports as the Agent library does [13].

In our study, we have benefited from these changeable

features. We needed publishers and subscribers to publish and

subscribe to different topics for our scenarios. As a result, it

is necessary to make some changes to the source code for our

study. We utilised the Micro-XRCE-DDS-Client library to

get a better understanding of how the library works and to

decide which parameters to choose or use during our trial

process.

6.1.3. eProsima Micro-XRCE-DDS-Gen
Micro-XRCE-DDS-Gen is a tool that is used to generate

topics and some supplement files. The code generated by

using Micro-XRCE-DDS-Gen cannot be generated without

the Micro CDR library. The tool generates the topics by using

an IDL file as a source file and a Micro CDR library. Thus,

the only dependency this library has is on the Micro CDR

library [13].

We created IDL files for different topics to create different

topic workspaces. These are humidity, temperature, pressure,

altitude, and helloworld. After the generation was completed,

publisher and subscriber files were edited as needed and

compiled. We had applications on different topics whose

publishers and subscribers have different transportation

profiles and stream modes in the end for the DDS-XRCE.

6.1.4. eProsima Fast-DDS v2.4.0
Fast-DDS is the source code that eProsima provides for the

DDS. Previously, it was known as Fast RTPS, where RTPS

stands for Real Time Publish Subscribe. RTPS is a wire

protocol that maintains communication over some transports

and was produced for DDS. The Fast-DDS library provides

the implementation of the RTPS protocol and full access to

its full functionalities [13]. In our study, this implementation

was used to understand how the product works.

6.1.5. eProsima Fast-DDS-Gen
Similar to the Micro-XRCE-DDS-Gen library, this software

product is a code generator tool from an IDL file [13]. The

difference between them is that while the Micro-XRCE-

DDS-Gen tool is for the DDS-XRCE, the Fast-DDS-Gen tool

is for the DDS. The code obtained from the Fast-DDS-Gen

implementation by generating can work in every Fast-DDS

application without having any extra features [35].

Creating DDS workspaces is similar to creating DDS-

XRCE workspaces. Firstly, we made an IDL file which will

be the source of the topic workspace. The Fast-DDS-Gen tool

was run by indicating from which IDL file to generate. After

the generation was completed, we obtained the publisher,

subscriber, and some other files. As the last step, we edited

and compiled publisher and subscriber files. Finally, we

created different topic workspaces with publishers and

subscribers as needed for the DDS.

6.2. Wireshark

Wireshark is a network protocol analyser that can run on

various operating systems and other platforms [36]. It

captures packets from the network and allows us to monitor

the network traffic in real-time. We can save what we

captured as a pcapng file, which Wireshark 1.8 and later

generate by default. Pcapng files can be used to store packet

details in it as other formatted files or for any other purpose.

Wireshark was used to retrieve network traffic data during

the simulation. After saving what we retrieved as a pcapng

file, we printed all captured packets to extract the necessary

features. These are the protocol, source port, destination port,

length of the packet, and timestamp. The extracted features

were initially used to tell messages we focused on from other

messages in the network traffic and, secondly, used to

calculate network latency and throughput.

6.3. Gnome Terminator

It is a command prompt that was developed as a Python script.

It has the functionality of running multiple terminals in the

same window. The user can benefit from the multiple

terminal features by splitting the window. Also, the split

windows can be combined later [37].

In our study, we needed an environment to be able to show

multiple topic messages at the same time. Hence, we used

Gnome Terminator to run many Agents, Publishers, and

Subscribers and see network traffic messages. After the

ordering layout of the terminals was completed, we ran the

codes in the terminals accordingly to our test plan and saw

the network traffic messages as the participants saw them.

7. Results

We measured the latency of packets, the packet sizes, the

number of packets sent, and the number of packets received.

The other criteria were calculated according to the

information obtained from the experiments.

The Min in the tables refers to the minimum of the

respective measurement. The Max refers to the maximum of

the respective measurement. The Avg. refers to the average

of the respective measurements. Std. Dev. refers to the

standard deviation of the respective measurement. Var. refers

to the variance of the respective measurement. The Total in

the tables refers to the total packet size of successful delivery.

