
EAI Endorsed Transactions  
on Internet of Things Research Article 

1  

Circumventing Stragglers and Staleness in Distributed 
CNN using LSTM 

Aswathy Ravikumar1, *, Harini Sriraman2, Saddikuti Lokesh3 and Jitendra Sai4 

1,2,3,4 Vellore Institute of Technology, Chennai, India 

Abstract 

INTRODUCTION: Using neural networks for these inherently distributed applications is challenging and time-consuming. 
There is a crucial need for a framework that supports a distributed deep neural network to yield accurate results at an 
accelerated time. 
METHODS: In the proposed framework, any experienced novice user can utilize and execute the neural network models 
in a distributed manner with the automated hyperparameter tuning feature. In addition, the proposed framework is 
provided in AWS Sage maker for scaling the distribution and achieving exascale FLOPS. We benchmarked the framework 
performance by applying it to a medical dataset. 
RESULTS: The maximum performance is achieved with a speedup of 6.59 in 5 nodes. The model encourages expert/ 
novice neural network users to apply neural network models in the distributed platform and get enhanced results with 
accelerated training time. There has been a lot of research on how to improve the training time of Convolutional Neural 
Networks (CNNs) using distributed models, with a particular emphasis on automating the hyperparameter tweaking 
process. The study shows that training times may be decreased across the board by not just manually tweaking 
hyperparameters, but also by using L2 regularization, a dropout layer, and ConvLSTM for automatic hyperparameter 
modification. 
CONCLUSION: The proposed method improved the training speed for model-parallel setups by 1.4% and increased the 
speed for parallel data by 2.206%. Data-parallel execution achieved a high accuracy of 93.3825%, whereas model-parallel 
execution achieved a top accuracy of 89.59%. 

Keywords: Convolutional Neural Network, AWS Sage Maker, Distributed Framework, Parameter Server, Exa-Scale Computing, 
Distributed Autotuning 

Received on 24 November 2023, accepted on 03 February 2024, published on 14 February 2024 

Copyright © 2024 A. Ravikumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as 
the original work is properly cited. 

doi: 10.4108/eetiot.5119 

*Corresponding author. Email: aswathyravi2290@gmail.com 

1. Introduction

Similar to the biological neural systems of the brain, Deep 
Neural Networks must also train from unfamiliar input 
through hierarchical training. The training utilizes 
mathematical methods to identify changes in the 
connections of neurons. The network performs computations 
and makes predictions based on what it has learned. 
Therefore, the first layers of the network enhance the 
understanding of the deeper layers. Training a DNN with 
massive datasets might take days. Despite the precision and 
effectiveness of the training, experts are equally concerned 
with enhancing its performance execution. It is vital to 

employ parallel and distributed settings to improve the 
speed of programs that deal with large amounts of data and 
execute intensive calculations. In addition, DNN models 
conduct many matrix multiplications that may be performed 
on a GPU [1], [2]. This kind of system is in great demand, 
and there is a lot of active study happening in this field 
because of its potential industrial and other uses. In the 
realm of image processing, Convolutional Neural Networks 
(CNNs) have emerged as a significant form of deep learning 
network. The convolutional neural network (CNN), 
commonly used in deep learning techniques for image 
processing, will require significant improvement as data 
volumes continue to grow. CNNS must increase its 
efficiency as technology and data continue to progress. To 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:aswathyravi2290@gmail.com


