
EAI Endorsed Transactions
on Internet of Things Research Article

1

Implementation of Beeman's algorithm to calculate

execution time on GPU using CUDA

Youness Rtal1,*, Abdelkader Hadjoudja1

1Department of Physics, Laboratory of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of
Sciences, Ibn Tofail University, Kenitra, Morocco

Abstract

Graphics processing units (GPUs) are microprocessors designed to the operation of display and manipulation of graphics

data. . Currently, these graphics processor are found on all graphics hardware and have become very important instruments

for parallel computing. GPUs are practical tools for the development of several fields like decoding and encoding, solving

differential equations. Their advantages are increase in performance, faster data processing and reduced power

consumption. It is simple to program a GPU with CUDA C to run parallel calculations. But it is necessary to have an

understanding of the architectural aspects of the GPU and CUDA C. This paper, we will describe and implement Beeman's

algorithm on GPU and CPU using CUDA C to solve the differential equation of charged particles in an electromagnetic
field. Our goal is to evaluate the performances of the implementation on GPU and CPU processors and to deduce the

efficiency of the use of GPUs.

Keywords: Beeman algorithm, GPU, CPU, Thread, Bloc, Grille, CUDA C/C++.

Received on 25 July 2022, accepted on 17 August 2022, published on 15 December 2022

Copyright © 2022 Youness Rtal et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as
the original work is properly cited.

doi: 10.4108/eetiot.v8i4.2937

*Corresponding author. Email: youness.pc4@gmail.com

1. Introduction

Over the past twenty years, the computational capabilities of

graphics processing units (GPUs) for personal computers
have evolved considerably. From the acceleration of a few

fixed graphics rendering functions, GPUs have gradually

incorporated the acceleration of more generic functions, to

reach nowadays a level of programmability similar to that of

a central processing unit (CPU). Thus, technologies have

appeared that allow generic programs to be executed on

GPUs. Among these, NVIDIA's Compute Unified Device

Architecture (CUDA) technology has emerged as the most

successful solution.

The Beeman algorithm that we will implement is a

numerical integration method for second-order ordinary

differential equations, specifically Newton's equations of

motion . It was designed to allow for a large

number of particles in molecular dynamics simulations.

There is a direct or explicit variant and an implicit variant of

the method. The direct variant was published by Schofield

in 1973 [2] as a personal communication from Beeman. This

is commonly referred to as Beeman's method. It is a variant

of the Verlet integration method [3]. It produces identical

positions, but uses a different formula for the velocities. In

1976, Beeman published [1] a class of multi-step implicit
(predictor-corrector) methods, where Beeman's method is

the direct variant of the third order method in this class.

 This paper will implement the Beeman algorithm on

GPU and CPU processors using CUDA C, to solve the

differential equation of charged particles in an

electromagnetic field. The objective of this study is to

compare the performance of the implementation of particle
on GPU and CPU and deduce the efficiency of GPU

processors for parallel computing.

 The upcoming section of this paper are organized as the

following: In section 2, we present the CUDA architecture

and the hardware used. The section 3 introduces Beeman

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Youness Rtal and Abdelkader Hadjoudja

2

algorithm that is implemented to solve the problem. In

section 4, we discuss the results of the implementation. The

last section concludes our paper.

2. The CUDA architecture and the used

hardware

2.1. The CUDA architecture

CUDA is a parallel programming model and software
environment developed by NVIDIA [4]. It provides

programmers with a set of instructions that enable GPU

acceleration for data-parallel computing. The computational

performance of many applications can be dramatically

increased by using CUDA directly or by linking to GPU

accelerated libraries.

CUDA C/C++ is a useful adaptation and extension of

programming languages for parallel algorithms. The core

idea of CUDA is to execute thousands of threads in parallel

to optimize computational results. A CUDA program is a

single unified code system that consists of both host and
peripheral programs. The host program is compiled only

using the standard C compiler. The peripheral program is

written using CUDA instructions for the parallel tasks, to

program code execution on a GPU with CUDA, one must

define the piece of code to be executed (which will be

executed in a multitude of threads), and start its execution

from the main thread running on the CPU. Thus, the piece of

code to be executed on the GPU is defined by the

programmer as a function in C that respects certain

constraints, and is called a "kernel" in CUDA terminology.

The execution of a kernel on a GPU follows a certain
syntax, where the programmer specifies the number of

threads executing the kernel, under which organization, with

a certain amount of shared memory, etc.

