
1 

Smartagb: Aboveground Biomass Estimation of 

Sorghum Based on Spatial Resolution, Machine Learning 

and Vegetation Index 

Qi Liu1, Yaxin Wang1, Jie Yang1, Wuping Zhang1,*, Huanchen Wang1, Fuzhong Li1, Guofang Wang2, 

Yuansen Huo1 and Jiwan Han1 

1 College of Software, Shanxi Agricultural University, Jinzhong 030801, China 
2 College of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China 

Abstract 

This work aims to explore the feasibility of predicting and estimating the aboveground biomass (AGB) of sorghum using 

multispectral images captured by UAVs, and clarify the quantitative relationship between vegetation index and sorghum 

AGB based on different spatial resolutions, and build an AGB estimation model based on UAV multispectral images and 

vegetation index under different spatial resolutions. Combining spatial resolution, vegetation index, and machine learning, 

a training set is used to train the model, and a verification set is used to verify the model to select the best prediction model 

corresponding to different spatial resolutions. The three best prediction models under three spatial resolutions are classic 

machine learning models. 1) when the spatial resolution is 0.017m, the model precision obtained from the random forest is 

R2=0.8961, MAE=26.4340, and RMSE=32.2459. 2) when the spatial resolution is 0.024m, the model accuracy obtained by 

the Lasso algorithm is R2=0.8826, MAE=31.106, and RMSE=40.2937; 3) when the spatial resolution is 0.030m, the model 

accuracy obtained by the decision tree algorithm is R2=0.8568, MAE=30.3373, and RMSE=40.8082; and 4) the model's 

accuracy decreases with the decrease of spatial resolution. The results show that the combination of spatial resolution, 

vegetation index, and machine learning algorithm is an effective, fast, and accurate prediction method. 
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1. Introduction

Aboveground biomass (AGB) is an important parameter to 

consider in crop's growth, which is directly related to the 

final yield and can directly reflect the growth of 

crop[1,2,3]. Therefore, a rapid and accurate monitoring 

method of AGB can timely know crop's growth and predict 

the yield, which is of great significance to agricultural 

management[1,4]. However, the traditional methods for 

measuring AGB are not only inefficient but also cause the 

damage to crops in the measurement process. It is so 

*Corresponding author. Email: zwping@126.com 

difficult to measure AGB in a large area of 

crops[1,5,6,7,8,9,10]. 

The UAV multispectral technology has advantages of 

the flexible application, simple operation, and convenient 

usage, and has been widely used in crop's AGB 

monitoring[1,11]. Hyperspectral and lidar sensors that can 

be carried on UAV platforms are expensive, which limits 

the application and popularization of the UAV 

[1,12,13,14,15,16,17]. Although the multispectral sensor 

has only five bands, its price is friendly, the image obtained 

is good, and the data is easy to be processed, which makes 

it popular in the academic community as a widely 
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applicable data acquisition method for large areas. Zhang 

Xianxian et al.[18] built winter wheat's AGB prediction 

model by combining vegetation index with machine 

learning and neural network based on UAV digital images, 

and the results showed that the effect of machine learning 

was ideal. Cheng Yifeng et al. [19] built a multivariate 

compound yield estimation model by combining the 

relationship between LAI and normalized difference 

vegetation index (NDVI) and the actual yield of cotton at 

flowering and boll stage, and realized the prediction of 

cotton yield in northern Xinjiang. Cui Rixian et al.[20] 

estimated winter wheat's AGB based on UAV digital image 

technology by using neural network and regression 

technology combined with vegetation index, and the results 

showed that the neural network was better.Tao Huilin et 

al.[21] based on UAV digital technology, combined 

machine learning with vegetation index to calculate winter 

wheat's AGB and got a good prediction result. The above 

researches show that UAV technology can effectively 

monitor crop's AGB. At present, few reports have been 

made on the prediction and estimation of sorghum's AGB 

by coupling  the UAV multispectral image data at different 

spatial resolutions by machine learning model. Therefore, 

this study attempts to obtain multispectral image data by 

UAV at different spatial resolutions, and then estimates 

sorghum's AGB through the method of combining different 

spatial resolutions, vegetation index, and machine learning, 

and compares the differences in generalization ability and 

prediction accuracy between models, Find out the suitable 

forecasting methods and provide new theoretical support, 

and technical means for data collection, phenotype 

monitoring, intelligent planting management and the yield 

estimation of sorghum.   

