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Abstract 

Graphics processing units (GPUs) are microprocessors designed to the operation of display and manipulation of graphics 

data. . Currently, these graphics processor are found on all graphics hardware and have become very important instruments 

for parallel computing. GPUs are practical tools for the development of several fields like decoding and encoding, solving 

differential equations. Their advantages are increase in performance, faster data processing and reduced power 

consumption. It is simple to program a GPU with CUDA C to run parallel calculations. But it is necessary to have an 

understanding of the architectural aspects of the GPU and CUDA C. This paper, we will describe and implement Beeman's 

algorithm on GPU and CPU using CUDA C to solve the differential equation of charged particles in an electromagnetic 
field. Our goal is to evaluate the performances of the implementation on GPU and CPU processors and to deduce the 

efficiency of the use of GPUs. 
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1. Introduction

Over the past twenty years, the computational capabilities of 

graphics processing units (GPUs) for personal computers 
have evolved considerably. From the acceleration of a few 

fixed graphics rendering functions, GPUs have gradually 

incorporated the acceleration of more generic functions, to 

reach nowadays a level of programmability similar to that of 

a central processing unit (CPU). Thus, technologies have 

appeared that allow generic programs to be executed on 

GPUs. Among these, NVIDIA's Compute Unified Device 

Architecture (CUDA) technology has emerged as the most 

successful solution. 

The Beeman algorithm that we will implement is a 

numerical integration method for second-order ordinary 

differential equations, specifically Newton's equations of 

motion . It was designed to allow for a large 

number of particles in molecular dynamics simulations. 

There is a direct or explicit variant and an implicit variant of 

the  method. The direct variant was published by Schofield 

in 1973 [2] as a personal communication from Beeman. This 

is commonly referred to as Beeman's method. It is a variant 

of the Verlet integration method [3]. It produces identical 

positions, but uses a different formula for the velocities. In 

1976, Beeman published [1] a class of multi-step implicit 
(predictor-corrector) methods, where Beeman's method is 

the direct variant of the third order method in this class. 

     This paper will implement the Beeman algorithm on 

GPU and CPU processors using CUDA C, to solve the 

differential equation of charged particles in an 

electromagnetic field. The objective of this study is to 

compare the performance of the implementation of particle 
on GPU and CPU and deduce the efficiency of GPU 

processors for parallel computing. 

      The upcoming section of this paper are organized as the 

following: In section 2, we present the CUDA architecture 

and the hardware used. The section 3 introduces Beeman 
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algorithm that is implemented to solve the problem. In 

section 4, we discuss the results of the implementation. The 

last section concludes our paper. 

2. The CUDA architecture and the used

hardware

2.1. The CUDA architecture 

CUDA is a parallel programming model and software 
environment developed by NVIDIA [4]. It provides 

programmers with a set of instructions that enable GPU 

acceleration for data-parallel computing. The computational 

performance of many applications can be dramatically 

increased by using CUDA directly or by linking to GPU 

accelerated libraries. 

CUDA C/C++ is a useful adaptation and extension of 

programming languages for parallel algorithms. The core 

idea of CUDA is to execute thousands of threads in parallel 

to optimize computational results. A CUDA program is a 

single unified code system that consists of both host and 
peripheral programs. The host program is compiled only 

using the standard C compiler. The peripheral program is 

written using CUDA instructions for the parallel tasks, to 

program code execution on a GPU with CUDA, one must 

define the piece of code to be executed (which will be 

executed in a multitude of threads), and start its execution 

from the main thread running on the CPU. Thus, the piece of 

code to be executed on the GPU is defined by the 

programmer as a function in C that respects certain 

constraints, and is called a "kernel" in CUDA terminology. 

The execution of a kernel on a GPU follows a certain 
syntax, where the programmer specifies the number of 

threads executing the kernel, under which organization, with 

a certain amount of shared memory, etc. 

CUDA is a technology for performing scientific 

calculations on GPUs. It is the product of the NVIDIA 

laboratories. The term CUDA is used to refer to both the 

hardware and the programming language. The CUDA 

architecture divides the GPU device into grids and each grid 

contains a fixed number of thread blocks in a hierarchical 

structure, as shown in Figure 1 [16].  The configuration of 

grids and thread blocks helps the programmer to efficiently 

use all the computational capabilities of the graphics card. 
[6, 9] 

Figure 1. The architecture of the CUDA program 

    GPU programming with CUDA offers three main 

types of memory as shown in Figure 1: 
     Thread-local memory (registers). Memory can also be 

statically allocated from within a kernel, and according to 

the CUDA programming model. Such memory will not be 

global but local memory. Local memory is only visible, and 

therefore accessible, by the thread allocating it. So all 

threads executing a kernel will have their own privately 

allocated local memory. 

