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Abstract 
Excessive noise in speech communication systems is a major issue affecting various fields, including teleconferencing and 
hearing aid systems. To tackle this issue, various deep-learning models have been proposed, with autoencoder-based models 
showing remarkable results. In this paper, we present a comparative analysis of four different deep learning based 
autoencoder models, namely model ‘alpha’, model ‘beta’, model ‘gamma’, and model ‘delta’ for noise suppression in speech 
signals. The performance of each model was evaluated using objective metric, mean squared error (MSE). Our experimental 
results showed that the model ‘alpha’ outperformed the other models, achieving a minimum error of 0.0086 and maximum 
error of 0.0158. The model ‘gamma’ also performed well, with a minimum error of 0.0169 and maximum error of 0.0216. 
These findings suggest that the pro-posed models have great potential for enhancing speech communication systems in 
various fields. 
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1. Introduction

Exposure to high noise levels can pose a significant threat to 
human health and well-being. Noise pollution, which is an 
unwanted sound that has a detrimental effect on human health 
and the environment, is a growing concern in many cities 
worldwide. According to the World Health Organization, 
exposure to noise levels above 70 decibels (dB) for an 
extended period can cause hearing damage, while exposure to 
levels above 85 dB for an extended period can result in 
permanent hearing loss [1]. Furthermore, prolonged exposure 
to high noise levels can lead to stress, cardiovascular disease, 
and sleep disturbances. In addition to the health risks, high 
noise levels can also have adverse effects on productivity and 
cognitive performance. Studies have shown that exposure to 
high levels of noise can impair memory, reduce 
concentration, and interfere with communication. This can 
lead to decreased productivity, impaired academic 
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performance, and even accidents in the workplace. Reducing 
noise levels is, therefore, essential to protect human health 
and well-being, as well as to ensure optimal cognitive and 
academic performance. One way to achieve this is through 
noise cancellation technology [2].  

Noise cancellation is a technique that involves reducing or 
eliminating unwanted sounds by generating sound waves that 
are the opposite of the unwanted sound. This can be achieved 
using various methods, including active noise control, passive 
noise control, and adaptive noise control. Machine learning, 
specifically deep learning techniques such as Convolutional 
Neural Networks (CNN), can be used to improve noise 
cancellation by learning the patterns of the input signals and 
generating a more accurate and effective cancellation signal 
(Pandey & Wang, 2019). CNN models are trained using large 
datasets of sound samples and can learn to recognize and 
cancel out specific types of noise. By using machine learning 
algorithms, noise cancellation systems can adapt to different 
environments and noise sources, making them more versatile 
and effective. Furthermore, machine learning can also 
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improve the speed and efficiency of noise cancellation 
systems by allowing them to process signals in real-time, 
making them useful in applications such as noise-cancelling 
headphones, automotive noise reduction, and environmental 
noise control.  

Convolutional Neural Networks (CNN) have emerged as a 
powerful tool for pattern recognition in various fields, 
including speech recognition and image processing. Their 
ability to reduce the number of parameters in Artificial Neural 
Networks (ANN) has been a significant factor in their 
success. As a result, researchers and programmers have been 
exploring the use of larger models to tackle more complex 
tasks that were previously deemed impossible using 
traditional ANNs. One key assumption of CNN is that the 
problems they handle should not have spatially dependent 
properties. Additionally, CNN's ability to learn abstract 
features as the input moves through deeper layers is another 
critical aspect [3]. For example, in image classification, the 
first layer may recognize edges, the second layer may identify 
simpler shapes, and the third layer may recognize higher-
level characteristics, such as faces [4]. 
Autoencoder models are a type of artificial neural network 
that can learn to compress data into a low-dimensional 
representation and then reconstruct it back into its original 
form [5]. Ghosh et al. (2023) embarked on a comprehensive 
study to assess water quality through predictive machine 
learning. Their research underscored the potential of machine 
learning models in effectively assessing and classifying water 
quality. The dataset used for this purpose included parameters 
like pH, dissolved oxygen, BOD, and TDS. Among the 
various models they employed, the Random Forest model 
emerged as the most accurate, achieving a commendable 
accuracy rate of 78.96%. In contrast, the SVM model lagged 
behind, registering the lowest accuracy of 68.29% [17]. 
Alenezi et al. (2021) developed a novel Convolutional Neural 
Network (CNN) integrated with a block-greedy algorithm to 
enhance underwater image dehazing. The method addresses 
color channel attenuation and optimizes local and global pixel 
values. By employing a unique Markov random field, the 
approach refines image edges. Performance evaluations, 
using metrics like UCIQE and UIQM, demonstrated the 
superiority of this method over existing techniques, resulting 
in sharper, clearer, and more colorful underwater images [18]. 
Sharma et al. (2020) presented a comprehensive study on the 
impact of COVID-19 on global financial indicators, 
emphasizing its swift and significant disruption. The research 
highlighted the massive economic downturn, with global 
markets losing over US $6 trillion in a week in February 
2020. Their multivariate analysis provided insights into the 
influence of containment policies on various financial 
metrics. The study underscores the profound effects of the 
pandemic on economic activities and the potential of using 
advanced algorithms for detection and analysis [19]. 