CUDA is a technology for performing scientific

calculations on GPUs. It is the product of the NVIDIA

laboratories. The term CUDA is used to refer to both the

hardware and the programming language. The CUDA

architecture divides the GPU device into grids and each grid

contains a fixed number of thread blocks in a hierarchical

structure, as shown in Figure 1 [16]. The configuration of

grids and thread blocks helps the programmer to efficiently

use all the computational capabilities of the graphics card.
[6, 9]

Figure 1. The architecture of the CUDA program

 GPU programming with CUDA offers three main

types of memory as shown in Figure 1:
 Thread-local memory (registers). Memory can also be

statically allocated from within a kernel, and according to

the CUDA programming model. Such memory will not be

global but local memory. Local memory is only visible, and

therefore accessible, by the thread allocating it. So all

threads executing a kernel will have their own privately

allocated local memory.

 Block shared memory is a common memory space for

a block, organised in 32bit banks. Access to this memory is

instantaneous (as for registers), except in the case of an
access conflict between two threads in the same block. To

allocate a variable in the shared memory space, the variable

declaration must be preceded by the keyword __shared__.

When calling the kernel, do not forget to specify the size of

the shared memory that will be reserved for each block in

the kernel launch parameters (<<<...>>>), otherwise an error

will occur at runtime. It is possible to synchronise the

threads of a block with the __syncthreads() function. This

function can be particularly useful when you want to wait

until all the threads in the block have finished writing their

results to shared memory. The results can then be copied
back into global memory, safe in the knowledge that the

values in shared memory are correct.

 The global memory corresponds to the video memory

of the graphics card. It offers much more space than shared

memory (from 512MB to several GB, compared to a few

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

Implementation of Beeman's algorithm to calculate execution time on GPU using CUDA

3

tens of KB), but access is much slower (several hundred

cycles compared to almost instantaneous access). Global

memory allocation is done using functions such as

cudaMalloc(), cudaFree(), which are the CUDA equivalents

of traditional C memory management functions. It is also

possible to make memory copies between main memory

(RAM) and global memory using the

cudaMemcpyHostToDevice(), cudaMemcpyDeviceToHost()

and cudaMemcpyDeviceToDevice() functions. The choice

of method depends on the direction of the copy you want to

make. In addition, there are asynchronous variants of these
functions using cudaMemcpyAsync(). However, it should

be remembered that data copies between RAM and global

memory pass through the PCI-Express bus, whose

bandwidth is limited (8GB/s in theory for a PCIe 2.0 16x

bus, between 2 and 4GB/s in practice).

 Note also that other memory areas are available (cache

for static variables, texture cache), but are physically based

on the memory types presented above. There is relatively

little information available on these caches, the best thing to

do is to test their performance according to the context of

use.

2.2. The used hardware

In this paper, the platform used is a regular computer with
an Intel Core 2 Duo E6750 processor and an NVIDIA

GeForce 8500 GT graphics card. The full characteristics
of both platforms are given in documents [8, 10].

3. Presentation of the problem and the

numerical solution method

3.1. Presentation of the problem

In this article, we are going to write a program in CUDA

C of the Beeman algorithm, which allows us to study

and solve the differential equation of charged particles

in an electromagnetic field. To simplify the study, we

consider that the charged particles are only subjected to

the Lorentz force, the electromagnetic force. The

knowledge of the trajectories of the charged particles is

useful in several fields such as the techniques of PVD

(Physical Vapor Deposition) [5]. These techniques

allow the deposition of a thin layer of atoms on a

substrate. The problem is then to have a prediction of

the uniformity of the deposit. In the case of magnetron

sputtering, a particular PVD technique, we exploit the

confinement of electrons via a magnetron to obtain a

stable plasma. This plasma will then be used to bombard

a target from which we wish to release the atoms. These

atoms will be deposited, by electronic affinity, in a thin

layer on the substrate. Without going into details, the

knowledge of the trajectories of these electrons can give

us access to the quality of the deposit. In this study, we

consider a cube subjected to an electric field and a

magnetic induction field, as shown in figure 2. We will

place N charged particles in the center of this cube.

Figure 2. Electric and magnetic induction fields.

 We will develop a matrix called Lorentz using the Gmsh

software. This one will take an electric field, and a constant

magnetic induction field as input, and a set of particles. The

matrix will then be loaded to calculate the trajectory of

electrons. The different parameters of the matrix are
grouped in table 1.

Table 1. The parameters of the Lorentz matrix

Number of iterations 4000

Time step

Charge of the particle
(electron)

Mass of the particle
(electron)

Each charged particle, when entered into an

electromagnetic field is subjected to a force, called the

Lorentz force that has an expression:

 (1)

By applying the second law of dynamics for a system

composed of N charged particles:

 (2)

By replacing (1) in (2), we obtain the differential equation

of motion of charged particles in an electromagnetic field:

 (3)

With,

 : The position of the particle at a given time.

 : The charge of the particle.

 : The mass of the particle.
: The electric field in .

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

Youness Rtal and Abdelkader Hadjoudja

4

 : The magnetic induction field in .