     Block shared memory is a common memory space for 

a block, organised in 32bit banks. Access to this memory is 

instantaneous (as for registers), except in the case of an 
access conflict between two threads in the same block. To 

allocate a variable in the shared memory space, the variable 

declaration must be preceded by the keyword __shared__. 

When calling the kernel, do not forget to specify the size of 

the shared memory that will be reserved for each block in 

the kernel launch parameters (<<<...>>>), otherwise an error 

will occur at runtime. It is possible to synchronise the 

threads of a block with the __syncthreads() function. This 

function can be particularly useful when you want to wait 

until all the threads in the block have finished writing their 

results to shared memory. The results can then be copied 
back into global memory, safe in the knowledge that the 

values in shared memory are correct. 

     The global memory corresponds to the video memory 

of the graphics card. It offers much more space than shared 

memory (from 512MB to several GB, compared to a few 
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tens of KB), but access is much slower (several hundred 

cycles compared to almost instantaneous access). Global 

memory allocation is done using functions such as 

cudaMalloc(), cudaFree(), which are the CUDA equivalents 

of traditional C memory management functions. It is also 

possible to make memory copies between main memory 

(RAM) and global memory using the 

cudaMemcpyHostToDevice(), cudaMemcpyDeviceToHost() 

and cudaMemcpyDeviceToDevice() functions. The choice 

of method depends on the direction of the copy you want to 

make. In addition, there are asynchronous variants of these 
functions using cudaMemcpyAsync(). However, it should 

be remembered that data copies between RAM and global 

memory pass through the PCI-Express bus, whose 

bandwidth is limited (8GB/s in theory for a PCIe 2.0 16x 

bus, between 2 and 4GB/s in practice). 

     Note also that other memory areas are available (cache 

for static variables, texture cache), but are physically based 

on the memory types presented above. There is relatively 

little information available on these caches, the best thing to 

do is to test their performance according to the context of 

use. 

2.2. The used hardware 

In this paper, the platform used is a regular computer with 
an Intel Core 2 Duo E6750 processor and an NVIDIA 

GeForce 8500 GT graphics card. The full characteristics 
of both platforms are given in documents [8, 10]. 

3. Presentation of the problem and the

numerical solution method

3.1. Presentation of the problem 

In this article, we are going to write a program in CUDA 

C of the Beeman algorithm, which allows us to study 

and solve the differential equation of charged particles 

in an electromagnetic field. To simplify the study, we 

consider that the charged particles are only subjected to 

the Lorentz force, the electromagnetic force. The 

knowledge of the trajectories of the charged particles is 

useful in several fields such as the techniques of PVD 

(Physical Vapor Deposition) [5]. These techniques 

allow the deposition of a thin layer of atoms on a 

substrate. The problem is then to have a prediction of 

the uniformity of the deposit. In the case of magnetron 

sputtering, a particular PVD technique, we exploit the 

confinement of electrons via a magnetron to obtain a 

stable plasma. This plasma will then be used to bombard 

a target from which we wish to release the atoms. These 

atoms will be deposited, by electronic affinity, in a thin 

layer on the substrate. Without going into details, the 

knowledge of the trajectories of these electrons can give 

us access to the quality of the deposit. In this study, we 

consider a cube subjected to an electric field and a 

magnetic induction field, as shown in figure 2. We will 

place N charged particles in the center of this cube. 

Figure 2. Electric and magnetic induction fields. 

     We will develop a matrix called Lorentz using the Gmsh 

software. This one will take an electric field, and a constant 

magnetic induction field as input, and a set of particles. The 

matrix will then be loaded to calculate the trajectory of 

electrons. The different parameters of the matrix are 
grouped in table 1. 

Table 1. The parameters of the Lorentz matrix 

Number of iterations 4000 

Time step 

Charge of the particle 
(electron) 

Mass of the particle 
(electron) 

Each charged particle, when entered into an 

electromagnetic field is subjected to a force, called the  

Lorentz force that has an expression: 

  (1) 

By applying the second law of dynamics for a system 

composed of N charged particles: 

 (2) 

By replacing (1) in (2), we obtain the differential equation 

of motion of charged particles in an electromagnetic field: 

 (3) 

With, 

 : The position of the particle at a given time. 

 : The charge of the particle. 

 : The mass of the particle. 
: The electric field in . 
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 : The magnetic induction field in . 

 : The velocity of the particle. 

 : The acceleration of the particle. 

3.2. The numerical solution method 

The resolution of the differential equation (3) describing the 

motion of each of the N particles of a system requires, 

because of its complexity, the use of numerical resolution 
methods. The most commonly used algorithms to solve 

these differential equations are the Leapfrog algorithm and 

the Varlet algorithm [6, 3], the Gear method [13, 14, 15] and 

the Beeman algorithm [11, 12] presented in this article. 