 
A. Ravikumar et al. 

  2      

build a better distributed deep learning model, you need to 
carefully examine how each CNN layer affects the whole 
network. To get the best results, neural networks aim to 
simulate the way the human brain functions by using 
networks of linked neurons that can learn and adapt on their 
own. Many different neural networks are available for use in 
deep learning (DL) software to tackle these sorts of 
problems. 
Improving performance in terms of training time and result 
accuracy requires understanding previous designs and 
developing an architecture that is both precise and efficient. 
CNNs are specialized neural networks that can recognize 
objects, faces, and perform a wide variety of other tasks. 
They mostly struggle with issues like how to get a big, well-
curated dataset and how to achieve rapid training rates. The 
reliability of the model may suffer if there is not enough 
data to train it properly. In general, CNNs are considered 
among the most complicated neural networks, necessitating 
precise management and optimization because of their 
inherent complexities. There are a lot of different 
approaches to making a neural network more accurate and 
reducing the amount of time it takes to train it. Two methods 
for cutting down the amount of time spent training are the 
drop-out layer and early termination. The dropout method is 
widely considered to be one of the most successful 
approaches to optimization. Following the max-pooling 
layer, a dropout layer is added to further tune the weights of 
the network. Dropout provides a big helping hand to the 
model in preventing it from over- or under-fitting the data. 
According to the models, the value of the dropout 
probability will fall somewhere in the range of 0 and 0.5 for 
a wide variety of datasets and models. In most cases, nodes 
that are prone to dropouts have dropout probability values 
that are either less than 1 or equal to 1. Recent investigations 
have shown that CNN and LSTM may be coupled to adjust 
hyperparameters when used together. The model can attain 
the best possible degree of precision with the assistance of 
LSTM and CNN. The challenges that might arise with 
models' short-term memories can be alleviated by a 
variation of RNN known as LSTM. Applications in the real 
world of natural language processing are its principal use. 
Several strategies have been offered to speed up the learning 
process in recent years [3-5]. Initially, they focus on 
investigating the fluctuation of network characteristics, like 
loss and activation functions. Subsequent techniques began 
investigating architectural advances in network design, such 
as expanding the depth and breadth of models [6]. 
TensorFlow and Theano [7], ML reference libraries, already 
offer training distribution across parallel resources in multi-
node setups. However, they demand a greater understanding 
of parallel and distributed models using programming 
paradigms such as CUDA and MPI and novel distributed 
computing methods. Distributed Deep Learning frameworks 
may use large-scale devices to accelerate the training of 
deep neural networks (DNN) without additional 
programming effort. These solutions use ML frameworks to 
spread movement from a single machine to a multi-node 
network, including several devices. Due to the rapid 
evolution of the subject, new DDL systems are often 

introduced, with support for many DL models, parallel 
computing approaches, and parallelization methodologies. 
Components of DNNs, like the SGD dataset partition into 
mini batches, promote parallel training. Minibatches show 
different input parts processed by employees. Workers must 
interact at a given time to share data. Hence parameter 
updates are determined by averaging gradients over all 
input. This represents a typical situation in parallel 
computing, in which we divide a problem into numerous 
tasks, distribute them over multiple workers, and, if 
required, create synchronization nodes. The key challenges 
when trying to design DL methodologies, which are the 
considerable sharing of information between processes, the 
collection of the dataset and the model on each worker based 
on the employed strategy, and the performance 
enhancements to minimize the processing time and keep or 
enhance model accuracy. DDL techniques are continually 
emerging. Novel DDL frameworks are now being designed 
or enhanced so that training may be accelerated without 
compromising convergent efforts to decrease estimation 
error. Several learning features must be considered when 
expanding for additional devices, including the training's 
objectives, the overall network model employed, and the 
frameworks' parallel method.  
The objectives of the paper are: 
i. To develop a model, which any experienced 
/novice user can utilize and execute the neural network 
models in a distributed manner in AWS Sage maker for 
scaling the distribution and achieving exascale FLOPS. 
ii. To ensure easy scalability and hyper-tunning of the 
DDL models in the cloud.  
iii. Enhancing the learning curve in a distributed neural 
network by automating the optimization of hyperparameters 
remains a persistent challenge. 
iv. A significant obstacle that remains unresolved in 
distributed environments is finding ways to reduce training 
time while maintaining high accuracy levels. 
v. The examination of the consequences of scaling a DNN is 
an area that has yet to be thoroughly explored, and this 
research aims to provide techniques for addressing this 
problem.  