The number sent in the tables refers to the number of packets

that were sent. The number of recv. in the tables refers to the

packets that were received. In other words, it refers to the

number of successful deliveries. The results are shown in the

tables.

Latency results of Deployment-1 are presented in Table 6.

The test with UDP-BE-150p conditions had the lowest

average latency of all, which is interpreted as possibly

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

performing the fastest among the tests with 150-packet

deliveries. The test with TCP-R-100p conditions had the

highest average latency of all, which is interpreted as possibly

performing the slowest among the tests with 100-packet

deliveries. The lowest minimum latency was observed during

the test with UDP-BE-150p conditions. The highest

maximum latency was observed during the test with TCP-R-

100p conditions. Latency results of Deployment-3 are

presented in Table 8. The test with TCP-BE-150p conditions

had the lowest average latency of all, which is interpreted as

possibly performing the fastest among the tests with 150-

packet deliveries. The test with TCP-R-100p conditions had

the highest average latency of all, which is interpreted as

possibly performing the slowest among the tests with 100-

packet deliveries. The lowest minimum latency was observed

during the test with TCP-BE-50p conditions. The highest

maximum latency was observed during the test with TCP-R-

100p conditions. The test with TCP-R-150p conditions had

the lowest average throughput of all, which is interpreted as

possibly transmitting the least data periodically among the

tests with 150-packet deliveries. The test with UDP-BE-150p

conditions had the highest average throughput of all, which is

interpreted as possibly transmitting the most data periodically

among the tests with 150-packet deliveries. The lowest

minimum throughput was observed during the test with TCP-

R-100p conditions. The highest maximum throughput was

observed during the test with UDP-BE-150p conditions.

Throughput results of Deployment-1 are presented in Table

9. Throughput results of Deployment-2 are presented in Table

10. The test with TCP-R-100p conditions had the lowest

average throughput of all, which is interpreted as possibly

transmitting the least data periodically among the tests with

100-packet deliveries. The test with TCP-BE-50p conditions

had the highest average throughput of all, which is interpreted

as possibly transmitting the most data periodically among the

tests with 50-packet deliveries. The lowest minimum

throughput was observed during the test with TCP-R-50p

conditions. The highest maximum throughput was observed

during the test with TCP-R-100p conditions. The test with

UDP-BE-50p conditions had the lowest average throughput

of all, which is interpreted as possibly transmitting the least

data periodically among the tests with 50-packet deliveries.

The test with TCP-BE-150p conditions had the highest

average throughput of all, which is interpreted as possibly

transmitting the most data periodically among the tests with

150-packet deliveries. The lowest minimum throughput was

observed during the test with TCP-R-100p conditions. The

highest maximum throughput was observed during the test

with TCP-BE-50p conditions. Throughput results of

Deployment-3 are presented in Table 11. Packet length

results of Deployment-1 are presented in Table 12. The tests

with UDP-R and UDP-BE conditions had the lowest average

data packet of all, which are interpreted as transmitting the

least data among the tests with their packet deliveries. The

test with TCP-R-50p conditions had the highest average data

packet of all, which is interpreted as transmitting the most

data among the tests with 50-packet deliveries. Any packet

loss was not observed during the tests of Deployment-1. The

tests with UDP-R-50p, UDP-BE-50p, and UDP-BE-100p

conditions had the lowest average data packet of all, which

are interpreted as transmitting the least data among the tests

with their packet deliveries. The test with TCP-R100p

conditions had the highest average data packet of all, which

is interpreted as transmitting the most data among the tests

with 100-packet deliveries. The test with TCP-R-150p

conditions had the highest packet loss of all. The loss is three

packets. The packet loss of the other tests varies between zero

and two. Packet length results of Deployment-2 are presented

in Table 13. The tests with UDP-R and UDP-BE conditions

had the lowest average data packet of all, which are

interpreted as transmitting the least data among the tests with

their packet deliveries. The test with TCP-R-150p conditions

had the highest average data packet of all, which is interpreted

as transmitting the most data among the tests with 150-packet

deliveries. All tests of Deployment-3 resulted in one packet

loss. Packet length results of Deployment-3 are presented in

Table 14.