3.2.1. Beeman equation and Predictor–corrector 
The Beeman algorithm is an algorithm used to solve 

differential equations. It is based on an explicit predictor- 

corrector scheme. More precisely, this algorithm first 

estimates the speed at time t without relying on the 

position at time . This estimate then allows us to 

estimate the position of the particle in . Then, via 

this position estimate, the algorithm can correct the 

velocity of the particle. Thus, we can compute a better 

approximation of the position, taking into account this 

new speed. 

The expressions for the position ( ), the predicted 

speed  and the corrected speed    are grouped 

below using the Beeman algorithm: 

    The Beeman algorithm is used to calculate the 

execution time of particles charged in an 

electromagnetic field because the errors produced 

during the execution of the Beeman algorithm are less 

than other algorithms. 

3.2.2. Steps to follow to write code in CUDA C 
A basic CUDA-C program consists mainly of the following 

parts: 

 Install NVIDIA GPU drivers, CUDA SDK and

Visual studio as an environment for CUDA 

v10.2 programming.. 

 Declaration of CPU and GPU variables.

 Allocation of CPU memory for storing the

operand data of the calculation to be executed. 

 Filling the allocated memory areas.

 GPU memory allocation for storing the operand

data of the calculation to be executed. 

 Transfer of the CPU operand data to the GPU.

 Execution of the calculation on the graphics
card. 

 Transfer of the result from GPU to CPU.

 Release of the memory areas allocated on GPU.

 Release of the memory areas allocated on the

CPU. 

     Creating programs in CUDA C and configuring the 

environment is an easy task. However, it requires a 

detailed knowledge of the architecture and writing 

parallel programs. The most important part of 

programming in CUDA C is the kernel calls. The 
distribution of data in the right number of threads is the 

main element that determines a successful program. [7] 

3.2.3. The implemented code in CUDA C 
Before the implementation of the Beeman algorithm, it is 

necessary to know that at the level of parallelization, each 

CUDA thread will take care of the trajectory of a particle, 

and we will assume that particles are initially at rest with: 

 X represents the position matrix of the particles.

 E represents the matrix containing the electric

field interpolated on a regular grid 

 B represents the matrix containing the induction

field interpolated on a regular grid 

 DT represents the size of the time steps

 iE, and iB are vectors containing the values of the
electric and induction fields at a given point 

 Interp(X[i][j], E, B, iE, iB) interpolates the value of

the fields E and B at the point X[i][j] and places 

the values in iE and iB 

 AirPlus, Ai and AiMin are the acceleration vectors

in t+∆t, t, and t-∆t. 

 VIP, and VIC are the predicted and corrected speed

vectors 

 k is equal to the ratio q/m of the equation (3).

 cross (E, B) represents the vector product of vectors

E and B 

3.2.4. The program to implement the Beeman 
algorithm in CUDA C 

Void Beeman () 

{ 

// Copy on Device E, B and first row of X matrices 

CopyOnDevice (E, all) 

CopyOnDevice (B, all) 
CopyOnDevice (X, firstRow) 

// Call GPU kernel 

BeemanKernel < < <..., ... > > > () 

// Copy on Host X 

matrix CopyOnHost 

(X, all) 

} 

    global void beemanKernel () { 

// Thread ID: one thread per particule // 

int j = getThreadId (); 
// Initialization 
// Vi = {0., 0., 
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0.}; 

AiMin = {0., 0., 0.}; 

Interp (X [0] [ j], E, B, iE, iB); // Done on GPU 

// Beeman // 

for (int t = 1; i < M; t ++) { 

// Acceleration at step i 

Ai = k * (iE + cross (Vi, iB)) ; 

// Position update 

X[t][j] = X [t - 1] [j] + Vi * DT + (2/3 * Ai - 1/6 * 

AiMin) * DT * DT ; 

// Predicted velocity at step i + 1 

VIP = Vi + (3/2 * Ai - 1/2 * AiMin) * DT ; 

// Predicted acceleration 

Interp (X[t][j], E, B, iE, iB); 

AirPlus = K * (iE + cross (VIP, iB)); 

// Corrected speed 

Vi += (1/3 * AirPlus + 5/6 * Ai - 1/6 * AiMin) * DT ; 

// Next step 

AiMin = 

Ai; 

} 

4. The results and discussions

The results of the execution of Beeman's algorithm on 

GPU and CPU are presented in Figure 3, these best 

performances are obtained when 20 registers per task, 

4352 bytes of shared memory per block and 6 resident 

blocks per multiprocessor are fixed in the program. 