2. Related Work 

In the latest days, many frameworks have been adopted 
and reviewed owing to the rapid sector innovation rate. The 
following sections review several accessible DDL 
frameworks, previous publications that provided a 
performance evaluation of distributed architectures, and the 
most popular methods for assessing the effectiveness of 
distributed learning. Existing frameworks for accelerating 
deep understanding by using numerous nodes in massive 
HPC systems are continually being developed and 
enhanced. The initially distributed training options gave new 
capabilities to ML-savvy users, who had to acquire new 
ideas on how to redistribute training layers & stages to 
workers on various nodes. Recently, new frameworks have 
been developed to restrict users from gaining a 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



Circumventing Stragglers and Staleness in Distributed CNN using LSTM 
 

3 

comprehensive understanding of high-performance systems 
to enhance their training performance—these frameworks 
abstract system settings to facilitate the rapid transformation 
of single-node learning into multi-node learning. 

 
The Uber Engineering group created Horovod for simple 

Python data parallelism distribution on top of TensorFlow, 
Keras, or PyTorch. Horovod employs the MPI and pthreads 
enabling parallel computing on the backend. Tarantella is a 
new distributed computing tool created by the Competence 
Center for High-Performance Computing that implements 
data parallelism. It is open-source and includes 
comprehensive documentation and developer contact 
information. Whale is a newly developed framework for 
training enormous models leveraging data and model 
parallelism approaches. Finally, Orca is a component of the 
BigDL 2.0 initiative and offers an intuitive framework for 
scaling single-node Python training to multiple nodes. The 
powerful frameworks are listed in Table 1. 

Table 1. Existing Distributed Frameworks 

2.1. Convolutional Neural Network 
 
The discipline of machine learning has reaped major 
benefits in recent years from the implementation of DL-
based approaches. In addition to this, its performance in the 
realm of machine learning frequently outstrips that of other 
computational methods. Because it also offers the maximum 
degree of precision for a wide range of complicated models 
and, in many cases, surpasses the skills of highly evolved 
humans. The key advantage that comes with using DL 
models is that they can effectively manage extremely large 
amounts of data. This is proved by the fact that the sector is 
widely utilized. DL has surpassed standard ML approaches 
in a range of sectors, including cyber security, 
bioinformatics, language processing, robotics, and medical 
information processing, to name just a few of these areas of 
study. Using a CNN and an LSTM (long short-term 
memory)-based DL method, the purpose of this work is to 
identify corona using x-rays. CNN is used to extract more 
in-depth features, while LSTM is used to identify those 
features once they have been derived. Within the 4575 X-ray 
photos that make up the collection for this system are 1526 
shots that depict the corona. They have presented a 
technique in this research that makes use of the findings of 

testing to produce an accuracy of 99.4, an area under the 
curve (AUC) of 99.9, and a specificity of 99.9. 
 
In today's world, it is becoming increasingly important to 
optimize CNNs in terms of accuracy, the amount of time 
required for training, and scalability. Understanding the 
structure of CNN is necessary if one is to get optimal 
performance using CNN. [1,18] analyzes CNN's structure on 
a variety of CPU, TPU, and GPU devices for the sake of 
benchmark applications. This article demonstrates that there 
is a correlation between the structure of CNN and its 
performance. Li Wang and Jason Kuen investigated the 
development of CNN in some different respects, including 
layer building, activation function, job loss, familiarity, 
efficiency, and expeditious computation. The writers of this 
piece also investigated CNN applications for natural 
language processing (NLP), computer vision, and speech. 
The approach for assessing biorepositories in a low 
exposure setting that is suggested in [9] is based on 
statistical analysis and the neural network separation 
technique. This method was developed. The findings shed 
light on the relative number of unique biorepositories 
present within the sample. Over the past few years, CNN 
has become increasingly useful in a variety of contexts. The 
length of time required for training a CNN is a significant 
issue, particularly when the dataset in question is quite large. 
CNN has put in a lot of work to cut down on its training 
time while maintaining its high level of accuracy. In the 
past, accelerators such as TPUs, FPGAs, GPU clusters, and 
GPUs themselves have been used to speed up CNN training. 
It is shown in [9] that an overview of several methods may 
be used to improve the performance of CNN by utilizing 
ASIC hardware designs.  The results of [11] serve as a 
baseline for comparing the capabilities of GPUs and TPUs 
while running CNN. Distributed CNN is one of the ways for 
scaling CNN, even though there are several hardware-
centric methods for speeding up CNN performance. In 
recent years, there has been a surge in the prevalence of 
Distributed CNN because of the following causes. 
 