Table 7. Latency results of Deployment-2

Criteria
The Conditions

UDP-
R

UDP-
R

UDP-
R

TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Min (ms) 0.387 0.301 0.274 0.249 0.248 0.238 0.272 0.318 0.248 0.251 0.272 0.236

Max
(ms)

0.873 1.175 0.902 48.129 48.427 48.800 1.467 2.661 1.385 0.630 0.917 1.124

Avg.
(ms)

0.656 0.615 0.617 14.792 15.002 14.689 0.558 0.731 0.573 0.404 0.570 0.555

Std.
Dev.
(ms)

0.111 0.135 0.128 20.985 20.537 20.435 0.188 0.242 0.193 0.085 0.120 0.136

Var.
(ms2)

0.012 0.018 0.016 440.379 421.788 417.588 0.035 0.058 0.037 0.007 0.014 0.019

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Table 8. Latency results of Deployment-3

Criteria
The Conditions

UDP-
R

UDP-
R

UDP-
R

TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Min (ms) 0.261 0.252 0.252 0.242 0.238 0.253 0.303 0.256 0.254 0.167 0.201 0.169

Max
(ms)

1.440 0.846 0.890 48.112 48.589 47.084 0.808 0.807 1.469 0.682 0.761 0.983

Avg.
(ms)

0.576 0.571 0.579 15.058 15.274 14.584 0.628 0.606 0.550 0.450 0.493 0.444

Std.
Dev.
(ms)

0.200 0.115 0.111 21.105 20.885 20.099 0.133 0.148 0.183 0.106 0.100 0.128

Var.
(ms2)

0.040 0.013 0.012 445.402 436.164 403.954 0.018 0.022 0.033 0.011 0.010 0.016

Table 9. Throughput results of Deployment-1

Criteria
The Conditions

UDP-
R

UDP-
R

UDP-
R

TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Min
(Mbps)

3.294 3.181 2.648 0.051 0.048 0.049 3.608 3.040 4.782 3.146 3.686 3.210

Max
(Mbps)

9.997 14.233 12.447 17.357 15.117 13.771 16.027 14.506 18.885 15.326 17.225 15.747

Avg.
(Mbps)

5.436 6.115 5.897 5.441 4.744 4.636 6.602 6.353 8.638 7.615 6.796 7.062

Std. Dev.
(Mbps)

1.234 1.901 2.010 4.683 3.772 3.578 2.213 1.839 2.130 2.365 1.948 2.361

Var.
((Mbps)2)

1.523 3.613 4.039 21.931 14.232 12.803 4.896 3.383 4.537 5.592 3.794 5.575

Table 10. Throughput results of Deployment-2

Criteria
The Conditions

UDP-
R

UDP-
R

UDP-
R

TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Min
(Mbps)

3.096 2.300 2.998 0.077 0.064 0.063 1.843 1.016 1.952 4.901 3.368 2.747

Max
(Mbps)

6.992 8.997 9.869 12.426 12.462 12.999 9.947 8.491 10.883 12.295 11.368 13.062

Avg.
(Mbps)

4.263 4.683 4.651 4.259 4.220 4.554 5.247 3.988 5.248 7.995 5.693 5.999

Std. Dev.
(Mbps)

0.874 1.377 1.372 3.601 3.319 3.581 1.381 1.188 1.718 1.795 1.430 1.919

Var.
((Mbps)2)

0.765 1.897 1.881 12.964 11.016 12.821 1.908 1.411 2.951 3.221 2.045 3.681

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

Table 11. Throughput results of Deployment-3

Criteria
The Conditions

UDP-
R

UDP-
R

UDP-
R

TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Min
(Mbps)