2. Material and Methods

2.1. Test Zone Overview 

The study area is located in Wujiabao Village, Taigu 

District, Jinzhong City, Shanxi Province (112 ° 30'51 ″ E, 

37 ° 26'41 ″ N), as shown in Figure 1. The altitude of this 

area is about 795~805m, and the average annual frost-free 

period is 160 to 190 days. The annual average temperature 

is 10.6℃ , and the annual precipitation is 400mm to 

600mm. The main precipitation is from July to August. The 

annual average sunshine hours are 1810 to 2100 hours, 

which is suitable for sorghum growth.  

(a)  (b) 

Figure 1. Schematic diagram of the location of the 
experimental crop planting area. (a) The 

geographical location of the test area; (b) Planting in 
the test area 

2.2. Experimental Design 

The tested sorghum variety is "Jinza No. 22". The sowing 

method is manual spot sowing. The row spacing is 0.25 to 

0.3m, and the plant spacing is 0.2m. The sowing time is 

April 25, 2021. The sorghum was harvested on October 13, 

2021, supplemented by conventional field management. 

This study is aimed at the real-time monitoring of 

sorghum growth under the condition of conventional 

planting and built quadrats under the premise of ensuring 

the normal growth of crops. The area of a quadrat was 

1.0m2. The white PVC pipe with a diameter of 5cm is used 

as the frame of the quadrat. The height of the aboveground 

part is 2.7m, all as shown in Figure 2. 

(a)  (b) 

Figure 2. Basic information of the test site. (a) 
Overview of the test site; (b) Test quadrat 

2.3. MultiSpectral Image Acquisition of UAV 

The UAV multispectral system consists of the UAV 

platform and multispectral sensors. The UAV platform is 

Dajiang Phantom 4Pro 4-axis UAV. The UAV system 

consists of a flight control system, power supply system, 

stabilized PTZ, remote control, and display. The UAV 

system is shown in Figure 3. UAV parameter specifications 
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are shown in Table 1. The multispectral sensor is 

MicaSense RedEdge MX multispectral camera. The 

multispectral sensor is light and easy to use. It has five 

spectral bands: blue, green, red, red edge, and near-

infrared. It is also equipped with an SD memory card to 

store remote-sensing image data. The multispectral sensor 

is shown in Figure 3, and the parameters of the 

multispectral camera are shown in Table 2 and Table 3. 

(a)  (b) 

Figure 3. UAV multispectral system. (a) Dajiang 
Phantom 4 Pro; (b) Multispectral camera MicaSense 

RedEdgeMX 

Table 1. Main parameters and specifications of UAV 

Parameters Values/Types 

Model DJI Phantom 4 Pro 

Take-off weight 1388 g 

Wheelbase 350 mm 

Duration of flight 20 min 

Maximum horizontal flight speed 50 km/h 

Maximum take-off altitude 120 m 

Maximum flying altitude 6000 m 

Table 2. Machine parameters of RedEdge 
multispectral camera 

Parameters Values/Types 

Model MicaSense RedEdge-MX 

Weight 238.7 g 

size 12.1 cm * 6.6 cm * 4.6 cm 

spectral bands Blue, Green, Red, Near IR, Red Edge 

focal length 5.5 mm-1.68 mm 

Table 3. Band parameters of the multispectral 
camera 

Band Name Center Bandwidth 

Blue 475 20 

Green 560 20 

Red 668 10 

Near IR 840 10 

Red Edge 717 10 

To ensure the accuracy and effectiveness of image data 

acquisition, it is selected to acquire the affected data in a 

period of moderate light intensity and stable radiation 

intensity on a sunny, windless, and cloudless day. 

Before the UAV takes off, set the relevant parameters in 

advance, set the speed at 2m/s, and the flight altitude at 

25m, 35m, and 45m respectively. The corresponding 

spatial resolution is shown in Table 4. The course overlap 

rate is 80%, and the inter-flight overlap rate is 80%. The 

planned flight route is larger than the range of the study 

area. Because of the large range of aerial photography and 

high accuracy requirements, the UAV uses the autonomous 

aerial photography mode to plan the route and take vertical 

photos in the study area and set the shooting time interval 

of the multispectral camera as 2s. Before the task starts, 

manually control the multispectral sensor and calibrate it to 

prepare for later image correction processing. 