Figure 3. The execution time of the particle 

implementation charged on the CPU and GPU 
processors. 

     Figure 3 shows the evolution of execution time as a 

function of the number of particles loaded on both CPU, 
and GPU processors and we notice that: 

 When the number of loaded particles increases, the

execution time on both GPU and CPU processors

increases.

 The execution time of the loaded particles on GPU

is faster than CPU. 

 For every 100 particles loaded, the execution time

on GPU is about 3,7 times quicker than the

execution time on CPU.

 This best performance depends on the number of

registers per task, the number of bytes of shared

memory per block and the number of blocks per

multiprocessor.

     The implementation results can be explained by the fact 
that CPUs process data sequentially (task by task), as 

opposed to the parallel processing of GPUs (several tasks 

simultaneously). This implies the efficiency of using GPU 

processors for parallel computing.. 

Figure 4. Evolution of Speed up as a function of the 
number of charged particles 

      In parallel computing, Speed Up refers to how much 

faster a parallel algorithm is than a corresponding 

sequential algorithm. In our case, Speed up = execution 

time on CPU / execution time on GPU. Figure 4 shows 

that the Speed Up of this implementation is varied from 
3,725 to 3,765. These mainly on the operation of GPU and 

CPU, and the nature of the charged particles and other 

parameters. The results of this implementation show that 

GPU computing is more optimal than CPUs in terms of 

speed; this optimization is the result of a good selection of 

the block size used according to the number of processors. 

Values are very close to each other, and for particles from 

100 to 400, the speed up, decreases from 3,725 to 3,7 then 

increases from 500 particles. The value of speed up 

depends 

5. Conclusion

In this paper, we have successfully implemented 

Beeman’s algorithm using CUDA C to calculate the 

execution time of particles charged in an electromagnetic 

field. This implementation is useful in the PVD (Physical 

Vapor Deposition) technique and we have seen GPU 

results outperforming CPUs in terms of execution speed, 
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this shows the efficiency of using GPUs in parallel 

computing. Despite this implementation, Nvidia still has 

many challenges to overcome to keep CUDA C/C++ 

usable for parallel programming tasks on GPUs, the main 

task being to convince programmers that this is a credible 

platform as it features significant processing power. They 

are becoming the preferred choice for programmers who 

are proficient in CUDA C/C++. 

References 

[1] Beeman, David. "Some multistep methods for use in
molecular dynamics calculations", Journal of
Computational Physics, vol. 20, no. 2, pp. 130–139,
1976. 

[2] Schofield, P. "Computer simulation studies of the liquid

state", Computer Physics Communications, 5 (1): 17–23,
1973.

[3] Levitt, Michael; Meirovitch, Hagai; Huber, R.
"Integrating the equations of motion", Journal of
Molecular Biology, 168 (3): 617–620, 1983.

[4] NVIDIA. "NVIDIA CUDA Compute Unified Device
Architecture Programming Guide," Version 2.0, 2008.

[5] WD Sproul. "Surface and Coatings Technology," 1996,
Elsevier.

[6] Manish Arora. “The Architecture and Evolution of CPU- 
GPU Systems for General Purpose-Computing, “2012.

[7] Yadav K., Mittal A., Ansari M. A., Vishwarup V.
“Parallel Implementation of Similarity Measures on GPU 
Architecture using CUDA,” 2012.

[8] http://ark.intel.com/Product.aspx?id=30784.
[9] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni,

Amit Bawaskar. “GPGPU PROCESSING IN CUDA 

[10] ARCHITECTURE,” Advanced Computing: An 
International Journal (ACIJ), Vol.3, No.1, January 2012.

[11] http://www.nvidia.com/object/geforce_8500.html
[12] D. Beeman, J Camp. Phys, pp. 20-130, 1976.
[13] D. Beeman, J Camp. Phys, pp. 52- 24, 1983.
[14] C. W. Gear. "Numerical initial value problems in 

ordinary differential equations", Newyork, Prentice-
Hall,1971. 

[15] I.A. Mc Cammon and M. Karplus, Nature, pp. 268-765,
1977.

[16] I.A. Mc Cammon and M. Karplus, Proc. Nat. Acad Sei.
USA, pp.58, 1979.

[17] NVIDIA. Whitepaper NVIDIA’s next Generation CUDA
Compute Architecture. Nvidia Corp, p. 21, 2009.

EAI Endorsed Transactions 
on Internet of Things 

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

http://ark.intel.com/Product.aspx?id=30784
http://www.nvidia.com/object/geforce_8500.html

	2.1. The CUDA architecture
	2.2. The used hardware
	3.1. Presentation of the problem
	3.2. The numerical solution method
	References