0.956 1.626 1.547 0.049 0.036 0.037 1.704 1.705 0.937 2.580 2.311 1.791

Max
(Mbps)

5.264 5.469 5.459 7.262 7.403 8.070 4.544 5.368 5.425 10.543 8.753 10.445

Avg.
(Mbps)

2.680 2.541 2.494 2.458 2.431 2.610 2.335 2.468 2.773 4.233 3.810 4.371

Std. Dev.
(Mbps)

0.987 0.700 0.640 1.999 1.890 2.144 0.701 0.859 0.917 1.482 1.249 1.544

Var.
((Mbps)2)

0.974 0.490 0.409 3.996 3.573 4.599 0.492 0.738 0.841 2.197 1.561 2.383

Table 12. Packet length results of Deployment-1

Criteria
The Conditions

UDP-
R

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Avg. (bit) 2144 2144 2144 2357.6 2336 2345.6 2144 2144 2144 2336 2336 2336

Total
(bit)

1072
00

21440
0

32160
0

11788
0

23360
0

35184
0

10720
0

21440
0

32160
0

11680
0

23360
0

35040
0

Number
of Sent

50 100 150 50 100 150 50 100 150 50 100 150

Number
of Recv.

50 100 150 50 100 150 50 100 150 50 100 150

Table 13. Packet length results of Deployment-2

Criteria
The Conditions

UDP-
R

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Avg. (bit) 2704 2706.6 2704.9 3287.2 3296.5 3296.2 2704 2704 2706 3088 3088 3088

Total
(bit)

1324
96

26795
2

40032
0

16436
0

32635
2

48453
6

13249
6

26769
6

40320
0

15131
2

30571
2

46011
2

Number
of Sent

50 100 150 50 100 150 50 100 150 50 100 150

Number
of Recv.

49 99 148 50 99 147 49 99 149 49 99 149

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Table 14. Packet length results of Deployment-3

Criteria
The Conditions

UDP-
R

UDP-R UDP-R TCP-R TCP-R TCP-R UDP-
BE

UDP-
BE

UDP-
BE

TCP-
BE

TCP-
BE

TCP-
BE

Limit
(packet)

50 100 150 50 100 150 50 100 150 50 100 150

Avg.
(bit)

1376 1376 1376 1963.3 1961.2 1970.2 1376 1376 1376 1760 1760 1760

Total
(bit)

67424 136224 205024 96200 194160 293560 67424 136224 205024 86240 174240 262240

Number
of Sent

50 100 150 50 100 150 50 100 150 50 100 150

Number
of
Recv.

49 99 149 49 99 149 49 99 149 49 99 149

[34] enounces that TCP-BE streams perform similar

behaviour to that of UDP-R streams. Thus, for example, when

one looks at the latency levels of deployments on different

transport profile-stream mode pairs, the proximate measures

in TCP-BE and UDP-R of respective deployments support

the accuracy of results.

8. Conclusions

After some experiments, we came to a few conclusions by

observing the behaviour of XRCE-Clients, Agents, and

DDSDPs and analyzing the results.

If we think of the transmission path we focused on in

Deployment-1, we tested it in the aspect of subscription due

to the direction of the transmission. Because XRCE-Client is

a subscriber. When we think of the successful delivery, every

delivery for all experiments of Deployment-1 was completed

successfully. Consequently, it can be said that packets go

finely to the destination without encountering any problems

or loss in the aspect of subscription for the first conclusion.

As to the second conclusion, we need to remember the

transmission path of Deployment-2. The transmission path is

the same from the standpoints of both ends. The connection

between XRCE-Clients is symmetrical due to the formation

of Deployment-2, and it allows us to test the DDS-XRCE

from the perspective of publication and subscription. It means

there is an XRCE-Client that sends the packets, and there is

another XRCE-Client that receives them. When we look at

the number of successful deliveries, a few packets were not

received by the subscriber. Although all packets were sent by

the publisher XRCE-Client in the experiments of

Deployment-2. When we examined the messages, the lost

packets were lost after they were received by the Agent

connected to the publisher XRCE-Client. Hence, the first

conclusion we obtained from experiments of Deployment-1

is also valid for experiments of Deployment-2. Because the

subscriber side would have received all the packets if the

publisher side could have sent all of them. Furthermore, the

lost packets were always in the first three. It seems as if the

Agent does not realise that it has to send the packets at the

moment that it receives the first few packets. When it starts

to send, the Agent sends the rest of the packets. Thus, it can

be said that the first few packets might not be sent by the

Agent of publisher XRCE-Client in the aspect of publication

for the second conclusion.

