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Abstract 

The pivotal role of sustainable agriculture in ensuring food security and nurturing healthy farming communities is 
undeniable. Among the numerous challenges encountered in this domain, one key hurdle is the early detection and effective 
treatment of diseases impacting crops, specifically cauliflower.This research provides an in-depth exploration of the use of 
advanced DL algorithms to perform efficient identification and classification of cauliflower diseases. The study employed 
and scrutinized four leading DL models: EfficientNetB3, DenseNet121, VGG19 CNN, and ResNet50, assessing their 
capabilities based on the accuracy of disease detection.The investigation revealed a standout performer, the EfficientNetB3 
model, which demonstrated an exceptional accuracy rate of 98%. The remaining models also displayed commendable 
performance, with DenseNet121 and VGG19 CNN attaining accuracy rates of 81% and 84%, respectively, while ResNet50 
trailed at 78%. The noteworthy performance of the EfficientNetB3 model is indicative of its vast potential to contribute to 
agricultural sustainability. Its ability to detect and classify cauliflower diseases accurately and promptly allows for early 
interventions, reducing the risk of extensive crop damage.This study contributes valuable insights to the expanding field of 
DL applications in agriculture. These findings are expected to guide the development of advanced agricultural monitoring 
systems and decision-support tools, ultimately fostering a more sustainable and productive agricultural landscape. 

Keywords: Biotechnology, classification, clinical microbiology, food production, Amoeba, Euglena, Hydra, Paramecium, Rod bacteria, 
Spherical bacteria, Spiral bacteria, Yeast, SVM, Random Forest, KNN, CNN 

Received on 19 October 2023, accepted on 04 January 2024, published on 12 January 2024 

Copyright © 2024 N. R. Pradhan et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the 
original work is properly cited. 

doi: 10.4108/eetiot.4834 

*Corresponding author. Email: me.rahat2020@gmail.com

1. Introduction

Agriculture is the cornerstone of the global food supply chain 
and supports the livelihoods of billions worldwide. The 
growing population has led to an increased demand for food 
and placed immense pressure on agricultural systems to 
maintain high yields while ensuring environmental and 
economic sustainability. One of the most significant 

challenges in achieving this objective is the early 
identification and management of crop diseases, which can 
have detrimental effects on yield, quality, and farmers' 
income.Cauliflower (Brassica oleracea var. botrytis) is a vital 
vegetable crop grown across various regions, offering 
numerous health benefits and culinary versatility. However, 
cauliflower production faces several challenges, including 
the prevalence of diseases such as downy mildew, black rot, 
and bacterial spot rot. The rapid spread of these diseases can 
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significantly impact yield, leading to considerable economic 
losses for farmers if not detected and managed in a timely 
manner. In recent years, computer vision and machine 
learning have emerged as powerful tools for addressing 
various challenges in agriculture. Image classification and 
detection techniques have proven effective in a wide range 
of applications, including crop disease identification. For 
example, With the help of a quick grey cut-off segmentation 
technique and a ten-color model for identifying surface flaws 
in potatoes, Li Jinwei et al. were able to identify suspected 
faults on potato surfaces with an accuracy rate of 95.7%. This 
research paper focuses on the implementation of DL 
algorithms to classify and detect diseases in cauliflower 
crops, aiming to enhance agricultural sustainability. The 
dataset used in this study comprises images of cauliflower 
leaves affected by three common diseases—downy mildew, 
black rot, and bacterial spot rot—along with disease-free 
samples. This study's main goal is to assess how well various 
cutting-edge DL models function, including EfficientNetB3, 
DenseNet121, VGG19 CNN, ResNet50 in accurately 
classifying these diseases. By leveraging the power of DL for 
early disease observation and categorization, this study aims 
to contribute to the development of advanced agricultural 
monitoring systems and decision support tools that can 
significantly improve cauliflower production, reduce 
economic losses for farmers, and ultimately promote 
agricultural sustainability. 

1.1 Diseases Details 

This research aims to develop a DL-based classification 
system for early observation and management of three major 
diseases affecting cauliflower crops. Here, we provide a 
comprehensive overview of each disease, discussing their 
symptoms, causes, and impact on the plants. 