This process is done by training the model to minimize the 
difference between the input data and the reconstructed data. 
Autoencoders can be used for various tasks, including data 
compression, feature extraction, and denoising. In the context 
of noise cancellation, autoencoder models are particularly 
useful. One way to use autoencoders for noise cancellation is 

to train them to learn a mapping between a noisy input signal 
and a clean output signal. During training, the model is fed 
noisy input data and is trained to generate a clean output that 
is as close as possible to the original clean signal. Once the 
model is trained, it can be used to denoise new input data by 
passing it through the autoencoder and obtaining the 
reconstructed clean output. The decoder is responsible for 
generating the reconstructed clean output, and its architecture 
is designed to extract useful features from the input signal. By 
training the decoder to reconstruct clean signals from noisy 
inputs, the model learns to extract features that are robust to 
noise. This allows the decoder to effectively denoise input 
signals by removing the noise while retaining the underlying 
information. Autoencoder models have been shown to be 
effective in various noise cancellation applications, including 
speech and image denoising.  

This paper compares and showcases four distinct kinds of 
autoencoder model architectures. Section 2 talks about the 
research done in the field of noise cancellation and 
suppression. While Section 3 and Section 4 speak about the 
methodology and the result and comparison of the proposed 
models, Section V concludes the paper highlighting all the 
key inferences from the results.  

2. Related Works 

Table 1. compares the results from different models. Various 
models including CNN model, CRN, LSTM, RNN, R-CED, 
and DeepClean Architecture were implemented, and the 
performances were analyzed. A common pattern was 
observed among the research. All the proposed models were 
a little bit computationally extensive.  
 

Table 1. Model Comparisons from various papers 
 

Reference Model Results 

[6] A Custom 
CNN 

The training set accuracy was 
95.82% and the corresponding 
loss was 0.13. The validation 
set accuracy was 73.59% and 
the loss was 1.02. 

[7] Custom CNN 
and RNN 

Different noise removal 
methods showed varying 
performance on different types 
of noise. The RNN method was 
found to be more effective in 
removing stationery and street 
noise compared to the CNN 
method, whereas the CNN 
method performed better in 
removing noise from music and 
voiced background. 

[8] 

Redundant 
Convolutional 
Encoder 
Decoder (R-
CED) 

Achieved 8.79 SDR on R-CED 
on a 20Conv model 

[9] 
Blind CNN 
enhanced by 
an iterative 

0.984 accuracy on INRNet and 
0.955 on ROLD (both on 10% 
noise density) 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



 A Comparative Analysis of Various Deep-Learning Models for Noise Suppression 
 
 
 

3 

post-
processing 

[10] 

A mask-
based long 
short-term 
memory 
(LSTM) 
network 

Average STOI value of 0.75 on 
seen noise types and 0.78 on 
unseen noise types 

[11] 

A recurrent 
neural 
network with 
bidirectional 
long short-
term 
memory 
(BLSTM) 

Compared to the AES+DNN 
method, the BLSTM approach 
showed superior performance, 
exhibiting a 5.4 dB increase in 
ERLE and a 0.5 improvement 
in PESQ. 

[12] 
A custom 
DeepClean 
model 

The signal-to-noise ratio (SNR) 
of the injected signal is 
increased by 21.6% 

[13] 

A custom 
Convoluted 
Recurrent 
Network 
(CRN) 

The proposed SAES based on 
CRN performs better than the 
conventional Wiener and 
NLMS algorithms, particularly 
in low Signal-to-Error Ratio 
(SER) conditions and high 
Reverberation Time (RT60) 
conditions. 

[14] 

Three 
postfiltering 
strategies 
based on 
MMSE noise 
PSD 
estimation 
method were 
proposed 

The subjective listening tests 
revealed that the proposed 
techniques were preferred by 
the listeners over 60% of the 
time. 