Moreover, we encountered an integration pattern during

Deployment-2 experiments by examining network messages,

and it is related to the topic on whose messages we focused.

When we think of DDSGDS at the centre, there are two

Agents and a DDSDP connected over DDSGDS due to the

concern of the topic on whose messages we focused. We

added the DDSDP as a subscriber to the experiments of

Deployment-2 to observe the topic messages circulating in

the DDSGDS. After the examination of the network

messages, we observed that the Agent connected to the

publisher XRCE-Client sends the packets in two different

series of messages to two different DDSDPs over DDSGDS.

It is important to remember for the next conclusion.

The first and second conclusions are also valid for

Deployment-3. However, the transmission path was unclear.

We added a DDSDP as a subscriber to the experiments of

Deployment-3 for observation. During analyzing the network

messages, we encountered only one series of messages,

which carries the data of the respective topic and carries the

data using the RTPS protocol. However, there were two series

of messages for experiments in Deployment-2 due to two

subscribers, and two subscribers existed in Deployment-3 as

well. It means the Agent never transferred the packets over

DDSGDS for two subscriber members of DDSGDS while

maintaining the communication between XRCE-Clients. It

did for one member of DDSGDS, which is DDSDP. It

maintained communication between XRCE-Clients by

creating a short path. The path that the Agent chose is the

third conclusion of our study.

When all the conclusions are considered one more time,

the existence of the fourth conclusion is highly likely. After

the Deployment-2 tests, the Agent's packet loss is possible for

other scenarios. Observation of the Agent losing packets

during Deployment-3 tests makes this possibility more

realistic. Therefore, although Deployment-1 has not been

tested while the Agent is connected to a publisher XRCE

Client, the Agent might act the same way during Deployment-

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

Şevval Şolpan and Kerem Küçük

1 tests. The Agent's possible behaviour regarding packet loss

for Deployment-1 is the fourth conclusion.

References

[1] J. Holler, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand

and D. Boyle. From Machine-to-Machine to the Internet of

Things - Introduction to a New Age of Intelligence. UK:

Academic Press; 2014. pp. 14.

[2] J. J. Wang, R. Payne. A survey of Internet of Things in

Healthcare. EAI Endorsed Transactions on Internet of Things.

2022; 7(27).

[3] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, A. Ayub Khan.

A Review and State of Art of Internet of Things (IoT).

Archives of Computational Methods in Engineering. 2021;

29(2).

[4] Sheng Huang, Yu-Hsuan Lu, M. Shafiq, A. A. Laghari, and R.

Yadav. A Generative Adversarial Network Model Based on

Intelligent Data Analytics for Music Emotion Recognition

under IoT. Mobile Information Systems. 2021; 2021(1).

[5] A. A. Laghari, Hui He, A. Khan, R. A. Laghari, Shoulin Yin,

and Jiachi Wang. Crowdsourcing Platform for QoE Evaluation

for Cloud Multimedia Services. Computer Science and

Information Systems. 2022; 00:38-38.

[6] M. Waqas, K. Kumar, A. A. Laghari, U. Saeed, M. M. Rind,

A. A. Shaikh, F. Hussain, A. Rai, and A. Q. Qazi. Botnet attack

detection in Internet of Things devices over cloud environment

via machine learning. Concurrency and Computation. 2021;

34(5):1-23.

[7] A. H. Farea and K. Küçük. Detections of IoT Attacks via

Machine Learning-Based Approaches with Cooja. EAI

Endorsed Trans IoT. 2022; 7(28): e1.