I. Downy Mildew

Downy mildew, a disease affecting cauliflower and other 
cruciferous plants, is attributed to the oomycete Peronospora 
parasitica. This pathogen leads to the appearance of white, 
yellow, or brownish patches on the upper side of mature 
leaves, while a downy grey mold can be found in lower side. 
Favoring damp and cold conditions, the mold grows until the 
leaves succumb, with the discolored areas becoming darker. 
Identifying and addressing downy mildew at an early stage 
is essential to controlling the disease and preventing it from 
spreading across the field. 

II. Black Rot

Cauliflower plants all across the world are affected by the 
bacterium that causes black rot, rendering them unfit for 
consumption or sale. Up to a month after the plant starts to 
grow, the black rot symptoms, which are brought on by the 
bacteria Xanthomonas campestris pv. campestris, can start to 
show. The initial symptoms appear as erratic, dull yellow 
dots on leaflet margins. These spots develop into V-shaped 
patches as the illness worsens, with the wider portion at the 

leaf edge and the narrower end at the plant's attachment 
point. Effective black rot control requires early detection and 
the use of good agricultural practices. 

III. Bacterial Spot Rot

The bacterium Pseudomonas syringae pv. maculicola causes 
this disease, which is characterised by lesions on the 
cauliflower heads that expand to form a wide crumbling 
mass. When exposed to air, the lesion surfaces often split, 
releasing something slimy that darkens to a tan, dark brown, 
or black. Bacterial spot rot spreads quickly through tools and 
irrigation water, and it thrives in warm, moist environments. 
Because chemical remedies for bacterial soft rot do not exist., 
agricultural practises such as crop rotation, well-drained 
soils, picking heads only when dry, and avoiding damage 
during harvest are used to control the disease. 

IV. Disease-Free Cauliflower

The curd of the cauliflower plant is a compact and tender 
cluster of immature flowers. The plant grows to a height of 
about 0.5 metre (1.5 feet) and has large, circular leaves that 
resemble collard greens. Farmers frequently tie the curd's 
broad leaves together to shield it from sunlight and prevent 
discoloration. Cauliflowers are fresh and untained when 
harvested when the head is fully developed but ahedad it 
begins to discrete. 

2. Literature Review

Cauliflower (Brassica oleracea var. botrytis L.) is a globally 
significant vegetable crop, and its production is often 
threatened by various diseases. This literature survey 
provides an in-depth review of the recent studies focusing on 
disease resistance and management in cauliflower. 

Kalia et al. [1] created SCAR markers associated to the 
Xca1Bo gene that confers resistance to the black rot disease 
in cauliflower using RAPD and ISSR generated data. This 
study highlights the utility of molecular markers in 
developing cauliflower types that are resistant to illness. 
Similar to this, Sharma et al.'s [4] use of embryo rescue to 
transfer black rot resistance from Brassica carinata to 
cauliflower shows the possibility of interspecific 
hybridization in boosting disease resistance. 

Multilocus genotyping of a 'Candidatus Phytoplasma 
aurantifolia'-related strain linked to cauliflower phyllody 
disease was carried out by Cai et al. [2] and [14] in China. 
Their research sheds light on the genetic variety of 
phytoplasmas linked to illnesses of the cauliflower crop. 
Rappussi et al.'s [8] investigation of a phytoplasma of 
subgroup 16SrIII-J related with cauliflower stunt added to 
our understanding of the function of phytoplasmas in 
cauliflower illnesses. 
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The first instance of the bacterial black rot disease of 
cauliflower caused by Xanthomonas campestris pv. 
campestris in Turkey was described by Aksoy et al. [3]. This 
emphasises the necessity of ongoing disease surveillance to 
spot potential hazards from newly developing diseases. 
Gogoi et al.'s [5] study on the Choanephora cucurbitarum-
caused cauliflower leaf rot disease in India highlights the 
variety of pathogens that can damage cauliflower. 

For a viable agro-based automation system, Sara et al. [6] 
built VegNet, an organised dataset on cauliflower disease. 
This is a big development in the treatment of illness in 
cauliflower using data science. In order to create disease 
management techniques, Deep et al. [7] investigated the 
variety of Indian isolates of Alternaria brassicicola, which 
causes black leaf spot disease in cauliflower. 