3. Methodology 

The first step of the study involves unzipping the dataset, 
which contains a diverse collection of noisy sounds. These 
sounds include speeches embedded with different types of 
background noises. Additionally, the dataset includes 
corresponding clean signals, which serve as references for 
noise-free audio. Upon unzipping, the dataset is loaded into 
memory for further processing. To facilitate data 
manipulation and model training, the loaded data set are 
converted into tensors, which are mathematical 
representations of the audio signals. This conversion enables 
efficient computation and manipulation of the data during 
subsequent stages. Next, the dataset is divided into training 
and testing subsets. This step ensures that the performance of 
the deep-learning models can be evaluated on unseen data, 
thereby providing a realistic assessment of their effectiveness 
in noise suppression tasks. Then comes emphasis on the 
creation and compilation of various deep-learning models. 
These models, specifically designed for noise suppression, 
employ different architectural configurations and parameters 
[15]. The purpose of this diversity is to enable a 
comprehensive comparative analysis, shedding light on the 
strengths and weaknesses of each model. Once the models are 
created and compiled, they undergo evaluation. This involves 

assessing their performance on the testing dataset, utilizing 
appropriate evaluation metrics for noise suppression tasks. 
The results obtained during evaluation provide insights into 
the models' capabilities in reducing noise and preserving the 
clarity of the desired audio signals. Lastly, the best-
performing deep-learning model from the comparative 
analysis is implemented. This implementation stage aims to 
showcase the practical application of the selected model, 
potentially serving as a basis for further research and 
development in noise suppression techniques. Figure 1 shows 
the flowchart for the algorithm. 

 

 
 

Figure 1. Flowchart for the Algorithm 

3.1. Creating and loading the dataset 

The dataset utilized in this study comprises a diverse 
collection of audio recordings. These recordings consist of 
speeches embedded with various background noises, 
simulating real-world acoustic environments. Additionally, 
the dataset includes corresponding clean signals, which serve 
as references for the noise-free versions of the speeches. 
Careful curation of the dataset ensures a wide range of noise 
types, including environmental, mechanical, and human-
generated sounds. The collection covers different scenarios 
and contexts to provide a comprehensive representation of the 
challenges encountered in noise suppression tasks. The 
dataset's size and composition helps to train and evaluate 
autoencoder models effectively while ensuring the privacy 
and anonymity of the individuals involved in the recordings.  

The goal is to train a deep learning model to remove noise 
from the noisy speech sounds and obtain the clean speech 
sounds. The data is first read from files using TensorFlow's 
audio decoding function. The clean sounds and noisy sounds 
are stored in separate lists. These lists are then concatenated 
to create two large tensors representing the clean and noisy 
sounds respectively. Next, the clean and noisy audio files are 
decoded using the decode_wav function from the TensorFlow 
library. The decoded clean and noisy audio files are 
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concatenated into two separate numpy arrays, 
clean_sounds_list and noisy_sounds_list. To train the deep 
learning model, we need to divide the data into training and 
testing sets. We use 80% of the data for training and 20% for 
testing [16]. The data is then split into smaller batches, with 
each batch having a fixed size of 12000 sound samples. This 
is done to make the training process more efficient and to 
avoid running out of memory during training.  

Next, we created two TensorFlow datasets: one for training 
and another for testing. The dataset is created using the 
tensorflow function. This function takes the clean and noisy 
tensors as input and returns a dataset object that can be used 
for training the model. The dataset is then shuffled and 
batched, with a batch size of 64. We also drop any incomplete 
batches at the end of each epoch to ensure that all batches are 
the same size. Figure 2 and Figure 3 shows a sample clean 
waveform and a sample noisy waveform. 

 

 
Figure 2. Clean Sound Sample waveform 

 
Figure 3. Noisy Sound Sample waveform 

The resulting dataset is then used to train a deep learning 
model to remove noise from the noisy speech sounds. The 
model architecture used in this code is a convolutional neural 

network (CNN) with an encoder-decoder architecture. The 
encoder part of the model consists of several 1D 
convolutional layers that extract relevant features from the 
input sound. The decoder part of the model consists of several 
1D transposed convolutional layers that reconstruct the clean 
sound from the extracted features. The model is trained using 
the noisy speech sounds as input and the clean speech sounds 
as output. 