 : The velocity of the particle.

 : The acceleration of the particle.

3.2. The numerical solution method

The resolution of the differential equation (3) describing the

motion of each of the N particles of a system requires,

because of its complexity, the use of numerical resolution
methods. The most commonly used algorithms to solve

these differential equations are the Leapfrog algorithm and

the Varlet algorithm [6, 3], the Gear method [13, 14, 15] and

the Beeman algorithm [11, 12] presented in this article.

3.2.1. Beeman equation and Predictor–corrector
The Beeman algorithm is an algorithm used to solve

differential equations. It is based on an explicit predictor-

corrector scheme. More precisely, this algorithm first

estimates the speed at time t without relying on the

position at time . This estimate then allows us to

estimate the position of the particle in . Then, via

this position estimate, the algorithm can correct the

velocity of the particle. Thus, we can compute a better

approximation of the position, taking into account this

new speed.

The expressions for the position (), the predicted

speed and the corrected speed are grouped

below using the Beeman algorithm:

 The Beeman algorithm is used to calculate the

execution time of particles charged in an

electromagnetic field because the errors produced

during the execution of the Beeman algorithm are less

than other algorithms.

3.2.2. Steps to follow to write code in CUDA C
A basic CUDA-C program consists mainly of the following

parts:

 Install NVIDIA GPU drivers, CUDA SDK and

Visual studio as an environment for CUDA

v10.2 programming..

 Declaration of CPU and GPU variables.

 Allocation of CPU memory for storing the

operand data of the calculation to be executed.

 Filling the allocated memory areas.

 GPU memory allocation for storing the operand

data of the calculation to be executed.

 Transfer of the CPU operand data to the GPU.

 Execution of the calculation on the graphics
card.

 Transfer of the result from GPU to CPU.

 Release of the memory areas allocated on GPU.

 Release of the memory areas allocated on the

CPU.

 Creating programs in CUDA C and configuring the

environment is an easy task. However, it requires a

detailed knowledge of the architecture and writing

parallel programs. The most important part of

programming in CUDA C is the kernel calls. The
distribution of data in the right number of threads is the

main element that determines a successful program. [7]

3.2.3. The implemented code in CUDA C
Before the implementation of the Beeman algorithm, it is

necessary to know that at the level of parallelization, each

CUDA thread will take care of the trajectory of a particle,

and we will assume that particles are initially at rest with:

 X represents the position matrix of the particles.

 E represents the matrix containing the electric

field interpolated on a regular grid

 B represents the matrix containing the induction

field interpolated on a regular grid

 DT represents the size of the time steps

 iE, and iB are vectors containing the values of the
electric and induction fields at a given point

 Interp(X[i][j], E, B, iE, iB) interpolates the value of

the fields E and B at the point X[i][j] and places

the values in iE and iB

 AirPlus, Ai and AiMin are the acceleration vectors

in t+∆t, t, and t-∆t.

 VIP, and VIC are the predicted and corrected speed

vectors

 k is equal to the ratio q/m of the equation (3).

 cross (E, B) represents the vector product of vectors

E and B

3.2.4. The program to implement the Beeman
algorithm in CUDA C

Void Beeman ()

{

// Copy on Device E, B and first row of X matrices

CopyOnDevice (E, all)

CopyOnDevice (B, all)
CopyOnDevice (X, firstRow)

// Call GPU kernel

BeemanKernel < < <..., ... > > > ()

// Copy on Host X

matrix CopyOnHost

(X, all)

}

 global void beemanKernel () {

// Thread ID: one thread per particule //

int j = getThreadId ();
// Initialization
// Vi = {0., 0.,

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

Implementation of Beeman's algorithm to calculate execution time on GPU using CUDA

5

0.};

AiMin = {0., 0., 0.};

Interp (X [0] [j], E, B, iE, iB); // Done on GPU

// Beeman //

for (int t = 1; i < M; t ++) {

// Acceleration at step i

Ai = k * (iE + cross (Vi, iB)) ;

// Position update

X[t][j] = X [t - 1] [j] + Vi * DT + (2/3 * Ai - 1/6 *

AiMin) * DT * DT ;

// Predicted velocity at step i + 1

VIP = Vi + (3/2 * Ai - 1/2 * AiMin) * DT ;

// Predicted acceleration

Interp (X[t][j], E, B, iE, iB);

AirPlus = K * (iE + cross (VIP, iB));

// Corrected speed

Vi += (1/3 * AirPlus + 5/6 * Ai - 1/6 * AiMin) * DT ;

// Next step

AiMin =

Ai;

}

4. The results and discussions

The results of the execution of Beeman's algorithm on

GPU and CPU are presented in Figure 3, these best

performances are obtained when 20 registers per task,

4352 bytes of shared memory per block and 6 resident

blocks per multiprocessor are fixed in the program.