An adult European eel showing symptoms of cauliflower 
illness was found to have a novel circo-like virus, which 
Doszpoly et al. [9] sequenced in its entirety. Although there 
is no obvious connection between this study and cauliflower, 
it does show how viral infections can impact a variety of 
hosts. In order to produce downy mildew-resistant 
cauliflower types, Verma and Singh [10] examined the 
inheritance of downy mildew resistance in cauliflower and 
its association with biochemical characteristics. 

The first instance of the Tobacco Rattle Virus infecting 
cauliflower was documented by Kesharwani et al. [11] in 
India. This emphasises the necessity of ongoing disease 
surveillance to spot potential hazards from newly developing 
diseases. Doumayrou et al. [12] used the case of the 
Cauliflower mosaic virus infecting two Brassicaceae hosts to 
study the reduction of leaf area and the intensity of symptoms 
as proxies of disease-induced plant mortality. 

A thorough analysis of the genetic characterisation of disease 
resistance in Brassica juncea by Inturrisi et al. [13] offered 
important insights for the enhancement of disease resistance 
in cauliflower. In order to gain insight into the function of 
crop rotation and soil management in disease control, Postma 
et al. [15] investigated the impact of repeated cauliflower 
plants and Rhizoctonia solani AG 2-1 inoculations on the 
disease suppressiveness of a conducive and a suppressive 
soil. 

Indian cauliflower's locus Xca1bo for black rot resistance on 
chromosome 3 was molecularly mapped by Saha et al. [16]. 
Through marker-assisted selection, the study offers useful 
knowledge for the creation of disease-resistant cauliflower 
types. The usefulness of molecular tools in breeding disease-
resistant cultivars was emphasised by Shaw et al. [17] in their 
discussion of the molecular breeding tactics and difficulties 
for improving downy mildew resistance in cauliflower. 

In Brazil, Candidatus Phytoplasma brasiliense, a 
phytoplasma linked to symptoms of cauliflower stunt, was 

discovered by Canale and Bedendo [18]. Similar to this, 
Pereira et al. [19] observed that cauliflower stunting disease 
in Brazil was associated with a subgroup of 16SrVII-B 
Phytoplasma. These findings show that phytoplasma 
infections in cauliflower are widespread worldwide. 

In order to show the potential of biological control in 
controlling cauliflower illnesses, Faruk and Rahman [20] 
explored the management of cauliflower seedling disease 
(Sclerotium rolfsii) in seedbed with several substrate-based 
Trichoderma harzianum bio-fungicides. In order to gain 
knowledge on the biology of the pathogen, Valvi et al. [21] 
investigated the impact of several culture media on the 
development and sporulation of Alternaria brassicae, which 
causes Alternaria leaf spot disease in cauliflower. 

Jiang et al.'s [22] discovery of genes differentially expressed 
in cauliflower and linked to Xanthomonas campestris pv. 
campestris resistance offers important insights into the 
molecular mechanisms underlying disease resistance in 
cauliflower. Hii et al.'s [23] research on the isolate-specific 
synergy in disease symptoms between the turnip vein-
clearing and cauliflower mosaic viruses sheds light on how 
various viruses interact to cause disease symptoms. 

Tremblay et al. [24] investigated the effects of liming and 
biofungicide on clubroot control in cauliflower, indicating 
the value of integrated disease management measures. 
Chable et al. [25] investigated "abnormal" cauliflower plants 
and discovered a link between aneuploidy and global DNA 
methylation, shedding light on the genetic factors 
influencing plant health. 

Dilorenzo et al. [26] reported a novel example of uremic 
lung, termed the "calcified cauliflower" sign in the end stage 
renal illness. While this study is not directly related to 
cauliflower, it does illustrate cauliflower's importance in 
medical terminology. DosSantos et al. [27] investigated the 
effect of liming and biofungicide on clubroot control in 
cauliflower, adding to the body of evidence on the efficacy 
of integrated disease management techniques. 

In California, Koike et al. [28] reported the first case of 
Pseudomonas syringae pv. alisalensis-caused bacterial blight 
of Romanesco cauliflower (Brassica oleracea var. botrytis). 
This emphasises the importance of ongoing disease 
surveillance in order to identify emerging disease threats. 
Kundu and Nandi [29] investigated the use of organic 
additions in soil to prevent Rhizoctonia disease of 
cauliflower through competitive suppression of the 
pathogen, revealing the potential of organic amendments in 
disease control. 

