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1. Introduction

The Yellow rust disease, triggered by the pathogen Puccinia 
striiformis, presents a substantial obstacle to global wheat 
production, resulting in considerable yield losses and 
economic repercussions [1]. The highly destructive nature of 
the disease warrants early detection and classification to 
facilitate effective management and control strategies [2]. 
Yellow rust disease has been recorded in over 60 different 
countries, resulting in significant losses in wheat yields, 
sometimes up to 80% [3]. Notable epidemics have occurred 
in countries such as Australia, South Asia, India, Pakistan, 
China, New Zealand, Iran, and the United States, with 
considerable economic impacts [4,5]. In addition to yield 
loss, the disease also negatively impacts wheat quality [6]. 
The ability to monitor and control yellow rust disease is 

critical for minimizing economic losses. Traditionally, rust 
severity levels are determined visually by experts in field 
conditions, taking into account factors for example wheat 
variety, weather and climate factors and chemicals applied to 
protect the plants [7]. However, this process is subject to human 
error and may not yield accurate results. Recent breakthroughs 
in information technology allow for the development of 
computerized algorithms for detecting structural defects in 
objects using just the pixel values of object photographs [8]. 

Convolutional neural networks (ConvNets) have emerged as a 
state-of-the-art method for automatic feature extraction and 
object recognition in various fields, including medicine and 
agriculture [9,10]. ConvNets are particularly useful for video, 
image, written content, or audio classification tasks, and have 
been used to solve difficulties such as recognizing hand 
rheumatoid arthritis, diagnosing breast cancer, and identifying 
plant illnesses. [11,12,13]. Success in ConvNet-based models 
relies on the availability of high-quality images and appropriate 
network architecture [14]. The objective of this study is to 
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develop a ConvNet-based model that can categories wheat 
yellow rust infections as resistant (R), moderately resistant 
(MR), moderately susceptible (MS), or susceptible (S) 
infections. 

This research is driven by the hypothesis that experts visually 
analyze structural changes in wheat leaves to the existence 
and level of yellow rust disease, and ConvNets can effectively 
classify these structural changes in images, allowing for 
accurate determination of yellow rust severity levels in wheat. 
To achieve this goal, we employ three state-of- the-art 
ConvNet models, EfficientNetB3, DenseNet121, and 
VGG19, which have demonstrated success in various object 
recognition tasks. Additionally, to increase model 
performance, we investigate the possibility of data 
augmentation and transfer learning strategies. By leveraging 
these advanced DL and ML methods, we aim to provide a 
valuable tool for researchers and producers to take timely and 
effective action against the disease, ultimately minimizing 
yield loss and   economic impact on wheat production. 

The structure of this essay is as follows: In Section 2, the 
research techniques used to select the primary studies are 
covered. Section 3 addresses the proposed methodology. 
Section 4 looks at Experimental analysis. In Section 5&6, the 
results and conclusions. 

2. Literature Review 

In the last decade, a variety of DL algorithms for the 
identification and classification of wheat illnesses have been 
introduced, including yellow rust. One such example is the 
work of Hussain et al. (2018) [15], who developed an Alex 
Net-based system for categorizing wheat into four groups: 
stem rust, yellow rust, powdery mildew, and healthy. This 
approach demonstrated promising results, achieving an 
accuracy of 84.54% in identifying the presence of yellow rust 
among other diseases. 

Hayit et al. (2021) [16] developed a dataset containing images 
of wheat leaves infected with yellow rust, which was utilized 
to train, validate, and test a Yellow-Rust-Xception is the 
name given to a DL model. This model achieved a test 
accuracy of 91%, indicating its ability to predict the 
possibility of yellow rust in wheat as well as the extent of the 
infection. In addition to the Yellow-Rust-Xception model, 
other well-known deep learning architectures, Base models 
like MobileNet and ResNet were also explored, 
demonstrating the applicability of multiple deep learning 
approaches for agricultural applications. 