[8] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny.

Timed protocol analysis of interconnected mobile IoT devices.

Journal of Internet Services and Applications. 2021; 12(12): 1-

31.

[9] Z. Kang, K. An, A. Gokhale and P. Pazandak. A

Comprehensive Performance Evaluation of Different

Kubernetes CNI Plugins for Edge-based and Containerized

Publish/Subscribe Applications. 2021 IEEE International

Conference on Cloud Engineering (IC2E); 2021; USA.

[10] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and

M. Ayyash. Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications. IEEE

Communications Surveys & Tutorials. 2015; 17(4): 2347-

2376.

[11] J. M. Schlesselman, G. Pardo-Castellote and B. Farabaugh.

OMG data-distribution service (DDS): architectural update.

IEEE MILCOM 2004. Military Communications Conference;

2004; USA. IEEE; 2004. p. 961-967.

[12] C. Bayılmış, M. A. Ebleme, Ü. Çavuşoğlu, K. Küçük, A.

Sevin. A survey on communication protocols and performance

evaluations for Internet of Things. Digital Communications

and Networks. 2022.

[13] eProsima. “Repositories”. Available from:

https://github.com/orgs/eProsima/repositories

[14] P. Phueakthong and J. Varagul. A Development of Mobile

Robot Based on ROS2 for Navigation Application. 2021

International Electronics Symposium (IES); 2021; Indonesia.

IEEE; 2021. p. 517-520.

[15] S. Dehnavi, D. Goswami, M. Koedam, A. Nelson and K.

Goossens. Modeling, implementation, and analysis of XRCE-

DDS applications in distributed multi-processor real-time

embedded systems. 2021 Design, Automation & Test in

Europe Conference & Exhibition (DATE); 2021; France.

Institute of Electrical and Electronics Engineers; 2021. p.

1148-1151.

[16] Chul-Hwan Kim, Gunjae Yoon, Wonjoon Lee, Jungdo Park

and Hoon Choi. A performance simulator for DDS networks.

2015 International Conference on Information Networking

(ICOIN); 2015; Cambodia. IEEE; 2015. p. 122-126.

[17] K. Krinkin, A. Filatov, A. Filatov, O. Kurishev and A.

Lyanguzov. Data Distribution Services Performance

Evaluation Framework. 2018 22nd Conference of Open

Innovations Association (FRUCT); 2018; Russia. IEEE; 2018.

p. 94-100.

[18] P. Thulasiraman, Y. K. D. Cheng and B. Allen. Evaluation of

the Data Distribution Service for a Lossy Autonomous Hybrid

System. 2022 IEEE International Systems Conference

(SysCon); 2022. Canada: IEEE; 2022, p. 1-8.

[19] G. Andrei, B. Marlen, T. Sergey and K. Krinkin. Industrial

Messaging Middleware: Standards and Performance

Evaluation. 2020 IEEE 14th International Conference on

Application of Information and Communication Technologies

(AICT); 2020; Uzbekistan. IEEE; 2020. p. 1-6.

[20] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert and A. Knoll.

OPC UA versus ROS, DDS, and MQTT: Performance

Evaluation of Industry 4.0 Protocols. 2019 IEEE International

Conference on Industrial Technology (ICIT); 2019; Australia.

IEEE; 2019. p. 955-962.

[21] Y. Chen and T. Kunz. Performance evaluation of IoT protocols

under a constrained wireless access network. 2016

International Conference on Selected Topics in Mobile &

Wireless Networking (MoWNeT); 2016; Egypt. IEEE; 2016.

p. 1-7.

[22] Z. B. Babovic, J. Protic and V. Milutinovic. Web Performance

Evaluation for Internet of Things Applications. IEEE Access.

2016; 4: 6974-6992.

[23] X. Chen, X. Kong, Y. Ling and X. Cao. DDS Performance

Evaluation for PREEMPT_RT Linux. 2021 International

Conference on Computer, Blockchain and Financial

Development (CBFD); 2021; China. IEEE; 2021. p. 84-89.