2.2   Distributed CNN in Cloud Environment 
 
In the work [7], the authors offer a strategy for speeding up 
distributed deep learning.  For short-term load forecasting, a 
hybrid model consisting of LSTM and CNN has been 
developed. Even though a great deal of study strategies have 
been offered as a means of disseminating CNN, the most 
significant difficulties still concern finding a way to balance 
training time and correct findings. Tuning hyperparameters 
has also gotten more challenging for CNN as a result of the 
incorporation of new features, which is especially true in a 
distributed context. 
 
2.3 Exa Scale Computing  
 
High-Performance Computing (HPC) primarily refers to 
combining computing capacity to address significant 
problems in research, technology, or enterprise. Parallel 

Framework  Features 
Language Subheading Language 

Horovod Python and 
C++ 

Python and 
C++ 

Python and 
C++ 

Orca Python Python Python 
Tarantella Python and 

C++ 
Python and 
C++ 

Python and 
C++ 

Whale Whale 
Python 

Whale 
Python 

Whale 
Python 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



 
A. Ravikumar et al. 

  4      

computation and supercomputing are synonymous phrases 
in HPC. The essential concept behind HPC would be that 
example instance, a single computer requires 100 hours to 
perform a task, but 100 computers may finish the same work 
in one hour. A single node inside a supercomputer may not 
even be more efficient, but it may be when all the 
capabilities are combined. Due to the increasing price of 
HPC computers, their use was first restricted to a handful of 
applications, including basic simulation, architecture, and 
petroleum & gas. Nevertheless, HPC is now applied in 
various fields, such as data analysis, social media services, 
and education-related enterprises and areas. For this kind of 
application, a potent computer machine is required. Pioneers 
and academics in the field of HPC have argued that 
'Exascale systems' should be introduced at the beginning of 
the next decade. The framework will provide a thousandfold 
performance boost over present Petascale systems. By 
completing ExaFlops' worth of computations in seconds, 
such a powerful HPC machine would allow the deciphering 
of several scientific puzzles. Based on Exascale computer 
system development, it has been expected to consist of 
various nodes whereby each node is outfitted with standard 
multicore CPUs and so many cores accelerated GPU 
processors. The emergence of heterogeneity in HPC systems 
results in. Increasingly complicated platforms as demand 
increases. The need for more computer power continues to 
grow. In supercomputing systems, the greatest obstacle is 
the enormous energy use during HPC information 
processing. Exa-Flops-level throughput under these 
restrictive constraints. Nonetheless, a crucial aspect of the 
method as we go, applications, development platforms, 
tools, and designs are co-designed. Moreover, hardware 
Improvement in electricity consumption restrictions is also 
required. 

3. Proposed Method  

Over the past few years, the field of deep learning has 
experienced remarkable growth due to its widespread 
application in real-time scenarios. This research focuses on 
investigating the impact of CPUs, GPUs, and TPUs on 
Convolutional Neural Networks (CNNs). 
The GPU, which operates with a high number of Arithmetic 
Logic Units (ALUs), is commonly used for DNN 
processing. However, it faces challenges related to data 
access and memory access due to potential data generation 
issues caused by a single instruction. To improve CNN 
models' access to Dynamic Random-Access Memory 
(DRAM), statistical calculations involving floating-point 
numbers are employed. By reducing matrix size, parameter 
count, and border length, significant improvements in the 
model can be achieved.  