Table 4. Spatial resolution corresponds to different 
flight heights 

Height(m) Spatial Resolution (m) 

25 0.0017 

35 0.0024 

45 0.0030 

2.4. Image Processing 

In this study, AgisoftPhotoScan software is used to 

preprocess the multispectral image, and ArcGIS10.7 is 

used to extract the reflectivity of each band. First, screen 

the images one by one before image splicing, remove the 

damaged images and remote sensing images outside the 

study area, including the images of UAV takeoff and 

landing, and only retain the image data in the test area. The 

preprocessed image data is imported into ArcGIS again, 

and five kinds of spectral information contained in the pixel 

are extracted. 

2.5. Determination Of Aboveground 
Biomass 

Biomass is the most important indicator of a crop's ability 

to obtain energy, so measuring the crop's biomass is of 

great significance for studying crop phenotype[1,22]. In 

this study, plants with similar growth status around each 

quadrat and in the quadrat were selected for destructive 

sampling of the whole selected sorghum plant. After being 

green in the oven at 105℃ for 30 minutes, the sorghum 

plant was dried at 80℃ for more than 24 hours until the 

mass of each part was constant. This is the dried matter of 
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the sample and then converted into AGB per unit 

area[23,24]. 

2.6. Model Evaluation 

The correlation between vegetation index and AGB is 

expressed by R, and the model is evaluated by 

determination coefficient R2, mean absolute error (MAE) 

and root mean square error (RMSE). The closer the R2 is to 

1, the better the prediction effect of the model is. The 

smaller the MAE and RMSE values are, the better the 

consistency between the predicted values and the measured 

values is, that is, the more accurate the model verification 

results are[25,26,27]. R2, MAE, and RMSE are calculated 

as follows: 
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In the above formulas， n is the number of model 

samples，𝑦𝑖  is the measured value，𝑦𝑖̅ is the mean value 

of the measured value，𝑦𝑖̂ represents an estimated value, 

and the unit of RMSE is g/ m2. 

2.7. Vegetation Index 

Based on previous research results, 10 vegetation indexes 

with the potential ability to estimate AGB were selected. 

By extracting the color information from the UAV 

multispectral image, the values of five spectral bands, 

including blue, green, red, red edge, and near-infrared, are 

obtained. These parameters are calculated to obtain 

normalized vegetation index (NDVI), normalized 

difference red edge (NDRE), green normalized difference 

vegetation index (GNDVI), vertical vegetation index 

(PVI), Green optimized soil adjusted vegetation index 

(GOSAVI), chlorophyll index (CVI), modified triangular 

vegetation index (MTVI), modified green and red 

vegetation index (MGRVI), normalized green, blue 

difference index (NGBDI), and the Visible light difference 

vegetation index (VDVI). The detailed information of 

these vegetation indexes is shown in Table 5. 

 
 
 

Table 5. The vegetation indexes formula and 
reference 

Abb Formula Ref 

NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 [28] 

NDRE 𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 [29] 

GNDVI 𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 [30] 

PVI 𝑃𝑉𝐼 =
2.5(𝑁𝐼𝑅 − 10.489𝑅 − 6.604)

√1 + 10.4892
 [31] 

GOSAV
I 

𝐺𝑂𝑆𝐴𝑉𝐼 =
1.16(𝑁𝐼𝑅 − 𝐺)

𝑁𝐼𝑅 + 𝐺 + 0.16
 [32] 

CVI 𝐶𝑉𝐼 =
𝑁𝐼𝑅 × 𝑅

𝐺2
 [33] 

MTVI 
𝑀𝑇𝑉𝐼 =

1.5(1.2(𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺))

√(2𝑁𝐼𝑅 + 1)2 − (𝑁𝐼𝑅 − 5√𝑅) − 0.5

 
[34] 

MGRVI 𝑀𝐺𝑅𝑉𝐼 =
𝐺2 − 𝑅2

𝐺2 + 𝑅2
 [35] 

NGBDI 𝑁𝐺𝐵𝐷𝐼 =
𝐺 + 𝐵

𝐺 − 𝐵
 [36] 

VDVI 𝑉𝐷𝑉𝐼 =
2𝐺 − 𝑅 − 𝐵

2𝐺 + 𝑅 + 𝐵
 [37] 

 

Note: In the table, Abb means Abbreviation, Ref means 

Reference, R refers to the red light band, B refers to the 

blue light band, G refers to the green light band, RE refers 

to the red edge band, and NIR refers to the near-infrared 

band. 