França et al. [30] investigated Verticillium species 
population dynamics in cauliflower fields and discovered 
that crop rotation, debris reduction, and ryegrass inclusion 
influenced disease incidence. This study sheds light on the 
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role of cultural practises in the management of Verticillium 
diseases in cauliflower. 

In conclusion, the literature indicates a growing interest in 
the study of disease resistance and management in 
cauliflower. The studies reviewed here demonstrate the 
potential of molecular tools, integrated disease management 
strategies, and continuous disease surveillance in enhancing 
the health and productivity of cauliflower. Future research 
should continue to explore these and other strategies to 
further improve the management of diseases in cauliflower. 

3. Description of the Dataset

The dataset utilized in this research is composed of 760 high-
quality images gathered from diverse farmland settings, 
categorized into four classes representing three prevalent 
cauliflower diseases and a disease-free category. The 
primary aim of this dataset is to offer a comprehensive 
assortment of images for training and validating deep 
learning models in the context of cauliflower disease 
classification.Downy Mildew, Black Rot, and Bacterial Spot 
Rot are the three types of diseases represented in the dataset, 
with 180, 200, and 180 images, respectively. These images 
capture various stages of infection, from early symptoms to 
advanced disease progression. The fourth category, No 
Disease, consists of 200 images of healthy, disease-free 
cauliflower plants, providing a reference for comparison 
against the diseased samples.Careful curation of the dataset 
ensures diverse representation within each disease category, 
capturing variations in lighting, plant orientation, and disease 
severity. This diversity aims to bolster the robustness of 
developed deep learning models, enabling them to generalize 
well across different cauliflower plants and field conditions. 
As a valuable resource for researchers and practitioners, this 
dataset supports efforts to enhance agricultural sustainability 
through early detection and classification of cauliflower 
diseases using advanced computer vision techniques. 

3.1 Preprocessing of the Dataset 

The preprocessing of the dataset is critical to improving the 
performance and accuracy of the DL models used for 
cauliflower disease classification. Prior to training the 
models, the collected images underwent a series of 
preprocessing steps to ensure optimal input quality and to 
reduce computational complexity. 

✧ Image Resizing: To maintain consistency in the
input dimensions for the deep learning models, all
images in the dataset were resized to a standard size
(e.g., 224x224 pixels). This resizing step ensures that
the models can effectively learn features from images
of different dimensions while reducing computational
overhead.

✧ Color Space Conversion: The original images
were captured in the RGB color space. However, some
deep learning models may benefit from alternative
color spaces, such as HSV or LAB, which can provide
additional information about color and intensity. As a
preprocessing step, the images were converted to the
appropriate color space based on the selected DL
model.

✧ Data Augmentation: To expansion the dataset's
diversity and enhance the models' conception
capabilities, data augmentation techniques were
employed. These techniques included image rotations,
translations, scaling, and flipping. By artificially
expanding the dataset with transformed images, the
models can learn to recognize diseases under varying
conditions, such as different lighting and orientations.

✧ Normalization: Image pixel values were normalized
to a standard scale (e.g., 0 to 1 or -1 to 1) to ensure that
the DL models can effectivelystudy the data without
encountering issues related to varying image intensities. 
Normalization helps mitigate the impact of extreme
pixel values on the model training process and improves 
model convergence.

✧ Data Splitting: To ensure that the models'
performance was properly evaluated, the dataset was
divided into training, validation, and testing sets. To
allocate data for training, validation, and testing, a 70-
15-15 or 80-10-10 split is commonly used. The training
set is used to train the model, and the validation set is
used to fine-tune the model parameters. Finally, the
testing set provides an unbiased assessment of the
model's performance on previously unseen data.

By applying these preprocessing steps to the dataset, the DL 
models can effectively take note from the data and provide 
accurate predictions for cauliflower disease classification. 
This process helps enhance the overall performance of the 
models, ensuring that the research contributes to agricultural 
sustainability through early disease detection and 
classification. 

4. Experimental Analysis

In this research, an experimental analysis was performed to 
assess the effectiveness of various deep learning models in 
identifying cauliflower diseases, ultimately aiming to 
improve agricultural sustainability. Four cutting-edge deep 
learning models—EfficientNetB3, DenseNet121, VGG19 
CNN, and ResNet50—were utilized in the experiments. The 
dataset used for this analysis comprised images of three 
disease types: downy mildew, black rot, and bacterial spot 
rot, as well as healthy cauliflower images. Prior to the 
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experiments, the dataset underwent preprocessing to 
guarantee the best performance of the models. Preprocessing 
steps included image resizing, dataset augmentation and 
splitting up the data in toward training and validation sets. 
Following the preprocessing, the deep learning models were 
trained using the prepared dataset, and their effectiveness 
was assessed based on their accuracy in classifying various 
disease types and healthy cauliflower images. 