 
The study also explores the impact of employing the 
maximum pooling layer and adjusting parameters on 
accuracy and training duration. Notably, the dropout layer's 
influence on convolutional neural networks, irrespective of 
single or multiple GPU nodes, is examined, with or without 

the max-pooling layer. Objectives of the proposed model 
are:  

• Designing a user-friendly model for executing 
neural network models in a distributed manner using 
AWS SageMaker, enabling scalable distribution and 
reaching exascale FLOPS. 
• Ensuring easy scalability and hyper-tuning of DDL 
models on the cloud. 
• Deploying autotuning CNN for facilitating rapid 
learning curves. 
• Optimizing distributed training time and accuracy 
while performing CNN distribution. 
 
Additionally, this article provides a comprehensive study 
that explores the effects of scaling on the proposed model 
when operating in a cloud environment. CONVLSTM-D-
ACCEL can be used by any experienced /novice user 
who can utilize and execute the neural network models in 
a distributed manner in AWS Sage maker for scaling the 
distribution and achieving exascale FLOPS.  
 
Distributed training is when each processing node has a 
copy of the network, and a dataset is partitioned. Each 
node receives a unique batch of the dataset, executes a 
forward and backward pass, and swaps weight 
modifications for synchronization before going on to the 
next collection and epoch. Each thread uses the same 
model but receives different data. In neural networks, 
data parallelism uses the same weights but different mini 
batches on each line. Gradients must be synced or 
averaged after each run. Gradients are synced during the 
reverse pass and not communicated during the forward 
pass. The backward pass must provide the gradient to all 
nodes, which is the method's biggest drawback. 

 
The technique is summarized as follows: Each employee 

will use a part of the data for training purposes to duplicate 
the model across all of our workers. Each trainee collects 
parameters via parameter servers. Every training worker 
conducts a training cycle and sends the gradients to all 
parameter servers, which then update the model's 
parameters. A PS model consists of the following four 
phases: 
 
1. The centralized parameter server provides all 
employees with the model weights. 
2. Each worker node trains its local model using its 
local training examples partition and generates its local 
gradients. Each slaver then transmits its local gradients to 
the central PS. 
3. After collecting all gradients provided by the worker 
nodes, the PS will sum all gradients. 
4. Once the aggregated gradient has been calculated, the 
parameter server uses it to modify the model's parameters 
on this centralized server. 
 
In NLP-based applications, particularly for hate speech 
detection, LSTM has consistently demonstrated superior 
accuracy compared to other network architectures. This is 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



Circumventing Stragglers and Staleness in Distributed CNN using LSTM 
 

5 

attributed to the unique memory cell property of LSTM 
that distinguishes it from other models. Interestingly, the 
benefits of LSTM can also be extended to image 
identification tasks. 
 Various approaches exist for incorporating LSTM into 
CNN architectures. In this research proposal, LSTM is 
integrated into CNN using model classes. Following the 
convolutional neural network layer, the output from the 

flattened layer is passed to the subsequent model class, 
which comprises the LSTM layer, a dense layer, and an 
output layer. An overview of the ConvLSTM-D-Accel 
Data-Parallel model and the ConvLSTM-D-Accel Model-
Parallel model is presented in Figures 1 and 2, 
respectively. Additionally, Algorithm 1 and 2 showcases 
the proposed algorithm for the DConLSTM architecture.

 
 

Figure 1. Data Parallel Architecture 

4. Implementation 

The dataset used in this example is Pneumonia X-ray 
images for Pneumonia prediction. The neural network is 
designed for Pneumonia prediction and is distributed in 5 
nodes. The dataset was split among the four nodes 
(worker nodes), and the central master node acts as the 
parameter server node. The Neural network was designed 
using the Convolutional layers and the dense layers to 
process the 50 X 50 images. The model design is given in 
Table 2. A single node in AWS Sage Maker for exascale 
computation sequentially executed the same model. Three 
benchmark application datasets were selected to be 
applied to CNN to verify the performance enhancement. 
They include a dataset for the detection of pneumonia, a 
dataset for the detection of face masks, a dataset for the 
detection of diseased leaves, and a dataset for the 
detection of breast cancer.  