3.2. Model Formation 

This paper introduces 4 distinct autoencoder architectures for 
better understanding and comparison of training loss and 
validation losses. The models are named ‘alpha’, ‘beta’, 
‘gamma’, and ‘delta’ for a clear distinction between them. 
The models are all created using the Keras library in python. 
We picked the sequential model from the Keras library since 
our model development was focused on a stack of layers with 
only one input and output for each layer. The architecture of 
model ‘alpha’ consists of a series of convolutional layers 
followed by a series of transpose convolutional layers. The 
convolutional layers downsample the input data to a lower 
dimensional feature representation, while the transpose 
convolutional layers upsample the features to reconstruct the 
original input data. The network starts with an input layer of 
size (16000, 1). The first convolutional layer (c1) has 2 filters 
with a kernel size of 32 and a stride of 2. The activation 
function used is ReLu. The following convolutional layers 
(c2, c3, c4, c5) have 4, 8, 16, and 32 filters respectively with 
the same kernel size and stride as c1 and the ReLu activation 
function. The first transpose convolutional layer (dc1) has 32 
filters, kernel size of 32, and a stride of 1 with padding set to 
'same'. The Concatenate layer merges the output of the dc1 
layer with the output of c5. The resulting tensor is passed 
through the next transpose convolutional layer (dc2) which 
has 16 filters, kernel size of 32, and a stride of 2. Again, the 
output is concatenated with the output of the previous 
convolutional layer (c4) and passed through the next 
transpose convolutional layer (dc3) with 8 filters, kernel size 
of 32, and a stride of 2. This process is repeated until the last 
transpose convolutional layer (dc7), which has 1 filter and a 
kernel size of 32. Finally, the output of the last concatenation 
layer is passed through a linear activation function and 
produces the output of the autoencoder. Figure 4 displays the 
input shape and the output form following each layer. 
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Figure 4. Model ‘Alpha’ Architecture 

The second model ‘beta’ is comparatively less 
complicated than alpha model. The encoder consists of four 
Conv1D layers with 32, 16, 8, and 4 filters, respectively. Each 
Conv1D layer has a kernel size of 3 and uses the ReLU 
activation function. Padding is set to 'same' to ensure that the 
dimensions of the output match the input. The output of the 
encoder, called encoded, is then passed through the decoder. 
The decoder also consists of four Conv1D layers with 8, 16, 
32, and 1 filters, respectively. Again, each Conv1D layer has 
a kernel size of 3 and uses the ReLU activation function. 
Padding is set to 'same'. The output of the final Conv1D layer 
in the decoder, called decoded, has a single filter and uses a 
linear activation function. Figure 5 displays the model beta 
architecture. 

 
 

Figure 5. Model ‘Beta’ Architecture 

Model ‘gamma’ is similar to model ‘beta’. The encoder 
consists of two Conv1D layers with 32 and 16 filters, 
respectively, each with a kernel size of 3 and ReLU activation 
function. The padding is set to 'same'. After each Conv1D 
layer, a MaxPooling1D layer with a pool size of 2 is added, 
which halves the size of the input along the time axis. The 
output of the encoder, called encoded, is then passed through 
the decoder. The decoder consists of two Conv1D layers with 
16 and 32 filters, respectively, each with a kernel size of 3 
and ReLU activation function. The padding is set to 'same'. 
After each Conv1D layer, an UpSampling1D layer with a size 
of 2 is added, which doubles the size of the input along the 
time axis. The output of the final Conv1D layer in the 
decoder, called decoded, has a single filter and uses a linear 
activation function. Both the models have mean squared error 
as their loss functions. Adam optimizers are used with a 
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learning rate of 0.0001 to reduce loss functions. Figure 6 
displays the model gamma architecture. 

 

 
 

Figure 6. Model ‘Gamma’ Architecture 

Model ‘delta’ is also similar to model ‘gamma’ and model 
‘beta’. The encoder part consists of three 1D convolutional 
layers. Each layer has 16, 8, and 4 filters respectively. The 
convolutional layers use the ReLu activation function and 

padding is set to 'same' to ensure that the output shape of the 
layers is the same as the input shape. The decoder part is 
defined using three 1D transposed convolutional layers. The 
transposed convolutional layers are used to upsample the 
encoded input back to its original shape. The layers have 8, 
16, and 1 filter respectively, with the same padding and 
activation function as the encoder. Figure 7 displays the 
model delta architecture. 

 

 
 

Figure 7. Model ‘Delta’ Architecture 

All the models have mean squared error as their loss 
functions. Adam optimizers are used with a learning rate of 
0.002 to reduce loss functions. 

4. Results and Discussions 

All the models are tested and validated on a set of parameters 
for each noise file i.e., batches, steps per epoch, validation 
steps, and the number of epochs. 6630 samples are used in 
training and 1658 samples are used for validating the model.  
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Table 2 depicts the results obtained from all the models 
comparing there minimum and maximum errors It is 
observed that model alpha has the lowest minimum and 
maximum loss and consistency as compared to other models 
with model gamma being the second best, followed by model 
beta and model delta. 
 