Figure 3. The execution time of the particle

implementation charged on the CPU and GPU
processors.

 Figure 3 shows the evolution of execution time as a

function of the number of particles loaded on both CPU,
and GPU processors and we notice that:

 When the number of loaded particles increases, the

execution time on both GPU and CPU processors

increases.

 The execution time of the loaded particles on GPU

is faster than CPU.

 For every 100 particles loaded, the execution time

on GPU is about 3,7 times quicker than the

execution time on CPU.

 This best performance depends on the number of

registers per task, the number of bytes of shared

memory per block and the number of blocks per

multiprocessor.

 The implementation results can be explained by the fact
that CPUs process data sequentially (task by task), as

opposed to the parallel processing of GPUs (several tasks

simultaneously). This implies the efficiency of using GPU

processors for parallel computing..

Figure 4. Evolution of Speed up as a function of the
number of charged particles

 In parallel computing, Speed Up refers to how much

faster a parallel algorithm is than a corresponding

sequential algorithm. In our case, Speed up = execution

time on CPU / execution time on GPU. Figure 4 shows

that the Speed Up of this implementation is varied from
3,725 to 3,765. These mainly on the operation of GPU and

CPU, and the nature of the charged particles and other

parameters. The results of this implementation show that

GPU computing is more optimal than CPUs in terms of

speed; this optimization is the result of a good selection of

the block size used according to the number of processors.

Values are very close to each other, and for particles from

100 to 400, the speed up, decreases from 3,725 to 3,7 then

increases from 500 particles. The value of speed up

depends

5. Conclusion

In this paper, we have successfully implemented

Beeman’s algorithm using CUDA C to calculate the

execution time of particles charged in an electromagnetic

field. This implementation is useful in the PVD (Physical

Vapor Deposition) technique and we have seen GPU

results outperforming CPUs in terms of execution speed,

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

Youness Rtal and Abdelkader Hadjoudja

6

this shows the efficiency of using GPUs in parallel

computing. Despite this implementation, Nvidia still has

many challenges to overcome to keep CUDA C/C++

usable for parallel programming tasks on GPUs, the main

task being to convince programmers that this is a credible

platform as it features significant processing power. They

are becoming the preferred choice for programmers who

are proficient in CUDA C/C++.

References

[1] Beeman, David. "Some multistep methods for use in
molecular dynamics calculations", Journal of
Computational Physics, vol. 20, no. 2, pp. 130–139,
1976.

[2] Schofield, P. "Computer simulation studies of the liquid

state", Computer Physics Communications, 5 (1): 17–23,
1973.

[3] Levitt, Michael; Meirovitch, Hagai; Huber, R.
"Integrating the equations of motion", Journal of
Molecular Biology, 168 (3): 617–620, 1983.

[4] NVIDIA. "NVIDIA CUDA Compute Unified Device
Architecture Programming Guide," Version 2.0, 2008.

[5] WD Sproul. "Surface and Coatings Technology," 1996,
Elsevier.

[6] Manish Arora. “The Architecture and Evolution of CPU-
GPU Systems for General Purpose-Computing, “2012.

[7] Yadav K., Mittal A., Ansari M. A., Vishwarup V.
“Parallel Implementation of Similarity Measures on GPU
Architecture using CUDA,” 2012.

[8] http://ark.intel.com/Product.aspx?id=30784.
[9] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni,

Amit Bawaskar. “GPGPU PROCESSING IN CUDA

[10] ARCHITECTURE,” Advanced Computing: An
International Journal (ACIJ), Vol.3, No.1, January 2012.

[11] http://www.nvidia.com/object/geforce_8500.html
[12] D. Beeman, J Camp. Phys, pp. 20-130, 1976.
[13] D. Beeman, J Camp. Phys, pp. 52- 24, 1983.
[14] C. W. Gear. "Numerical initial value problems in

ordinary differential equations", Newyork, Prentice-
Hall,1971.

[15] I.A. Mc Cammon and M. Karplus, Nature, pp. 268-765,
1977.

[16] I.A. Mc Cammon and M. Karplus, Proc. Nat. Acad Sei.
USA, pp.58, 1979.

[17] NVIDIA. Whitepaper NVIDIA’s next Generation CUDA
Compute Architecture. Nvidia Corp, p. 21, 2009.

EAI Endorsed Transactions
on Internet of Things

10 2022 - 01 2023 | Volume 8 | Issue 4 | e4

http://ark.intel.com/Product.aspx?id=30784
http://www.nvidia.com/object/geforce_8500.html

	2.1. The CUDA architecture
	2.2. The used hardware
	3.1. Presentation of the problem
	3.2. The numerical solution method
	References