As artificial intelligence progresses, conventional ML 
approaches are gradually being replaced by more advanced 
techniques, such as convolutional neural networks (CNNs) 
[17,18,19]. CNNs have shown substantial benefits in image 
recognition tasks mostly because of their ability to extract 
deep information from raw photos automatically. Several 
research has used CNNs to detect illnesses in agricultural 
products. [20,21,22]. 

A computerized ConvNet model was then shown Koc et al. 

(2019) [23] to distinguish between normal, technically 
damaged, or both wheat leaves, powdery mildew, Cochliobolus 
heterotrophs, bacterial leaf streak, bacterial leaf blight, leaf rust, 
and stripe rust. They created the matrix-based CNN known as 
M-CNN, which had a testing accuracy of 90.1% and an average 
validation accuracy of 96.5%. 

CNNs have also been extensively applied in the detection of 
defects in agricultural products. For instance, Zhao et al. [24] 
built a CNN-based model for identifying tomato powdery 
mildew, leaf mould, and cucumber downy mildew, with a 
97.24% recognition accuracy. CNNs have been utilized for 
assessing the maturity and grading of agricultural products. 
Long Jiehua et al. [25] developed an enhanced Mask R-CNN 
approach for segmenting tomatoes at different stages of 
ripeness, achieving a mean average precision of 95.45%. This 
demonstrates the growing importance of CNNs in addressing 
diverse agricultural challenges. 

Additionally, Mosisa (2019) [29] introduced a  MosNet, created 
from the ground up to detect wheat rust illnesses utilizing wheat 
photos, including yellow rust, stem rust, and leaf rust. MOs Net 
achieved an accuracy of 86.62%. These studies demonstrate the 
potential of DL techniques ineffectively detecting and 
classifying yellow rust disease in wheat. 

Recent advances in computer science and also in hardware 
technology have enhanced the acquisition, storage, and 
processing of excellent quality photographs dramatically. At the 
same time, expert-level performance has been achieved through 
the creation of DL algorithms inspired by the human brain. 
These developments have transformed AI in imaging, resulting 
in multiple successful research in domains as diverse as breast 
cancer diagnosis. 

3. Description of Dataset 

The dataset used in this research is composed of wheat leaf 
images that showcase various severity levels of yellow rust 
disease. The severity levels of the disease are divided into six 
distinct categories: Absent (0) with no observable symptoms; 
Resistant (R) exhibiting minimal infection evidence; Partially 
Resistant (PR) displaying minor to moderate infection signs; 
Intermediate Resistance-Susceptibility (IRS); Partially 
Susceptible (PS) characterized by moderate infection 
symptoms; and Susceptible (S) with considerable signs of 
infection. The dataset is divided into two distinct subsets: 
YELLOW-RUST-19 and RAW images. The YELLOW-RUST-
19 data subset contains a total of 15,000 wheat leaf images, with 
an even distribution across the severity levels. Each category 
has 2,500 images, providing a balanced representation of the 
different infection levels. On the other hand, the RAW images 
subset consists of 5,421 wheat leaf images, with varying 
quantities of images per severity level: 205 for No disease, 361 
for Resistant, 564 for Moderately Resistant, 1,135 for MRMS, 
1,795 for Moderately Susceptible, and 1,361 for Susceptible. 
This comprehensive dataset will be instrumental in training and 
evaluating the performance of DL and ML for identification and 
categorization of yellow rust disease in wheat. 
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Fig.1 Severity level Images from the Data set 

 

3.1. Preprocessing of the Dataset 

For the effective detection and classification of yellow rust 
disease in wheat using our dataset, it is essential to preprocess 
the images in a manner that enhances the model's 
performance. Every single raw picture in the data collection 
undergoes a series of image preprocessing operations to 
create a refined and focused representation of the wheat 
leaves. The following steps are executed in the order 
mentioned: 