[24] F. Palmese, E. Longo, A. E. C. Redondi and M. Cesana. CoAP

vs. MQTT-SN: Comparison and Performance Evaluation in

Publish-Subscribe Environments. 2021 IEEE 7th World

Forum on Internet of Things (WF-IoT); 2021; USA. IEEE;

2021. p. 153-158.

[25] Y. Sasaki, T. Yokotani and H. Mukai. Comparison with

Assured Transfer of Information Mechanisms in MQTT. 2018

International Japan-Africa Conference on Electronics,

Communications and Computations (JAC-ECC); 2018; Egypt.

IEEE; 2019. p. 95-98.

[26] I. Kassem and A. Sleit. Elapsed Time of IoT Application

Protocol for ECG: A Comparative Study Between CoAP and

MQTT. 2020 International Conference on Electrical,

Communication, and Computer Engineering (ICECCE); 2020;

Turkey. IEEE; 2020. p. 1-6.

[27] R. Banno, K. Ohsawa, Y. Kitagawa, T. Takada and T.

Yoshizawa. Measuring Performance of MQTT v5.0 Brokers

with MQTTLoader. 2021 IEEE 18th Annual Consumer

Communications & Networking Conference (CCNC); 2021;

USA. IEEE; 2021. p. 1-2.

[28] M. Bender, E. Kirdan, M. -O. Pahl and G. Carle. Open-Source

MQTT Evaluation. 2021 IEEE 18th Annual Consumer

Communications & Networking Conference (CCNC); 2021;

USA. IEEE; 2021. p. 1-4.

[29] U. Tandale, B. Momin and D. P. Seetharam. An empirical

study of application layer protocols for IoT. 2017 International

Conference on Energy, Communication, Data Analytics and

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

https://github.com/orgs/eProsima/repositories
https://research.tue.nl/en/publications/modeling-implementation-and-analysis-of-xrce-dds-applications-in-

DDS-XRCE Standard Performance Evaluation of Different Communication Scenarios in IoT Technologies

Soft Computing (ICECDS); 2017; India. IEEE; 2018. p. 2447-

2451.

[30] N. Basavaraju, N. Alexander and J. Seitz. Performance

Evaluation of Advanced Message Queuing Protocol (AMQP):

An Empirical Analysis of AMQP Online Message Brokers.

2021 International Symposium on Networks, Computers and

Communications (ISNCC); 2021; United arab Emirates. IEEE;

2021. p. 1-8.

[31] M. Pohl, J. Kubela, S. Bosse and K. Turowski. Performance

Evaluation of Application Layer Protocols for the Internet-of-

Things. 2018 Sixth International Conference on Enterprise

Systems (ES); 2018; Cyprus. IEEE; 2018. p. 180-187.

[32] Object Management Group Inc. “Specifications”. Available

from: https://www.omg.org/spec/About

[33] Y. Maruyama, S. Kato and T. Azumi. Exploring the

performance of ROS2. 2016 International Conference on

Embedded Software (EMSOFT); 2016; USA. IEEE; 2016. p.

1-10.

[34] eProsima. “eProsima Micro-XRCE-DDS”. Available from:

https://micro-xrce-dds.docs.eprosima.com/en/latest/

[35] eProsima. “Introduction”. Available from: https://fast-

dds.docs.eprosima.com/en/latest/fastddsgen/introduction/intro

duction.html

[36] HyunHo Kim, HoonJae Lee and HyoTaek Lim. Performance

of Packet Analysis between Observer and WireShark. 2020

22nd International Conference on Advanced Communication

Technology (ICACT); 2020; Korea (South). IEEE; 2020. p.

268-271.

[37] Gnome Terminator Organization. “About”. Available from:

https://gnome-terminator.org/about/

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e1

https://github.com/rticommunity
https://github.com/rticommunity
https://github.com/rticommunity
https://github.com/rticommunity
https://www.omg.org/spec/About
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://gnome-terminator.org/about/