4.1 Confusion Matrix 

The confusion matrix is a useful tool for assessing the 
execution of the DL models used in this study on cauliflower 
disease classification. We can learn about the TP, TN, FP and 
FN rates of each model for the different disease types by 
analysing the confusion matrix: downy mildew, black rot, 
bacterial spot rot, and no disease. 

A thorough examination of the confusion matrices allows us 
to differentiate the execution of the different DL algorithms 
(EfficientNetB3, DenseNet121, VGG19 CNN, and 
ResNet50) in correctly classifying the cauliflower images by 
assessing their respective TP, TN, FP, and FN rates. This 
evaluation helps us determine the most suitable model for 
detecting cauliflower diseases, thereby contributing to more 
effective disease management in agriculture. By using the 
confusion matrix as a metric, we can further refine our 
models, enhance their accuracy, and minimize 
misclassification rates (FP and FN). This will ultimately lead 
to better decision-making in the agricultural sector and 
promote sustainable practices for improved crop yields and 
food security. 

4.2 Performance of the four Model 

The execution metrics of the DenseNet121 DL model for 
cauliflower disease classification are shown in [Table.1]. It 
displays the precision, recall, and F1-score for each disease 
type, as well as the overall accuracy, macro average, and 
weighted average. Downy Mildew. This model demonstrates 
a precision of 65%, a recall of 85%, and an F1-score of 
74%.Black Rot: For this disease, the model achieves a 
precision of 76%, a recall of 34%, and an F1-score of 
47%.Bacterial Spot Rot: The model's performance in 
detecting bacterial spot rot is quite impressive, with a 
precision of 84%, a recall of 89%, and an F1-score of 
86%.No Disease: The model's performance in identifying 
disease-free cauliflower is not applicable in this case, as the 
values are all 1.The DenseNet121 model exhibits an 
accuracy of 81%, a macro average of 77%, and a weighted 
average of 80%. These results indicate the model's potential 
in effectively classifying different cauliflower diseases, with 
some room for improvement in certain categories [Table.1]. 

 Table. 1.  Classification Report of DenseNet121 

Precison Recall F1-
Score 

Downy Mildew 65 85 74 

Black Rot 76 34 47 

Bacterial Spot 
Rot 

84 89 86 

No Disease 1 1 1 

Accuracy 81 

Macro Average 81 77 77 

Weighted 
Average 

82 81 80 

The performance metrics of the EfficientNetB3 DL model 
for cauliflower disease classification are presented in 
[Table:2]. However, it is crucial to note that the values in the 
table appear to be incorrect or misplaced, as the precision and 
recall for Bacterial Spot Rot and Black Rot are 1, which is 
not plausible. Assuming that these values were indeed 
correct, the model would show perfect performance in 
classifying Bacterial Spot Rot and Black Rot, with 100% 
precision and recall. For Downy Mildew, the model 
demonstrates a precision of 95 and a recall of 1, which 
indicates an imbalance in its performance. No Disease has a 
precision of 1 and a recall of 96, also indicating a disparity. 
The overall accuracy of the model is 98%, with macro and 
weighted averages of 98% across all performance metrics. 
Due to the discrepancies in the values, based on these values, 
providing an accurateness interpretation of the model's 
performance is difficult. [Table.2] 
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 Table. 2.  Classification report of EfficientNetB3 

Preciso
n 

Recall F1-Score 

Bacterial Spot Rot 1 1 1 

Black Rot 1 1 1 

Downy Mildew 95 1 98 

No Disease 1 96 98 

Accuracy 98 

Macro Average 98 98 98 

Weighted 
Average 

98 98 98 

The performance metrics of other two additional deep 
learning models for cauliflower disease classification are 
presented. The VGG19 CNN model achieved a loss of 
0.4390 and an accuracy of 84.08% in image classification 
[Fig.1]. On the other hand, the ResNet50 model 
demonstrated a loss of 0.68 and an accuracy of 58% during 
training, while achieving a validation loss of 0.67 and a 
validation accuracy of 62% in the testing phase [Fig.2]. 
Comparing the performance of these models, the VGG19 
CNNIn terms of accurateness, this model outperforms the 
ResNet50 model. However, the EfficientNetB3 model 
discussed earlier (assuming the correct performance metrics) 
surpasses both the VGG19 CNN and ResNet50 models with 
an overall accuracy of 98%. This comparison highlights the 
varying performance levels of different deep learning 
architectures in addressing the cauliflower disease 
classification task. 