3.2. Image Preprocessing 

To create a robust deep learning model for our dataset, each 
raw image undergoes a series of image preprocessing steps. 
These operations are essential for enhancing the model's 
ability to accurately detect and classify yellow rust disease in 
wheat. The sequence of preprocessing operations includes 
Utilizing thresholding and morphological alterations, the 
RGB image's foreground is separated. Subsequently, an 
image of the leaf is produced by incorporating an alpha 
channel while preserving the RGB image. Morphological 
Transformations, Threshold Masking the foreground in the 
RGB image and creating the final leaf image by storing the 
RGB image with an alpha channel. Pixels with intensities 
above the threshold are considered part of the leaf, while 
those below the threshold are considered background. 
Morphological Transformations, such as dilation and erosion, 
are applied to refine the leaf's edges and eliminate any 
unwanted artifacts or noise. Next, Masking the foreground 
isolates the leaf area from the RGB image, focusing the 
model's attention on the region of interest. Finally, the 
preprocessed leaf image is saved with an alpha channel, 

preserving the transparency of the background and ensuring a 
clean, noise-free representation of the wheat leaf for further 
analysis by the DL model. 

Thresholding 

In the preprocessing phase for our data set, the Threshold 
operation plays a vital role in distinguishing the wheat leaf from 
its background. This technique entails selecting a particular 
pixel intensity value as the threshold. Pixels exhibiting 
intensities greater than this value are identified as part of the 
leaf, while those with lower intensities are regarded as 
background elements. By applying Threshold, the wheat leaf 
area is effectively isolated, ensuring a clear and well-defined 
representation for subsequent analysis by the DL and ML 
models. 

 
Morphological  

As part of the preprocessing process for our dataset, 
Morphological Transformations are employed to improve the 
quality of the wheat leaf images. These transformations focus 
on refining the leaf edges and eliminating any undesired 
artifacts or noise present in the images. Key techniques involved 
in this process include erosion and dilation, which work 
together to smooth out the leaf boundaries and create a more 
accurate representation. By implementing Morphological 
Transformations, we enhance the overall image quality, 
allowing the DL and ML models to better analyze and classify 
yellow rust disease in wheat. 

Masking Foreground 

In the preprocessing pipeline for our dataset, Masking 
Foreground plays an important role in concentrating the 
attention of the DL and ML models on the area of interest. In 
this step, the wheat leaf area is separated from the RGB image, 
effectively isolating it from any surrounding background 
elements. By applying Masking Foreground, we ensure that the 
models remain focused on the relevant leaf regions during their 
analysis, avoiding any distractions from unrelated background 
components. This technique contributes to the accuracy and 
efficiency of the models in detecting and classifying yellow rust 
disease in wheat. 
 
Final Leaf Image Generation 

The last step in the preprocessing process for our data set 
involves generating the final leaf image. After applying the 
earlier stages, including refined edges and foreground isolation, 
the preprocessed wheat leaf image is saved with an alpha 
channel. The alpha channel serves to maintain the transparency 
of the background, yielding a clean and noise-free depiction of 
the wheat leaf. This high-quality representation is then primed 
for subsequent analysis by the DL and ML models, ensuring 
precise detection and classification of yellow rust disease in 
wheat. 
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4. Experimental Analysis 

Multiple DL models were employed to detect and classify 
yellow rust disease in wheat. These models were trained, 
validated, and tested using a comprehensive dataset of wheat 
leaf images that exhibited varying degrees of yellow rust 
infection. By conducting a thorough evaluation of each 
model's performance in terms of accuracy, loss, and 
validation metrics, valuable insights were gained into their 
effectiveness and potential for real-world applications. The 
process involved splitting the dataset into training, validation, 
and testing sets, ensuring a balanced representation of 
different infection levels. The deep learning models, 
including DenseNet121, ResNet50, and VGG19, were then 
trained and fine-tuned to optimize their performance in 
detecting and classifying yellow rust disease. Throughout the 
experimental analysis, the performance of each model was 
carefully monitored and compared, with particular attention 
paid to metrics such as loss, validation loss, accuracy, and 
validation accuracy over the course of multiple epochs. 
Graphical representations of these metrics provided visual 
insights into the models' learning progress and their ability to 
generalize to unseen data. The results of the experimental 
analysis demonstrated the potential of DL techniques in 
accurately detecting and classifying yellow rust disease in 
wheat. Each model exhibited distinct strengths and 
weaknesses, and their overall performance varied depending 
on the specific architecture and training parameters 
employed. By comparing and analyzing the performance of 
these models, researchers can gain a deeper understanding of 
their capabilities and make informed decisions about the most 
suitable models for further development and deployment in 
real-world agricultural settings. 