 
Algorithm 1: Pseudo-code Data-Parallel 
Initialization: 
Data will be available in both Master as well as Worker 

nodes 
Data is stored in an array of size m*512 
Initiate Py4MPI_Threads 
Processing: 
If (rank ==0) 

{ 
//Master 
Data ={parameter tuning weights contributed by 

Master} 
For I in 1 to no. of nodes 
{ 
Datai = comm.recv(source=I, tag=11) 
} 
For j in 1 to no. of nodes 
{ 
OptWeight = Func_OptWeight(Data j) 
} 
Broadcast(OptWeight, allnodes) 
} 
Else if (rank >0) 
{ /* For ‘i’th node */ 
comm.send (Datai, dest=0, tag=11) 
Wait for synchronization 
updated weight = OptWeight 
For k no. of iterations 
{ 
Process using updated weights 
} 
} 
 
 
 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



A. Ravikumar et al. 

  6      

Algorithm 2: Pseudo-code Model-Parallel 
Initialization: 
Same data available in all nodes 
Data is stored in an array of size m*512 
Initiate Py4MPI_Threads 
Processing: 
If (rank ==0) 
{ 
Wait for synchronization 
Weights.The model result from Node i 
Append. Layers(ith model of Layer i) 
} 
Else if (rank > 0) 
{ 
for node ‘i’  in the network 

{ 
ith Model=sequential() 
ith Model = add.layer() 
Datai = comm.send (dest=0, tag=11) 
} 
} 
if (rank >0) 
{ 
Wait for synchronization. 
updated weight = OptWeight 
For k no. of iterations 
{ 
Process using updated weights 
} 
}

 
Figure 2. Model Parallel Architecture 

Table 2.  CNN Model Topology 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
An MPI cluster consisting of the considered nodes is 

created. The external IP addresses of these VM instances 

are used to establish a password-less ssh connection 
between them. An NFS (Network File System) directory 
was created and shared among all nodes to store the 
executable code and datasets. To facilitate distributed 
execution, each node in the cluster has an identical 
version of all software modules. The initial configuration 
of the cluster included 3 nodes: 1 master and 2 employees. 
Later, the system was expanded to accommodate 5, 7, 9, 
and 11 nodes. 
 
5. Result Analysis 
 
The results are presented in this section for the Data 
parallel model and model parallel model. The accuracy 
and timing analysis was done for the sequential and data 
parallel MPI-based framework in AWS Sage Maker 
Notebook instance for nodes varying from 2 to 32, as 
shown in Table 3. The maximum accuracy is obtained in 
the distributed framework. 

 

Parameters   Data 

Input size 50x50 
Conv2D –ReLU 32 filter size,5x5 

kernel 
Conv2D –ReLU 64 filter size,5x5 

kernel 
Conv2D –ReLU 128 filter size,5x5 

kernel 
Flatten 512 
Dense- Sigmoid   
Optimization / Loss Adam / binary cross 

entropy 
Epochs 10 
Batch size 32 
Learning rate 0.001 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



Circumventing Stragglers and Staleness in Distributed CNN using LSTM 
 

7 

 
For Exa-scale Computing, the FLOPS are calculated 

depending on the layers based on equations 1 and 3. For 
the novel CNN model, the exascale computing FLOPS 
calculated are shown in Table 11. The total FLOP in a 
single node is 3.2E+15 FLOPS, and for the 5-node cluster 
etup, it is 1.28256E+16 FLOPS. Similarly, it can easily be 
scaled for a few hundred and thousand nodes in the AWS 
cloud, which has around 1.28E+19 FLOPS. For Exa-scale  

Table 3. Performance measure 

Table 4. Exa-scale application size and its total 
FLOPS 

 