3. Test and Analysis 

3.1. Model Selection 

In this study, the unary linear regression model (ULR) and 

multiple machine learning models were used to predict the 

AGB of sorghum. And machine learning adopts the ridge 

regression algorithm of generalized linear regression, the 

lead absolute regression and selection operator (Lasso), the 

support vector machine (SVM), the decision tree 

algorithm, the random forest algorithm (RF) in bagging, 

and the Adaboost algorithm in boosting. 

Ridge regression (Ridge) is an improved biased 

estimation regression method based on least squares 

estimation. In this study, we choose the ridge regression 

machine learning model based on generalized linear 

regression. 

Lasso is a kind of compression estimation. By setting 

some regression coefficients to zero, the sum of the 

absolute values of the coefficients is forced to be less than 

a fixed value. It is also a biased estimate. In this study, the 

Lasso model based on generalized linear regression is 

selected. 

Support vector machine (SVM) is one of the common 

kernel learning methods, which can perform nonlinear 

classification. After parameter optimization, the regression 
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model of SVM based on the linear kernel is selected in this 

study. 

Decision tree (DT) is a decision analysis method that 

judges by calculating the probability that the expected 

value of NPV is greater than or equal to zero. In machine 

learning, decision tree is the basis and necessary 

component of many other algorithms. 

Random Forest (RF) is a machine learning algorithm 

composed of multiple decision trees. Its principle is to 

judge the input validation samples according to the trained 

model, and the final results are output by multiple decision 

trees in the form of voting. It is a classical bagging 

algorithm, and bagging is a very important integrated 

learning technology. 

Adaboost is an iterative algorithm, whose core idea is to 

combine multiple weak classifiers into a strong classifier. 

It is a classical, effective and practical boosting algorithm, 

and boosting algorithm is an important integrated learning 

technology. 

3.2. Data Processing 

During the half-year-long experiment, 146 valid data were 

obtained in total, and the data set was divided into the 

training set and the verification set, of which the 

verification set accounted for 30%. In this study, Python 

program language is used to complete data set partition, 

data processing, and analysis. 

3.3. Model Construction and Verification 
under the Different Spatial Resolutions 

3.3.1. Spatial Resolution is 0.017m 

At this spatial resolution, the flight height of the UAV is 

25m, and the vegetation index with the highest correlation 

with AGB is NGBDI, whose correlation value is 0.80. 

Using the vegetation index NGBDI as the independent 

variable and AGB as the dependent variable, the ULR 

model is established by using the training set and verified 

by using the verification set. The fitting equation obtained 

is shown in Formula 4. 

 

 𝐴𝐺𝐵 = 72.9530 × 𝑁𝐺𝐵𝐷𝐼 + 187.9065 (4) 

 

At the same time, the value of R2, MAE, and RMSE of 

the model are calculated, as shown in Table 6. 

Table 6. The R2, MAE and RMSE of the ULR model 
with the spatial resolution of 0.017m 

Model 
Indicator 

R2 MAE RMSE 

ULR 0.6096 46.2032 62.5113 

 

At the same time, the obtained fitting equation (4) is 

used to predict the samples in the validation set, and the 

comparison between the predicted value and the actual 

value is shown in Figure 4. 

 

Figure 4. Prediction results of the ULR model with 
the spatial resolution of 0.017m 

The above algorithms are trained on the training set, and 

the model obtained is evaluated with the verification set 

data. The specific results are shown in Table 7. 

Table 7. Prediction results of machine learning 
model with the spatial resolution of 0.017m 

Model 
Validation Set Indicator 

R2 MAE RMSE 

SVM 0.8788 29.2946 34.8227 

Ridge 0.8451 31.2111 39.3696 

Lasso 0.8227 35.7130 42.1220 

DT 0.7672 37.8077 48.2737 

RF 0.8961 26.4340 32.2459 

Adaboost 0.8552 27.7927 38.0682 

 

The obtained machine learning model is used to predict 

the samples of the verification set, and the comparison 

between the predicted value and the actual value is shown 

in Figure 5. 
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Figure 5. Prediction results of six machine learning 
models with the spatial resolution of 0.017m 

The random forest model has the best effect, with an R2 

value of 0.8961, an MAE value of 26.4340, and an RMSE 

value of 32.2459. Obviously, under this spatial resolution, 

the best prediction effect is the random forest regression 

model in the classical machine learning model. 