Table 2. Model Error Comparison 
 

Model Min. Error Max. Error 
Model Alpha 0.0086 0.0158 
Model Beta 0.0177 0.0229 

Model Gamma 0.0169 0.0216 
Model Delta 0.0188 0.0230 

 
 

 
Figure 8. (a) Corresponding Clean Audio Signal (b) 

Results of Model Alpha 

 
Figure 9. (a) Corresponding Clean Audio Signal (b) 

Results of Model Beta 

 
Figure 10. (a) Corresponding Clean Audio Signal (b) 

Results of Model Gamma 

 
Figure 11. (a) Corresponding Clean Audio Signal (b) 

Results of Model Delta 

Figure 8, Figure 9, Figure 10, and Figure 11 shows the 
waveform result of various models. It can be seen from these 
figures that model alpha has the closest results as compared 
to the other models followed by model gamma, beta and then 
delta.  

5. Future Scope 

In considering future research directions for this topic, it is 
crucial to explore advanced techniques for noise suppression 
in deep-learning models without triggering detection 
algorithms. One potential area of investigation involves the 
development of novel architectures that incorporate attention 
mechanisms. Attention mechanisms enable the models to 
focus on relevant audio features while suppressing unwanted 
noise, leading to enhanced speech quality and improved noise 
reduction performance. Another promising avenue for future 
research lies in leveraging generative adversarial networks 
(GANs) for noise suppression. GANs have shown remarkable 
potential in generating realistic data, and their application to 
noise suppression could lead to more robust and accurate 
models. By training GANs on large-scale datasets containing 
diverse noise patterns, researchers can aim to achieve 
superior noise reduction performance and generalize well to 
unseen noisy environments. Additionally, investigating the 
effectiveness of transfer learning approaches in noise 
suppression is another intriguing research direction. By 
leveraging pre-trained models on related tasks, researchers 
can explore the transferability of learned features and weights 
to enhance noise suppression performance. This approach 
could potentially reduce the amount of labeled data required 
for training, making noise suppression models more 
accessible and adaptable to various real-world scenarios. 
Moreover, exploring the combination of deep-learning 
models with other signal processing techniques, such as 
adaptive filtering or spectral enhancement, holds promise for 
further improving noise suppression performance. Integrating 
these techniques into the existing deep-learning frameworks 
could result in more comprehensive and effective noise 
reduction algorithms. 

Furthermore, the investigation of real-time noise 
suppression systems for practical applications is an important 
direction for future research. Developing efficient and low-
latency deep-learning models capable of processing audio 
signals in real-time scenarios can have significant 
implications for industries such as telecommunications, voice 
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assistants, and audio-conferencing systems. Also, it is crucial 
to consider the ethical implications and potential bias in noise 
suppression algorithms. Future research should focus on 
developing fair and unbiased models that do not inadvertently 
discriminate against certain speech characteristics or 
demographic groups. By pursuing these future research 
directions, the field of deep-learning-based noise suppression 
can continue to advance, leading to more accurate, robust, and 
practical solutions for enhancing speech communication 
systems in various domains.  

6. Conclusion 

In this paper, the primary aim was to compare and make 
the best noise suppression algorithm that can help in various 
modern-day devices. For that, four autoencoder models were 
built from scratch and were compared on the basis of the fixed 
set of input parameters. Model ‘alpha’ was an excellent 
performer with the lowest minimum loss of 0.0086. While 
model ‘beta’, ‘gamma’, and ‘delta’ obtained minimum error 
of 0.0177, 0.0169, and 0.0188 respectively. The proposed 
autoencoder model for noise suppression holds significant 
promise in effectively handling adaptive noises in a wide 
range of environments. By leveraging its inherent capacity to 
learn robust representations of audio signals, the autoencoder 
can adaptively capture and model the complex dynamics of 
different noise types. This adaptability enables the model to 
effectively suppress adaptive noises that exhibit time-varying 
characteristics or exhibit non-stationary patterns. The 
autoencoder's ability to learn latent representations from both 
noisy and clean signals allows it to identify and extract 
relevant features that are essential for differentiating between 
the desired speech and adaptive noises. Consequently, the 
model can dynamically adjust its noise suppression 
parameters and adapt its filtering mechanisms to 
accommodate the changing nature of the noises in real-time. 
This capability of the autoencoder model makes it a valuable 
tool in applications where adaptive noises are prevalent, such 
as communication systems, voice assistants, and audio 
recording devices. By effectively suppressing adaptive 
noises, the model enhances the intelligibility and quality of 
the desired speech signal, improving the overall user 
experience in various practical scenarios. 
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