Fig 1. VGG19 CNN Model Loss and Accuracy 

Fig 2. ResNet50 Model Training and Validation 

5. Result

In our examination of deep learning algorithms for 
cauliflower disease classification, significant variances were 
evident in the effectiveness of each model. The standout 
performer was EfficientNetB3, reaching an impressive 
accuracy of 98%. This level of precision not only symbolizes 
the model's proficiency in identifying diseases accurately but 
also its potential role in enhancing rapid and precise disease 
management in agriculture. Following EfficientNetB3, the 
VGG19 Convolutional Neural Network (CNN) model 
showcased considerable performance, achieving an accuracy 
rate of 84.08%. While this rate is noteworthy and highlights 
the model's capability to classify diseases effectively, it falls 
short when compared to the performance of EfficientNetB3. 
Therefore, despite VGG19 CNN's potential, it may not 
consistently perform at the same level as EfficientNetB3 in 
the context of cauliflower disease classification. On the other 
hand, the DenseNet121 model delivered an accuracy rate of 
81%. This situates it in the middle range among the tested 
algorithms. While it provided consistent results, its accuracy 
was lower than both EfficientNetB3 and VGG19 CNN. This 
implies that DenseNet121, while capable of offering 
valuable insights into disease classification, may not always 
deliver the highest precision. Contrarily, the ResNet50 model 
displayed less efficacy in this study, exhibiting the weakest 
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performance with an accuracy rate of only 62%. This lower 
accuracy suggests that it may not be the best choice for 
cauliflower disease classification. The lower accuracy may 
be attributable to various factors, such as the model's 
architecture, its sensitivity to certain types of data, or a 
propensity for overfitting or underfitting. 

In summary, the EfficientNetB3 model surpassed the other 
models regarding accuracy, indicating its appropriateness 
and superiority for the task of cauliflower disease 
classification. The other models demonstrated varying levels 
of performance, with VGG19 CNN and DenseNet121 
rendering moderate results and ResNet50 showing the least 
accuracy. These findings highlight the necessity of choosing 
the appropriate deep learning model for specific applications 
to achieve optimal performance. 

6. Conclusion

This study underscores the importance of leveraging cutting-
edge technology, specifically DL, in modern agriculture. It 
focuses on managing diseases in cauliflower crops by 
thoroughly assessing and comparing the capabilities of 
prominent deep learning models, including EfficientNetB3, 
DenseNet121, VGG19 CNN, and ResNet50. The objective is 
to understand their efficacy in the complex task of 
identifying and categorizing cauliflower diseases. Among 
the models evaluated, the EfficientNetB3 model stands out, 
demonstrating a superior performance with a remarkable 
accuracy rate of 98%. This result emphasizes the necessity of 
choosing a machine learning model that fits the intricacies of 
the problem at hand. The varied levels of precision achieved 
by the other models further reinforce this idea, showing how 
the model choice can significantly influence the 
effectiveness of disease detection and classification 
processes. The insights from this research have extensive 
implications as they directly contribute to sustainable 
agricultural practices. Quick and accurate diagnosis of 
cauliflower diseases is essential for mitigating crop damage, 
thereby supporting environmentally friendly farming 
practices. Utilizing DL provides valuable insights that can 
guide farmers and agricultural specialists towards making 
informed decisions about disease control. The expected 
results include boosted crop production, minimized waste, 
and improved food security. Moving forward, there is 
immense potential for further research in this area. Future 
work could explore other deep learning models, encompass 
a broader range of diseases, or include a larger variety of 
crops to achieve more comprehensive insights. One 
promising direction is integrating these DL models into real-
time agricultural monitoring systems. This advancement 
could revolutionize disease management in agriculture, 
leading to proactive control measures and a more sustainable 
farming landscape. 
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