 

3.3.2 The Spatial Resolution is 0.024m 

At this spatial resolution, the flight height of the UAV is 

35m, and the vegetation index with the highest correlation 

with AGB is NGBDI, whose correlation coefficient is 0.82. 

With NGBDI as the independent variable and AGB as the 

dependent variable, a univariate linear regression (ULR) 

model is established using the training set and verified 

using the verification set. The fitting equation obtained is 

shown in Formula 5. 

 

 𝐴𝐺𝐵 = 113.1912 × 𝑁𝐺𝐵𝐷𝐼 + 189.0102 (5) 

 

The values of R2, MAE, and RMSE of the unary linear 

model are obtained, as shown in Table 8 below. 

Table 8. The R2, MAE and RMSE of the ULR model 
with the spatial resolution of 0.024m 

Model 
Indicator 

R2 MAE RMSE 

ULR 0.8019 40.7526 52.3413 

 

At the same time, the obtained fitting equation (5) is 

used to predict the samples in the validation set. The 

comparison between the predicted value and the actual 

value is shown in Figure 6. 

 

Figure 6. Prediction results of the ULR model when 
the spatial resolution is 0.024m 

The above algorithms are trained on the training set, and 

the model obtained is evaluated with the verification set 

data. The specific results are shown in Table 9. 

Table 9. Prediction results of machine learning 
model with the spatial resolution of 0.017m 

Model 
Validation Set Indicator 

R2 MAE RMSE 

SVM 0.8523 32.5750 45.1901 

Ridge 0.8805 30.3510 40.6507 

Lasso 0.8826 31.1061 40.2937 

DT 0.7774 41.3775 55.4806 

RF 0.8199 39.6705 49.8989 

Adaboost 0.6895 56.6235 65.5202 

 

The obtained machine learning model is used to predict 

the samples of the verification set, and the comparison 

between the predicted value and the actual value is shown 

in Figure 7: 

 

Figure 7. Prediction results of machine learning 
model when the spatial resolution is 0.024m 
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Obviously, the Lasso model has the best effect, with the 

R2 value of 0.8826, the MAE value of 31.1061, and the 

RMSE value of 40.2937. Under this spatial resolution, the 

Lasso regression model in the classical machine learning 

model has the best prediction effect. 

 

3.3.3 The Spatial Resolution is 0.030m 

At this spatial resolution, the flight height of the UAV is 

45m, and the vegetation index with the highest correlation 

with AGB is MGRVI, whose correlation value is 0.82. 

Using the vegetation index MGRVI as the independent 

variable and AGB as the dependent variable, the training 

set is used to establish a unitary linear regression model and 

the verification set is used for verification. The fitting 

equation obtained is shown in Formula 6. 

 

 𝐴𝐺𝐵 = 89.2695 × 𝑀𝐺𝑅𝑉𝐼 + 266.8630 (6) 

 

The values of R2, MAE, and RMSE of the model are 

obtained, as shown in Table 10. 

Table 10. The R2, MAE and RMSE of the ULR model 
with the spatial resolution of 0.030m 

Model 
Indicator 

R2 MAE RMSE 

ULR 0.8180 29.1241 46.0055 

 

At the same time, the obtained fitting equation (6) is 

used to predict the samples in the validation set. The 

comparison between the predicted value and the actual 

value is shown in Figure 8. 

 

Figure 8. Prediction results of the ULR model when 
the spatial resolution is 0.030m 

The above machine learning algorithms are trained on 

the training set, and the model obtained is evaluated with 

the verification set data. The specific results are shown in 

Table 11. 

Table 11. Prediction results of machine learning 
model with the spatial resolution of 0.030m 

Model 
Validation Set Indicator 

R2 MAE RMSE 

SVM 0.7492 39.2105 53.9985 

Ridge 0.8137 31.7354 46.5342 

Lasso 0.7283 42.3913 56.2040 

DT 0.8568 30.3373 40.8082 

RF 0.7526 41.6744 53.6271 

Adaboost 0.7492 42.0220 53.9996 

 

The obtained machine learning model is used to predict 

the samples of the verification set, and the comparison 

between the predicted value and the actual value is shown 

in Figure 9. 