4.1. Confusion Matrix 

A confusion matrix is a vital evaluation tool in the field of 
ML and DL, providing a clear representation of a model's 
efficacy as a function   of its ability to correctly classify data 
points across various categories. By presenting the results in 
a tabular format, the confusion matrix allows researchers to 
easily identify patterns and trends in the model's predictions, 
as well as assess its strengths and weaknesses in classifying 
different categories. In the context of detecting and 
classifying yellow rust disease in wheat, a confusion matrix 
would consist of rows and columns representing the true and 
predicted classes, respectively. Each cell in the matrix 
represents the number of instances where the model predicted 
a particular class (column) for samples that belong to a 
specific true class (row). The number of correct guesses is 
indicated by the matrix main diagonal, while the off diagonal 
The elements represent a total of incorrect classifications. By 
analyzing the confusion matrix, researchers can gain insights 
into the model's overall accuracy for each class. This 
information is essential for understanding the model's 
performance and identifying areas that may require further 
improvement or fine-tuning. For instance, a high number of 
false positives for a specific class might suggest that the 
model is overly sensitive to certain features and prone to 

making incorrect predictions. Conversely, a high number of 
false negatives might indicate that the model is failing to 
recognize key features that are necessary for accurate 
classification. 

4.2. Performance of the Three Model 

The efficacy of three cutting-edge deep learning architectures, 
DenseNet121, ResNet50, and VGG-19, was assessed in the 
context of wheat disease identification and categorization. The 
models were compared founded on key metrics such as loss, 
accuracy, and AUC. Further analysis of loss versus validation 
loss and accuracy versus validation accuracy per epoch 
provided valuable insights into each model's learning process 
and performance trends. 

DenseNet121 delivered a notable performance, achieving a loss 
of 1.0320 and an AUC of 0. 8870.The model's validation loss 
and AUC stood at 1.1158 and 0.8787, respectively. These 
results demonstrate that DenseNet121 is capable of effectively 
detecting and classifying wheat diseases, as evidenced by the 
relatively small difference between the training and validation 
metrics. 

ResNet50 emerged as the top-performing model, recording a 
training loss of 0.1106 and an accuracy of 0.9630. Its validation 
loss and accuracy were 0.1147 and 0.9649, respectively. A 
visual representation of loss versus epochs and accuracy versus 
epochs for ResNet50 would reveal the model's progressive 
improvement, characterized by a decline in loss and an increase 
in accuracy as the number of epochs grew. [Fig.1, Fig.2]. 

VGG19 also demonstrated a respectable performance, with a 
training loss of 0.5207 and an accuracy of 0.8234. The 
validation loss and accuracy were 0.5443 and 0.8231, 
respectively. By plotting the loss versus validation loss and 
accuracy versus validation accuracy per epoch for VGG19, the 
model's performance trends over time become evident. The 
figures would showcase the convergence of loss and accuracy 
metrics as the number of time periods expanded, so did the size 
of the training and validation sets. [Fig.3,Fig.4] 

The three DL models exhibited varying degrees of success in 
detecting and classifying wheat diseases. ResNet50 outshone 
DenseNet121 and VGG19, achieving the highest accuracy and 
lowest loss metrics among the three. The graphical 
representation of loss and accuracy versus epochs for ResNet50 
and VGG19 offers a deeper understanding of each model's 
learning trajectory and convergence behavior. These findings 
underscore the potential of DL techniques, particularly 
ResNet50, to revolutionize wheat disease detection and 
classification, ultimately contributing to improved agricultural 
Sustainability. 
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Fig.2 Loss vs Epochs        Fig.3 Accuracy vs Epochs 