 
Figure 3. The average training time of all 

benchmark applications 
 
Distributed Deep Neural Network Accelerator is a 

general framework that can be utilized for multiple 
domains to accelerate neural network processing in the 
distributed platform. The existing solutions need to 
provide an easily scalable framework. In the case of big 
data, a single processor is insufficient for data storage, 
and data needs to be distributed among nodes/processors. 
Distributed processing can lead to high complexity, and 
this framework helps reduce the model's complexity and 
processing time. AWS Sage maker helps to provide 
scalability, collection of rich inbuilt ML/DL libraries, 
easy hyperparameter tunning, accelerators, streamlining, 
etc. The main impact of CON-VLSTM-D-ACCEL is in 
the inherently distributed domains like medical, weather 
forecasting, banking, etc. The model makes the process 
simple using secure, customizable functions, parameters, 
and data since they can be stored in the different nodes 
and need not be shared with a central node for processing. 
The CNN model can be accelerated for exascale 
computing since the network operations are in the range 
of 1018 FLOPS based on the image size, filter, and kernel 
size. 

 
5.1. ConvLSTM-D-Accel Data Parallel  

 
Figure 4 illustrates the accuracy of individual 

benchmarks, while Figure 5 displays the training time in 
the distributed data-parallel mode. The distributed data-
parallel model exhibits nearly double the speed of a CNN 
model operating on a single node. It is widely 
acknowledged that executing data parallelism on a single 
multi-core node result in both improved precision and 
faster processing. However, in the proposed ConvLSTM 
architecture, scalability necessitates distribution across 
multiple nodes. 

Execution Model Accuracy (%) Time (s) 

Input size  50x50 
Input size 50x50  
The proposed model (5 
nodes) 

100 17.2157 

The proposed model (6 
nodes) 

100 14.321 

The proposed model (7 
nodes) 

100 11. 345 

The proposed model (8 
nodes) 

100 9.456 

The proposed model 
(16 nodes) 

100 5.673 

The proposed model 
(32 nodes) 

100 2.456 

Layer No. of 
Kernel 

Kernel 
shape/In
put 

Output 
Shape 

FLOPS 

Input size    50x50 
Conv2D 8000000 50x50 80000 3.2E+15 

Conv2D 160000 5x5 160000 1.28E+1
2 

Conv2D 320000 5x5 320000 5.12E+1
2 

Dense 1 1280000
x1 

1 2560000 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



A. Ravikumar et al. 

  8      

 

 

Figure 4. Data Parallel implementation accuracy vs 
batch size 

 
Table 5. Comparison with Existing Frameworks 

 

 

 

Figure 5. Data Parallel implementation training time 
vs batch size 

 
5.2. ConvLSTM-D-Accel Model Parallel  
 
In Figure 6, details of the average accuracy achieved 
concerning ConvLSTM-D-Accel model parallel 
execution are shown. In Figure 8, a training time 
comparison is shown.  
 

 

Figure 6. Model Parallel implementation accuracy 
vs batch size 

 

Framework         Languag
e  

Parallelism  Open 
Source  

Exa 
Scali
ng  

Synchr
onizati
on  

Horovod  Python 
and C++ 

Data 
Parallel 

Yes  No Mode
l 
wise 

Orca  Python Data 
Parallel 

Yes No Mode
l 
wise 

Tarantella  Python 
and C++ 

Data 
Parallel 

Yes No Mode
l 
wise 

Whale  Python Data 
Parallel 
+Model 
Parallel 

No No Mode
l 
wise 

Proposed 
Model  

Python  Data 
Parallel 

Yes  Yes  Epoc
h 
wise 
+laye
r 
Wise   

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



Circumventing Stragglers and Staleness in Distributed CNN using LSTM 
 

9 

 

Figure 7. Model Parallel implementation training 
time vs size 

5.3. ConvLSTM-D-Accel Scaling 
 
In Figure 8, we see how the various configuration 

parameters affect the average accuracy over a range of 
batch sizes. The results show a small rise in precision 
after applying scaling. 