 

Figure 9. Prediction results of machine learning 
model when the spatial resolution is 0.030m 

The best model is the DT model, whose the R2 value is 

0.8568, the MAE value is 30.3373, and the RMSE value is 

40.8082. Under this spatial resolution, the DT regression 

model in the classical machine learning model has the best 

prediction effect. 

The unary linear regression model used in this study was 

compared and screened with the traditional, classic, and 

effective machine learning models. The models with the 

best prediction effect on sorghum's AGB under the 

corresponding spatial resolution are summarized in table 

12. 

Table 12. Prediction results of machine learning 
models with the different spatial resolutions 

Spatial 
Resolution 

Optimal 

Model 

Validation Set Indicator 

R2 MAE RMSE 

0.017 RF 0.8961 26.4340 32.2459 

0.024 Lasso 0.8826 31.1061 40.2937 

0.030 DT 0.8568 30.3373 40.8082 
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In general, the machine learning model is more accurate 

than the linear regression model in predicting AGB with 

the certain spatial resolution. Moreover, with the decline of 

spatial resolution (that is, the increase of UAV flight 

altitude), the prediction's accuracy of the best model for 

AGB prediction is also declined. 

4. Results and Discussion 

The machine learning algorithm has high flexibility and 

computational efficiency and has been widely used in 

modeling and prediction of AGB. The three optimal 

prediction models oin their corresponding spatial 

resolution in this study are machine learning models, and 

the R2 of the models are higher than that of the linear 

regression model. 

The reason why the model accuracy decreases with the 

decrease of spatial resolution is not only that with the 

increase of UAV flight altitude, the spatial resolution 

decreases, but also brings about the decline of information 

collection and resolution ability for ground crops, and with 

the decline of spatial resolution, it makes the data 

acquisition process of multispectral images more 

vulnerable to the impact of background such as clouds, 

which brings more noise and errors to the data. 

Although this study further could verify the potential of 

using the machine learning algorithms to the combine 

spatial resolution with the vegetation indexes to predict the 

AGB, there are also several deficiencies in the study: First, 

the grid search method is used to automatically tune the 

parameters of the models, but this method still has some 

shortcomings. In the future, the automatic optimization and 

parameter adjustment algorithm based on AI would be used 

to tune the parameters of the model automatically; Second, 

the field operation environment of the field test is unstable 

and difficult to structure, which makes the collection of test 

data has certain deficiencies; Third, due to discontinuous 

observation time and only one-quarter of observation data, 

and relatively few data samples collected, the available 

open source data would be integrated or more data will be 

collected for further correction and verification; Fourth, the 

research object is only one variety of sorghum, and target 

object is relatively simple. The promotion research and 

application of other sorghum varieties, and even other 

crops (such as corn, and millet) still need experiments, 

discussion and study. 

5. Conclusion 

AGB refers to the total amount of organic matter per unit 

area in a certain period. It is an important indicator for crop 

growth monitoring. It not only represents the quality of 

crop planting but also represents the efficiency of 

photosynthesis and the accumulation of photosynthetic 

substances. It is an important basic condition for yield 

formation[38,39]. 

At present, the AGB prediction model mainly relies on 

field-measured data to verify and evaluate the established 

prediction model. In this study, the data set is trained, 

modeled, and verified by combining spatial resolution with 

vegetation index based on random forest, lasso regression, 

decision tree, and other machine learning algorithms. The 

main conclusions are as follows:  

 

1) When the spatial resolution is 0.017m, the random 

forest algorithm is the best model to be used to predict the 

AGB, and the model's R2=0.8961, MAE=26.4340, and 

RMSE=32.2459 are obtained;  

2) When the spatial resolution is 0.024m, the lasso 

algorithm is the best model to be used to predict the AGB, 

model's R2=0.8826, MAE=31.106, and RMSE=40.2937 

are obtained;  

3) When the spatial resolution is 0.030m, the decision 

tree algorithm is the best model to be used to predict AGB, 

model's R2=0.8568, MAE=30.3373, and RMSE=40.8082;  

4) It shows that the combination of spatial resolution and 

vegetation index, with the help of a classical machine 

learning model, can obtain higher accuracy of the AGB 

prediction model. It shows that the combination of spatial 

resolution, vegetation index, and machine learning 

algorithm is a robust, fast, and accurate prediction method. 
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