 

    

Fig.4 Loss vs Val Per Epochs  Fig.5  Accuracy vs Val 
Per Accuracy 

5. Result 

The results of the comparative analysis of the three deep 
learning models, DenseNet121, ResNet50, and VGG19, 
provide valuable insights into their respective performances 
in detecting and classifying wheat diseases. By evaluating 
these models based on key metrics such as loss, accuracy, and 
area under the curve (AUC), we can identify their strengths 
and limitations in addressing this critical agricultural 
challenge. DenseNet121 exhibited a robust performance with 
a training loss of 1.0320, an AUC of 0.8870 (88.7%), and a 
validation loss of 1.1158. The model's AUC for the validation 
set was 0.8787 (87.87%), suggesting that DenseNet121 can 
effectively detect and classify wheat diseases with a high 
degree of accuracy. ResNet50 outperformed the other 
models, achieving a training loss of 0.1106 and an impressive 
accuracy of 96.30%. The model's validation loss was 0.1147, 
with a validation accuracy of 96.49%. This exceptional 
performance demonstrates the ability of ResNet50 to 
accurately detect and classify various wheat diseases. VGG19 
also demonstrated a solid performance, with a training loss of 
0.5207 and an accuracy of 82.34%. The model's validation 
loss was 0.5443, and its validation accuracy was 82.31%. 
Although VGG19 did not perform as well as the other two 
models, it still exhibits potential for detecting and classifying 
wheat diseases. By analyzing the loss and accuracy per epoch 
for each model, it is possible to gain a better understanding of 
their respective learning processes. For VGG19 and 
ResNet50, the provided figures illustrate the trends in loss and 
accuracy over time, offering valuable insights into their 
convergence rates and the stability of their training processes. 
In summary, the results indicate that ResNet50 demonstrates 
the best performance among the three models, followed 
closely by DenseNet121, with VGG19 offering a relatively 
lower but still acceptable level of accuracy. 

 

6. Conclusion and Future Work 

 
Addressing the identification and classification of yellow rust 
disease in wheat is of utmost importance due to its significant 
influence on global wheat production. Yellow rust, a result of the 
fungus Puccinia striiformis, impacts both the quality and quantity 
of wheat, leading to considerable economic losses for farmers and 
disrupting the worldwide availability of this essential staple crop. 
Yellow rust disease must be identified and classified as soon as 
possible are crucial for facilitating timely intervention and 
efficient disease management, which can help to alleviate the 
detrimental effects of the disease on crop yields, food security, and 
overall agricultural sustainability. This research explored the 
application of DL techniques, specifically DenseNet121, 
ResNet50, and VGG19, for detecting and classifying yellow rust 
disease in wheat. Through the comparative analysis of these 
models, we found that ResNet50 outperformed the other models, 
achieving impressive accuracy in detecting and classifying wheat 
diseases. DenseNet121 also demonstrated robust performance, 
while VGG19 offered a relatively lower, but still acceptable level 
of accuracy. The utilization of such deep learning models offers an 
innovative 

approach to tackling the challenges posed by yellow rust disease 
in wheat. By employing advanced techniques like convolutional 
neural networks (CNNs), these models can automate the 
detection and classification process, making it more efficient 
and less reliant on human expertise. This, in turn, can lead to 
more effective disease management strategies and help 
minimize the economic and agricultural impacts of yellow rust 
disease on wheat production worldwide. Future research in this 
domain may focus on further refining and improving the 
performance of these models, as well as exploring other DL 
architectures that could potentially offer even better detection 
and classification accuracy. Additionally, incorporating other 
data sources, such as weather data and geographical 
information, may contribute to enhancing the overall 
effectiveness of these models in detecting and managing yellow 
rust disease in wheat. These approaches can effectively fuse 
limited labeled data with abundant time series information, 
thereby enhancing the accuracy and robustness of the detection 
models. 
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