 

 
 

Figure 8. Data Parallel Model Accuracy Versus 
Scalability 

6. Conclusion 
 

CONVLSTM-D-ACCEL's usefulness resides in 
promoting this technique and making its application more 
accessible. Thus, research, education, banking, medical 
and business applications are possible benefits. This paper 
introduces CONVLSTM-D-ACCEL, an open-source and 
flexible Python framework for simple, accelerated neural 
network distribution. It allows users to spend less time 
implementing the distribution of more complicated 
models. In future versions, the model can be scaled for 
high-performance computing platforms GPU since it can 
be easily configured in AWS sage maker. Furthermore, 

the framework needs to be developed for modelling 
parallel deep learning algorithms in the future.  

The ConvLSTM-D-Accel model employs a distributed 
convolutional neural network with LSTM for the 
automated adjustment of hyperparameters. On Google's 
cloud platform, virtual machines implement this 
approach. One master node and any number of worker 
nodes (two to eleven) are used in the experiment, with the 
latter's results subjected to careful analysis. The outcomes 
demonstrate a training time reduction of up to a factor of 
2, with an accuracy rate of over 92% obtained. It's 
important to note that the distributed system in question 
works without stragglers or staleness in the context of this 
project. 

References 
[1] Ravikumar, A, Sriraman, H, Sai Saketh, M, Lokesh, S, 

Karanam, A. Effect of neural network structure in 
accelerating performance and accuracy of a convolutional 
neural network with GPU/TPU for image analytics. PeerJ 
Computer Science. 2022; Vol. 8: pp. e909. 

[2] Ravikumar, A, Sriraman, H, Sai Saketh, M, Lokesh. 
Identifying Pitfalls and Solutions in Parallelizing Long 
Short-Term Memory Network on Graphical Processing 
Unit by Comparing with Tensor Processing Unit 
Parallelism. Inventive Computation and Information 
Technologies; 2/3/2023; India. Springer; 2023. pp. 111–
125. 

[3] S. Harini and A. Ravikumar. Effect of Parallel Workload 
on Dynamic Voltage Frequency Scaling for Dark Silicon 
Ameliorating. International Conference on Smart 
Electronics and Communication (ICOSEC), Trichy, India, 
2020; pp. 1012-1017 

[4] Ravikumar, A, Sriraman, H. Real-time pneumonia 
prediction using pipelined spark and high-performance 
computing. PeerJ Computer Science. 2023; Vol. 9: pp. 
e1258. 

[5] Ravikumar, A, Sriraman, H. Computationally Efficient 
Neural Rendering for Generator Adversarial Networks 
Using a Multi-GPU Cluster in a Cloud Environment. IEEE 
Access. 2023; vol. 11, pp. 45559-45571. 

[6] Zagoruyko, S, Komodakis, N. Wide Residual Networks. 
Procedings of the British Machine Vision Conference 
2016. pp. 87.1-87.12.  

[7] Ravikumar, A. Non-relational multi-level caching for 
mitigation of staleness & stragglers in distributed deep 
learning. Proceedings of the 22nd International 
Middleware Conference, 1021. pp 15–16. 

[8] Sriraman, H, Ravikumar, A, Keshwani, N. Malware 
Prediction Analysis Using AI Techniques with the 
Effective Preprocessing and Dimensionality Reduction. 
Innovative Data Communication Technologies and 
Application, 2022. pp. 153–169.  

[9] Zhuang, D, Chang, J, Li, J. DynaMo: Dynamic 
Community Detection by Incrementally Maximizing 
Modularity, IEEE Transactions on Knowledge and Data 
Engineering, 2021.vol. 33, no. 5, pp. 1934–1945. 

[10] Nasr, M, Shokri, R, Houmansadr, A. Comprehensive 
Privacy Analysis of Deep Learning: Passive and Active 
White-box Inference Attacks against Centralized and 
Federated Learning, IEEE Symposium on Security and 
Privacy (SP), IEEE Computer Society, 2016. pp. 739–753. 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



A. Ravikumar et al. 

  10      

[11] Shokri, R, Stronati, M, Song, C, Shmatikov, V. 
Membership Inference Attacks Against Machine Learning 
Models, IEEE Symposium on Security and Privacy, 2017. 
pp. 3–18. 
 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |




