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Abstract 

The general public is becoming increasingly familiar with blockchain technology. Numerous new applications are made 
possible by this technology's unique features, which include transparency, strong security via cryptography, and 
distribution. These applications need certain programming tools and interfaces to be implemented. This is made feasible by 
smart contracts. If the prerequisites are satisfied, smart contracts are carried out automatically. Any mistake in smart 
contract coding, particularly security-related ones, might have an impact on the project as a whole, available funds, and 
important data. The current paper discusses the flaws of the Ethereum smart contract in this respect. By examining 
publically accessible scientific sources, this work aims to present thorough information about vulnerabilities, examples, 
and current security solutions. Additionally, a substantial collection of current Ethereum (ETH) smart contracts has 
undergone a static code examination to conduct the vulnerability-finding procedure. The output has undergone 
assessments and statistical analysis. The study's conclusions demonstrate that smart contracts have several distinct flaws, 
including arithmetic flaws, that developers should be more aware of. These vulnerabilities and the solutions that can be 
used to address them are also included. 
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1. Introduction

Blockchain is a kind of distributed database that combines 
data replication with chain-based cryptography to offer 
distribution, high security (because of encryption and 
increased availability), and transaction transparency. 
Blockchain technology has gained popularity in recent years 
among programmers, IT firms, and even users of virtual 
worlds as a leading solution for building distributed 
databases and employing collective agreements. Multiple 
networks have been made available to the general public as 
a blockchain platform following the technology 
competitions and the presentation of various blockchain 
solutions in line with the better development of applications. 
We can list some of the most well-known of these networks 

as Bitcoin, Ethereum, Solana, and Avalanche. To offer their 
users better services, each blockchain has published a 
variety of protocols in this area. We might mention different 
consensus systems between the nodes of a distributed 
network of information as examples of these protocols [1-3]. 

Several blockchain projects have created a middle 
and high-level layer as a user interface for developers after 
developing the necessary hardware platform and 
communication protocols. This work will make it easier for 
blockchain network developers to create a wide range of 
applications and handle the intricate technical and 
specialized requirements of the blockchain's foundational 
layer. This platform is known as smart contracts [1-2]. 
Programmers can use data structures, functions, and 
different object-oriented systems in smart contracts, as well 
as a number of unique functions and libraries that are 
accessible over the blockchain network. In other words, they 
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may quickly record information or query it on the 
infrastructure blockchain network using the appropriate 
technologies [2-4]. 

The automatic execution of smart contracts without 
human interaction is another aspect. It will be feasible to 
execute it if specific requirements are given for its operation 
in the blockchain network. Any programming error the 
developer makes can impact the application program, user 
data, financial resources linked to the program, and even the 
users' financial resources. A smart contract flaw can 
occasionally impact the blockchain network infrastructure 
[2-5]. Smart contracts feature a number of security flaws, 
some unique to this kind of network and some derived from 
broader ideas and applied to this particular kind of 
technology [6-9]. 

One of the first and most active blockchain 
networks is Ethereum, which powers smart contracts using a 
unique programming language called Solidity. It is why this 
study's focus is on Ethereum and the aforementioned 
language [10]. 

After reviewing related literature for this study, we 
concluded that the following questions still require a 
response. The current research has attempted to answer 
these questions in this regard. 

•  Which particular security flaws exist in smart 
contracts?  

• What is a thorough description of these circumstances 
that includes examples?  

• Is it possible to classify vulnerabilities? 
• What methods are available to address these 

vulnerabilities?  
• Which vulnerabilities are verified through the use of 

various techniques for static code analysis and a 
comparison of the outcomes in smart contracts?  

• Do these vulnerabilities occur more frequently in some 
smart contracts than others? Or are some more 
prevalent? 
 
For this investigation, a huge variety of sources were 
initially examined. The results were made to attain 
sufficient value and comprehensiveness by analyzing a 
pruning operation about the Ethereum (ETH) 
blockchain network, the unique smart contract 
vulnerabilities, and the Solidity programming language. 
The second stage involved looking for flaws in 100 
smart contracts active on the publicly accessible 
Ethereum network until the study time, the number of 
major transactions, and the financial resources 
associated with four static code review tools. After 
evaluation and agreement, the outcomes were presented 
as a statistical analysis of the outputs. An extensive 
investigation of the specific Ethereum smart contract 
vulnerabilities has been attempted in this study. The list 
below shows the main innovations of this research. 
•  A thorough examination of particular Ethereum 

smart contract security flaws with pertinent 
examples and solutions  

• Using several automatic tools to perform static 
analysis on a collection of smart contracts and 
provide statistical analysis of vulnerabilities found. 

•  Establishing a category for smart contract 
weaknesses. 

•  A description of fundamental blockchain ideas and 
comparison data 

The smart contract security problem inspired us to write this 
paper. After creating smart contracts, many developers 
become aware of security issues, but because of their 
unchangeable structure, they must construct a new contract 
in order to address them. This is quite expensive. We have 
attempted to review the most significant issues and current 
solutions in this study by looking at the security issues with 
smart contracts and statically analyzing the codes of a 
sample of them. To determine the status of these 
vulnerabilities in actual contracts, we additionally analyze a 
set of contracts' weaknesses in terms of static code review. 
The rest of this paper organized as follows:  

Section 2 describes related works. Section 3 introduces 
known vulnerabilities and their detection process, and also 
covers countermeasures. Based on the flaws described in 
Section 3, a statistical analysis of a dataset of Ethereum 
smart contracts has been presented in Section 4. Conclusions 
and recommendations are included in Section 5. 

2. Related works 

Related work falls into one of three categories: 
 
• Category 1: Research that only addresses one or a 

few specific vulnerabilities does not provide a 
comprehensive view of the security vulnerabilities of 
smart contracts. 

In  [11] Wöhrer and his colleagues examined six security 
patterns in Ethereum smart contracts. Of course, it should be 
highlighted that these instances use the same smart contract 
security flaws that are described in this study in a different 
form. In [12], the researchers investigated re-entrancy 
vulnerability in a data set of smart contracts. This review 
consists of two review sections with several automated tools 
and manual reviews. According to the research results, the 
difference in these cases is very high, and this shows that 
automatic tools have many false positive reports. In [13], 
researchers have introduced various possible vulnerabilities 
in smart contracts. In this research, a wide range of more 
general vulnerabilities from the level of smart contracts have 
been proposed. Failure to provide examples and solutions 
for vulnerabilities is one of the problems of this research. 
Researchers in this study have also investigated some 
vulnerability detection methods. 
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• Category 2: Research that covers a decent number 
of existing vulnerabilities but does not include 
providing solutions or examples in sufficient detail. 

Researchers have presented nine security vulnerabilities in 
reference [14] without offering a fix or outlining the 
detection mechanisms in these situations. Then, False/True 
positive and False/True negative criteria were developed to 
evaluate the abovementioned vulnerabilities.   Without 
discussing the fix, researchers in research [15] published a 
list of Ethereum smart contract vulnerabilities (some briefly 
and others in detail). After assessing a vulnerability and 
offering a solution, they covered several automatic checking 
technologies.  In [16], researchers created a dataset of 
Ethereum smart contracts and labeled its vulnerabilities with 
the outputs of five automatic detection tools. There are no 
descriptions of vulnerabilities or recommendations for 
solutions in this study. Furthermore, many of these contracts 
are no longer in use because they have expired. The 
research's methodology entails scanning a set of smart 
contracts that were amassed by another study [17] and 
classifying the data according to the results.  In [18], the 
research method served as the study of publicly available 
scientific sources and their elimination to achieve the 
research objective. With a sample contract and very brief 
explanations. Researchers outline three areas of smart 
contract weaknesses in [19]: blockchain, code, and 
Ethereum virtual machine. In this approach, some 
vulnerabilities are described with examples, while in others, 
merely mentioning the subject is sufficient. It should be 
highlighted that no remedy was discovered in this study, and 
other more general and relevant smart contract 
vulnerabilities have also been suggested. In the research 
[20], the researchers have investigated a wide range of 
vulnerabilities related to smart contracts in the form of a 
general classification in terms of the impact and severity of 
the vulnerability. Of course, many of these cases are not 
specific to smart contracts, and a wide range of software 
also faces them. Limited explanations in describing 
vulnerabilities, examples and related solutions are another 
feature of this research. Researchers have also examined 
developers' views and provided some general solutions for 
diagnosing security problems. 
 
• Category 3: Research that has concentrated more on 

static code analysis has not taken any action to 
improve the accuracy of the static analysis output or 
statistically assess the findings, in addition to not 
giving enough details about each vulnerability. 

 
The study's authors [21] have also looked at thirteen other 
smart contract weaknesses and given corresponding 
solutions, limited to the Ethereum blockchain and following 
the current weaknesses through the review of English-
language scholarly sources. An overview of vulnerability 
detection tools and their comparison was then completed. In 
the study [22], the researchers presented, reviewed, and 
contrasted the techniques for identifying these 

vulnerabilities in static and dynamic methods (the research's 
primary focus) after providing a very brief description of 11 
major smart contract flaws. In the research [23], the 
researchers have investigated a set of Ethereum smart 
contracts (related to the SmartBugs tool) with nine 
automatic static vulnerability-checking tools. In this 
research, only the warnings related to automatic tools have 
been investigated, and no proper effort has been made to 
increase the accuracy of the results. For this reason, the 
number of vulnerable contracts is reported to be very high. 
In the research [24], after pointing out the vulnerabilities of 
smart contracts, the researchers introduced the available 
automatic detection tools and categorized and compared 
them. In this comparison process, things such as the speed 
and accuracy of diagnosis, the amount of error in diagnosis, 
and the types of interfaces that can be used have been 
examined. According to the research methods utilized in 
three studies [16,24,25], valid scientific papers were found 
through an academic search, and they were then culled 
based on the requirements of the study questions. 
The second and third category studies may not be able to 
provide a proper view for the reader due to insufficient 
information. In the third category, the accuracy of the results 
can also be very poor because the output of error tools is 
usually accompanied by many erroneous reports. Therefore, 
it is necessary to provide appropriate analyses and sufficient 
information in addition to paying attention to the issue of 
increasing accuracy. 

3. Research background 

Some useful and crucial concepts related to smart contract 
vulnerabilities are provided in this section.body. 

3.1. Blockchain network 

Blockchain is a decentralized digital collective agreement 
that uses one-way encryption technology or hashing to stop 
information from being changed or manipulated. Due to the 
limited public access to this disseminated information, this 
network also exhibits transparency. These networks 
maintain duplicate copies of transaction information—
information recorded in the network and made up of 
numerous blocks—between dispersed nodes. The likelihood 
of data loss will be significantly decreased in this approach. 
Some blockchain terminology is defined in the sentences 
that follow [8], [24-25]. 

3.1.1. Blocks   
The blockchain network collects transactions in the form of 
blocks over a predetermined period. The following data [24-
25] is saved in a block next to the transactions mentioned 
above  : 
Magic number: used to identify a block as a certain digital 
currency's network component. 

• Block header: provides details about the block. 
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• Block size: specifies the maximum block size for 
writing a given data  . 

• Transaction Counter: A transaction counter is a 
number that indicates how many transactions have 
been stored in a block . 

• Transactions: Lists each transaction that took 
place within a block.  

• Version: Displays the current version of the digital 
currency. 

• Preceding block hash: Contains the preceding 
block's header's hash (an encrypted number) . 

• Root Merkle Hash: The current block comprises 
the hash codes of the transactions in the Merkel 

tree, a tree structure designed to minimize storage 
capacity and transaction calculations. 

• Time: includes the time stamp of the blockchain 
block submission . 

• Bit: Contains information describing the 
complexity of finding the nonce number and the 
difficulty of the target hash function  . 

• Nonce: A random number that the miner must find 
to validate and close the block. 

An abstract block structure from the blockchain network is 
shown in Table 1 . 
 

Table 1. Block structure [21] 

 
 

3.1.2. Validator 
According to the decentralized collective consensus 
protocol, the systems in the blockchain network are in 
charge of validating and logging network transactions. 
The network validators are rewarded for completing these 
duties. It should be highlighted that any actions taken by 
validators that violate the blockchain's rules are detected 
and removed by the decentralized collective consensus 
protocol [25-27]. 

3.1.3. Consensus protocols 
In the blockchain, a decentralized consensus protocol 
allows different nodes to agree on a network element 
(blocks). The blockchain network's nodes all concur to 
record the same data according to mutual understanding. 
Without the assistance of a centralized organization, this 
activity is carried out decentralized. We will look at the 
most well-known decentralized collective consensus 
protocols introduced [25-26]. 
 

• The POW (Proof of Work) protocol pits high-
powered systems against one another in a race to 
crack tricky computational riddles. The first 
miner to find the solution, or, to put it another 
way, a hash compatible with the prior blocks, 
sends it to the network for confirmation by other 
nodes. It is better to describe the hashing method 

to comprehend this problem briefly. There is a 
form of one-way encryption used in the hashing 
method. This means that if X is present, a 
specific hashing technique can be used to quickly 
determine the value of h(x), although this 
problem requires a lot of computation and is 
expensive. The POW protocol reward miners to 
use trial and error to develop h(x) solutions 
compatible with the earlier blocks. This allows  
 
the miner who solves h(x) to broadcast it to the 
network first, where other miners can quickly 
verify it and validate its accuracy [26-28]. 

• The POS protocol (proof of stake) eliminates the 
prior form's flaw of requiring high processing 
costs and electrical resources from the verifiers. 
One of the network nodes is selected randomly 
(in a transparent procedure), with no longer any 
competition amongst the block verifiers, to 
validate the block. People with a higher amount 
in these two parameters have more chances in 
this selection process, which is based on the 
number of shares staked and the length of time 
the staked capital is locked. Age, a protocol 
parameter that describes the nodes' waiting time, 
is present in this protocol. This value will be zero 
if a validator is chosen to confirm the block, 

0200000 Block Version 

b6ff0b1b1680a2867a30ca44d34d9e8910d334be 
b48ca0c000000000000000 

Parent Block Hash 

9d10aa52ee949386ca9385695f04ede270dda208 
10decd12bc9b048aaab31471 

Merkle tree Root 

24d95a54 Time Stamp 

30c31b18 nBits 

Fe9f0864 Nounce 

Transaction Counter 
TX1   TX2   TX3  ……………………….TXn 
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increasing the likelihood that a fair procedure 
will involve waiting for validators. A validator 
receives a bonus in the form of the network's 
native currency after validating a block and 
submitting it to the network [26-27], [29]. 

• Proof-of-authority protocol: This protocol, which 
aims to utilize fewer computational resources 
than the POS protocol, is an alternative. This 
approach bases agreement on Proof-of-authority. 
This means that validators are chosen using a 
strict method, and then the accuracy of those 
validators is evaluated using a monitoring 
standard. A validator loses his validity and is 
removed from the system if his performance falls 
short of the required level. As a result, the right 
to validation is directly impacted by standard 
compliance. The identity of the validator, his 
history, and the amount of investment are all 
examined during the selection process [30-33].  

• The enhanced POS Consensus Protocol is DPoS 
(Delegated Proof of Stake). By putting their 
tokens (the principal infrastructure blockchain 
token) into an investment pool, users in this 
system can cast votes for validators which will 
approve and create the block. Naturally, more 
deposits increase power in a way that prevents 
the system from being dominated by one or a 
few actors. Depending on the proportion of 
tokens invested, the validator will distribute a 
portion of the profit to the voters if the block is 
written correctly. By garnering more votes, more 
trustworthy and accepted validators are given 
more authority to change the block. It should be 
highlighted that only a few validators can vote 
and are chosen to write blocks. Naturally, this list 
is flexible [34-37]. 

• PBFT protocol (Practical Byzantine Fault 
Tolerance) Even with faults in specific dispersed 
nodes, this system may reach a consensus. 
Assume that the PBFT protocol allows a 
distributed system with 3f+1 nodes to have a 
maximum of error nodes (Byzantine nodes). In 
other words, when 2f+1 nodes agree on a 
message, the system as a whole will likewise 
agree. In this system, the process of republishing 
and confirming these messages in the form of a 
"preparation message" in the network is carried 
out by a set of pre-defined messages. These 
messages are called the first preparation message 
that is transmitted from a node called Primary 
Node to several additional nodes called 
Replicator. Validator nodes can advertise their 
ability to write the current block by broadcasting 
the "confirmation" message after receiving 2f+1 
messages compatible with their sent item. It is 
done by rebroadcasting preparation messages. 
When the first node receives 2f+1 compatible 
messages of this type, It sends the confirmation 
message in the following step, known as the 

commitment step, writes the block, and modifies 
the system state  [38-40]. 

 
The comparison of the blockchain consensus protocols is 
shown in Table 2 [41-43]. Table 2 indicates that every 
methodology has pros and cons of its own. Some of them 
have been improved from this perspective and 
outperformed POW in terms of speed, energy 
consumption, and scalability. Of course, in these cases, 
security weaknesses, power distribution, or increased 
communication overhead are seen. 

3.1.4. Blockchain generations 
In general, three different generations are defined in the 
blockchain. In the first generation (the first form of 
blockchain), network miners expended much energy and 
money to confirm decentralized transactions without a 
central processing unit. A prolonged process that was 
completed peer-to-peer and without the use of 
middlemen. The Bitcoin cryptocurrency project, of 
course, had fewer modifications from this generation than 
the first, but second-generation blockchains have 
undergone major alterations since the first generation. 
Deploying apps with smart contracts and asset 
management on the blockchain became possible with the 
second-generation blockchains. The second generation's 
key features also include the ability to issue blockchain 
shares (along with money and smart wallets). In 
comparison to the prior generation, transaction speeds 
also significantly improved in this generation [44-48]. 

Low scalability and security issues were caused 
by high prices and slow speed. For this reason, new 
blockchains emerged to solve this problem under the title 
of the third generation. The critical features of this 
generation of blockchains are simplicity in data access, 
better scalability, and higher speed. The third generation 
of blockchains made it possible for blockchains to 
connect with one another, which was also impossible in 
the prior two generations. The layer definition is another 
characteristic of the third generation of blockchain 
technology, which has considerably increased both the 
speed and security of the system [44-46].  

3.2. Smart contracts 

On the blockchain network, smart contracts are deployed 
and carried out as automated applications that are 
programmed. If the required conditions (described in the 
code) are established in the blockchain network, this 
contract can operate autonomously. Naturally, smart 
contracts must pay a GAS fee or network usage fee to 
register information in the network to prevent excessive 
consumption of blockchain network resources. The 
information in the blockchain network is disseminated 
among all users, as was indicated in the previous section. 
It is no longer possible to update information once it has 
been published. In other words, once a smart contract has 
been executed and has reached its expiration, it cannot be 
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stopped. Gas fees are particularly important in reducing 
resource usage. To put it another way, they are employed 
to stop malicious users from abusing the blockchain 
network's limited resources by creating fictitious 
transactions to take up available memory, processing 
power, and other resources. Additionally, by using this 
strategy, network management can get financial resources 
that they can utilize to grow, enhance performance, or 
better administer the network. [1-2], [5], [49-50].  

After programming in the blockchain and using 
the VM (or executive virtual machine), the codes for a 
smart contract are performed. Then, to interact with it, 
users must carry out a specific transaction. With the aid of 
this transaction, users sign the smart contract and validate 
its usage within the blockchain network using their 

private key and asymmetric encryption. After the smart 
contract has been signed and verified, users can interact 
with it and use it (for instance, purchasing the tokens 
provided by the smart contract using tokens associated 
with the native blockchain network). Usually, specialist 
programming languages like Solidity or Serpent are used 
to create smart contracts. Of course, common languages 
such as Python are also active in this field. These kinds of 
languages offer particular functionality utilized by 
blockchain in addition to the standard characteristics 
provided by programming languages (concepts like 
variables, functions, classes, computing operations, and 
strings) [1-2], [5]. Some of the most effective uses for 
smart contracts in use today are depicted in Figure 1. 

 

 
 

†. Some of the most important applications of smart contracts today [51]Figure 1 

 

 
† All figures generated by Edraw Max Tool 
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Table 2. Comparison of consensus protocols 
 

 

Table 3. shows the characteristics of different blockchain generations comparatively 

 
 

 

 

 
 
 
 

Disadvantages Advantages Consensus 
Protocol 

 • High energy consumption 
  • The need for high-processing equipment  
 • High cost 
  • The possibility of network control falling into the hands of a specific group, 

especially in smaller networks 
  • Ability to control the network by a specific group 

 • Moderate scalability 

• High network security  
• Creating more employment 

POW 

 • The possibility of greater vulnerability 
  • Increase concentration 
  • Ability to control the network by a specific group 
  • Moderate scalability 

 • lower cost  
 • Less energy consumption  
 • Higher speed 

POS 

• Vulnerability to some network attacks due to increased communication • Cost optimization and energy 
consumption  
• Increased processing speed 

  

DPOS 

 • Hard implementation 
 • Good protection against denial of service attacks 
  • Less distribution 

 • Lower transfer cost 
  • Good security  
 • High scalability 

POA 

 • High communication overhead 
 • Vulnerability to some network attacks due to increased communication 

• vulnerable to denial of service attacks  
 • High communication complexity 

 • Low energy consumption  
 • High processing speed 
 • Low cost 

PBFT 

Disadvantages Sample projects Advantages Blockchain 
High cost, power consumption, low 
speed, poor scalability, and security 
issues 

Bitcoin Distributed transactions without 
intermediaries 

Generation 1 

Low scalability, security issues, lack 
of proper communication between 
blockchains 

Ethereum, Ethereum Classic, and 
Neo 

Better speed than 1st generation, 
distributed, transactionless 
transaction, smart contracts, smart 
money, and wallet. 

Generation 2 

Security issues, privacy issues, and 
lack of global policies . 

Cardano, Algorand Distributedness, transaction 
without intermediaries, smart 
contracts, money and smart 
wallet, inter-blockchain 
communication, simplicity in data 
access, layered structure, better 
security, and higher speed . 

Generation 3 
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3.3. Solidity programing language 

One of the most well-known programming languages for 
smart contracts is called Solidity. This high-level, object-
oriented language is compatible with Ethereum, Solana, 
and Binance Smart Chain, among other blockchains. In 
the Solidity programming language, a smart contract is 
made up of both data and code. Copies of the smart 
contract are placed on different network nodes, and it is 
given a public address (connected to public key 
cryptography). After that, users register their transaction 
for network execution by calling the contract using this 
address.  Solidity smart contracts are carried out on the 
Ethereum network's virtual machine. With vast memory 
and processing resources, this virtual machine is a full 
Turing computer for mathematical calculations [16], [52-
53]. 
3-4. Security Vulnerabilities 
A vulnerability in smart contracts refers to a kind of 
security weakness that can satisfy the three rules in the list  
below. The existence of vulnerability will also be violated 
if any one of these three situations does not present [54] 
  

• a flaw in the system that puts information 
security at risk. 

• The potential for an attacker to access the 
pertinent defect 

• The potential for an attacker to exploit that 
defect. 
 

4. Vulnerabilities in smart contracts 

In this section, we present the vulnerabilities in smart 
contracts along with the appropriate countermeasures. 
This section mostly addresses smart contract 
vulnerabilities. Things that are universal from a broader 
idea have not been included. 

4.1. Re-entrancy vulnerability Check 

4.1.1. Introduction of reentrance vulnerability 
Reentrance vulnerability describes an external contract's 
ability under a cyber attacker's command to call contract 
functions. It may result in the depletion or intrusion of 
Ethereum (smart contract inventory). In other words, this 
vulnerability occurs if a smart contract uses the call, 
share, and send functions to transfer flow control to 
another smart contract, then updates the status of the 
primary contract using the callback function (in this case, 
the smart contract status may be "Not completed"). The 
smart contract is incomplete under the circumstances 
above (the callback function does not return the expected 
value), and the calling contract may run further smart 
contracts or functions based on the written codes. Pay 

attention to Sender's smart contract code [7] ,[55-57] for a 
better understanding. 

Code snippet 1: Reentrancy Vulnerability 
 
pragma solidity >=0.4.22 <0.6.0; 
contract Sender { 
uint public amount; 
address payable public sender; 
address payable public receiver; 
 constructor() public payable { 
 sender = msg.sender; 
 amount = msg.value; 
} 
function send(receiver) payable { 
receiver.call.value(value).gas(20317)(); 
} 
} 
contract Receiver { 
uint public balance = 0; 
function () payable { 
balance += msg.value; 
} 
} 
 
Ethereum is transmitted to the recipient address, and the 
callback function is activated when this contract's send 
function is used. To implement this function, the average 
consumption of GAS is 2300 [58], which is received even 
in the incorrect implementation. While the amount of gas 
in the transfer and call functions is altered or left 
unrestricted, they are similar to this function in other 
ways. It should be noted that GAS is not deducted in the 
transfer function when a problem occurs. code snippet 2 
has a related vulnerability [55]. 
 

Code snippet 2: Reentrancy Vulnerability 2 
 
function transferBalance(address receiver, uint 
amount) 
public { 
require(balances[msg.sender] >= amount); 
receiver.transfer(amount); 
/* flow control transferred before the sender’ 
s balance is updated before an event 
is emitted. Potentially the start of 
trouble. */ 
balances[receiver] -= amount; 
LogTransactions(msg.sender,receiver, amount); 

} 
As can be seen, this contract's balance is transferred 
through the transfer function. After executing this 
function, the user's inventory status will be updated (in 
actuality, the contract status will change). By calling this 
method and modifying the callback function in this 
scenario, the malicious smart contract can empty the 
Ethereum balance of the smart contract [55]. When two 
functions or smart contracts share a state, a reentrancy 
attack can still succeed. For instance, the code below 
demonstrates this. Because of the value of balance[msg. 
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Sender] is not set to zero in this contract after the 
reentrancy attack. The transfer function in the code 
snippet 3 can use this variable to send additional 
Ethereum by calling the call function in the withdraw 
function [55]. The general layout of the reentrancy assault 
is depicted in Figure 2. 
 
 

Code snippet 3: Reentrancy Vulnerability 3 
 
mapping (address => uint) private balance; 
function transfer(address to, uint amount) { 
if (balance[msg.sender] >= amount){ 
balance[to] += amount; 

balance[msg.sender] -= amount; 
} 
} 
function withdraw() public { 
uint amount = balance[msg.sender]; 
require(msg.sender.call.value(amount)()); 
 
/* At this point, the caller’s code is 
executed and can call transfer() */ 
balance[msg.sender] = 0; 
 
 
 

 
 
 

 
 

Figure 2. The overall structure of the Reentrancy attack [59] 
 

 

4.1.2. The Solution to Reentrancy vulnerability 
Changing the status or value of the influencing variables 
should be transferred before invoking the call, transmit, or 
send functions, as was stated, to address this issue. The 
reentrancy attack can no longer be successfully 
undertaken in this situation [55]. 

4.2. Investigating the vulnerability of access 
control in smart contracts 

4.2.1. Access control vulnerability 
User roles and privileges within an application are 
restricted using access controls. This notion in smart 
contracts can be connected to governance and crucial 
logic, including token issuance, proposal voting, money 
withdrawals, suspension and contract upgrades, 
ownership changes, etc. The access control mechanisms 
used by intelligent contracts have some flaws. The 
following can be listed as weaknesses among them [7], 
[9], [60].  
 

Non-Validation of Modifiers: In critical functions, 
validating modifiers is crucial. The owner can be 
changed, tokens and existence can be transferred, and 
contracts can be stopped and canceled, among other 
things, thanks to modifier functions. Modifiers' access 
levels to key functions must be verified before use to 
avoid risks like money loss or contract termination.  
Incorrect Modifier names: A Modifier's name or even 
the name of a function may be written differently than 
what is specified in the validation library due to 
programmer error. As a result, neither function nor 
modifier is subject to the modifier process anymore. 
Which, depending on performance, may result in a loss of 
cash or a change of ownership. 
 
 Having too many roles defined: Enabling users to have 
an excessive number of roles could result in an access 
control vulnerability. 
Take a look at the example below for a better 
understanding.An access control problem that allowed 
anyone to burn Hosp tokens led to the hacking of the 
Hospowise project a while back. This smart contract's 
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susceptible token burning function is related to the burn 
function [61]. 
 

function _burn (account, amount); public; burn(address 
account, uint256 amount); 
 
Put another way. A hacker might buy any token and then 
use the public write function. This function burns all of 
the Hospo tokens on the UniSwap exchange. The attacker 
can now trade his tokens for the Ethereum cryptocurrency 
because the token's value has increased [57]. 

4.2.2. Access control vulnerability solution 
The process needing access control permissions must be 
reviewed to address this kind of vulnerability. This can be 
used by smart contract programmers with specialized 
access management libraries. The name of one of these 
libraries is OpenZeppelin. This library's Openzeppline's 
Ownable subsection offers modifiers like "only owner" to 
ensure that a function is called by its owner. It should be 
noted that other access control management sub-sections 
in OpenZeppelin employ modifiers or functions like 
"hasRole" to determine whether a user has the authority to 
invoke a function [62]. There are also a few appropriate 
models for controlling access in smart contracts [63]. 

4.3. Investigating arithmetic vulnerabilities  

4.3.1. Introduction of arithmetic vulnerabilities 
Smart contracts are extremely vulnerable to integer 
overflows. Unsigned integers are typically used in smart 
contracts, and most developers work with simple integer 
types (often only signed integers). Many code paths can 
become carriers for information theft or service denial 
when there is a buffer overflow [9-10], [64,65].  
The below smart contract's ability to remove balances 
serves as a vivid illustration of this vulnerability. This 
function should permit withdrawals if the balance is 
greater than zero (and more significant than the minimum 
transaction cost). It is true even though it is possible to 
withdraw larger sums of money via the integer overflow 
vulnerability. In other words, the withdraw () function's 
check result is always positive, allowing the attacker to 
withdraw more than the permitted amount. Consider the 
following function [65] to gain a better understanding of 
the problem. 
 

Code snippet 4: Arithmetic vulnerabilities 
 
function withdraw(uint _amount) { 
 require(balances[msg.sender] - _amount > 0); 
 msg.sender.transfer(_amount); 
 balances[msg.sender] -= _amount; 
} 
 
This method's sole criteria to determine whether the 
function caller has permission to withdraw funds balance 
is [msg. Sender] - _amount > 0. a procedure that enables 

free withdrawal in case of a buffer sequence vulnerability 
and can be bypassed.  
The code snippet 5 has an arithmetic flaw and is 
connected to the Beauty Chain blockchain. A susceptible 
function named batch transfer is employed in the  
 

Code snippet 5: Arithmetic vulnerabilities 2 
 
BeautyChain smart contract, and it is in this function that 
the vulnerability mentioned above exists [66]. 
 
function batchTransfer(address[] _receivers, uint256 
_value) public whenNotPaused returns (bool) { 
uint cnt = _receivers.length; 
uint256 amount = uint256 (cnt) * _value; 
require(cnt > 0 && cnt <= 20); 
require (_value > 0 && balances[msg.sender] >= 
amount); 
balances [msg.seneder] = 
balances[msg.sender].sub(amount); 
for (uint i=0; i<cnt; i++) { 
balances[_receivers[i]] = 
balances[_receivers[i]].add(_value); 
Transfer(msg.sender, _receivers[i], _value)’ 
} 
return true; 
 } 
} 
 
The local variable value code determines the sum by 
multiplying the cnt and _value variables. A 256-bit 
integer may be used as the second parameter in this 
multiplication, designated as _value. Due to the 
batchTransfer() function's ability to accept two inputs, a 
hacker might overflow the amount variable and set it to 
zero by passing an extremely large number in the _value 
parameter. All checks on colored lines will succeed by 
setting this variable to zero, and the subsequent line's 
subtraction won't matter. Finally, the code will dump 
numerous recipients' balances with a very big value 
without incurring any fees to the attacker's account [66]. 
4-3-2. Solution of arithmetic vulnerabilities 
Rewriting the susceptible sections of the code using the 
supplied libraries is a security fix for this vulnerability. 
SafeMath is one of these libraries, and it can be used to 
address arithmetic flaws. The safe functions add sub, mu, 
and div were used to construct the library's four core 
activities [67]. After including the SafeMath library in 
your smart contract, swap out all four major operations 
with the functions mentioned above to address the 
vulnerability. These alterations are listed below.  
 

Code snippet 6: Arithmetic vulnerability Solution 
 
 
a * b becomes a.mul(b)  
a / b becomes a.div(b) 
a - b becomes a.sub(b) 
For example, the add function in this library is as follows. 
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function add(uint256 a, uint256 b) internal pure returns 
(uint256) {   
       return a + b;   
   } 
 
You can see that the result is returned as a pure function 
and uint256. It is guaranteed not to read or modify the 
status information in the pure function. 

4.4. Not checking return values in low-level 
calls 

4.4.1. Challenge return values in low-level calls 
The availability of low-level Solidity functions like call(), 
call code (), delegate call (), and transmit() is one of the 
aspects of programming languages for smart contracts. In 
smart contract coding, it is often preferable to employ 
alternatives to low-level calls whenever available. 
Incorrect calling of these functions could result in the 
contract's security being jeopardized. These functions in 
Solidity behave entirely differently from the rest when it 
comes to accounting for errors. In other words, the error 
in a function of this kind is not even broadcast and does 
not result in a full return from the present execution. In 
other words, these functions only ever yield the logical 
value false, after which the Ethereum virtual engine is still 
executing the code. Consider the example in [9], [68] to 
better understand the problem. 
Using the recipient's wallet address is the most 
straightforward approach to creating a contract to send 
Ethereum to another address in this blockchain network. 
The following conditional check (Code snippet 7) is a 
game component on a board where the winner receives 
money in the form of Ethereum digital currency [68]. 
 

Code snippet 7: Not checking return values in low-level 
calls 

 
if (gameHasEnded && !( prizePaidOut ) ) { 
  winner.send(1000); // send a prize to the winner 
  prizePaidOut = True; 
} 
 
The issue is that the sending procedure—for instance, the 
send function in the Code snippet above—might not 
succeed. The prizePaidOut variable will be set to True, 
and the winner won't get any money. This value shouldn't 
be set to true because the correct transfer has not yet been 
made. The leading cause of this problem is that the 
programmer neglected to examine the send function's 
output. There are two situations in which the 
winner.send() function might not work as intended. First, 
an exception is made when the winning address relates to 
a contract rather than a user account. In this instance, the 
failure to mail the award is the winner's responsibility 
because they provided an erroneous address. In the second 
scenario, other contract programs (which have already 
been executed in the transaction) can use a finite resource 

called "Callstack" that is available on the Ethereum virtual 
machine. This operation will fail (and the winner's award 
will be forfeited) if this resource is used up before 
transmitting Ethereum to the winner's address. The smart 
contract must be appropriately secured to protect the 
winner. It should be mentioned that depending on the type 
of smart contract code, the results of this vulnerability 
may be extremely dangerous. For instance, by altering the 
values of the variables without providing any inventory, a 
cyberattacker could purposefully improve his access level 
to the smart contract [68-69]. 

4.4.2. Resolving return values in low-level calls 
Two ideas are mentioned below [68] as a means of 
addressing this vulnerability: 
Examining the results of low-level functions: This method 
uses vulnerable functions to check the output linked to 
vulnerable spots before using it if there are no issues. The 
following code snippet fragment provides a viable 
solution for the previously mentioned example using the 
same methodology. 
 
 

Code snippet 8: Not checking return values in low-level 
call solution 

 
 

if (gameHasEnded && !( prizePaidOut ) ) { 
  if (callStackIsEmpty()) { 
  if (winner.send(1000)){ 
    prizePaidOut = True; 
} 
  else throw; 
} else throw; 
} 
 
In this example, the stack's emptiness is verified using the 
callStackIsEmpty method, and only if there are no issues 
is the sending procedure started and the prizePaidOut 
variable set. You should modify your code to ensure that 
the outcomes of unsuccessful sending are distinguished 
from other scenarios [68]. 
Utilizing exceptions Making use of exceptions is another 
method to address this problem. By specifying an 
exception in this method, the programmer can take control 
of unusual circumstances, including the results of not 
inspecting the return values in low-level calls. In other 
words, when the circumstances mentioned above occur, 
the program's execution flow departs from normal mode, 
and the code relating to the exception is run. 

4.5. Investigation of denial of service 
attacks 

4.5.1. Denial of service attacks 
A denial of service attack is one in which the attacker 
sends the victim's system numerous input requests to deny 
service to the main users. Smart contracts may be 
permanently shut down following a denial-of-service 
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assault, in contrast to web services that can occasionally 
recover from these attacks. Denial of service attacks can 
be implemented in smart contracts in a variety of ways. 
The following list of instances can be listed among these 
[7], [70-71]. 
 

• Malicious behavior when receiving a transaction 
• Artificial increase of Gas Fee necessary to 

calculate a function  
• Abuse of access controls to access confidential 

parts of the smart contract 
 

Take a look at the example below for a better 
understanding. The code snippet 9 relates to the 
blockchain game King of the Ether, which lets players 
buy access to the president through payments made in 
Ethereum to other players. The access transfer process 
will now fail if the other user is a smart contract, and the 
stated smart contract will always have the president's 
access authorization. Based on this, a denial of service 
attack has been conducted due to faulty access 
authorization management [70]. 
 

Code snippet 9:  DOS attack 
 
function becomePresident() payable { 
    require(msg.value >= price); // must pay the price to 
become president 
    president.transfer(price);   // we pay the previous 
president 
    president = msg.sender;      // we crown the new 
president 
    price = price * 2;           // we double the price to 
become president 
} 
 
Additionally, the smart contract may be terminated if the 
GAS Fee for a transaction exceeds the maximum amount 
allowed in a block because other network transactions 
will not be able to be accepted. A smart contract may 
unintentionally cause it to occur, as well as online 
hackers. Consider a cyber attacker who creates many 
destination addresses to steal modest amounts from the 
victim's smart contract. The following function is where 
this kind of assault can be carried out. The code even 
states that many current transactions may cause the smart 
contract to break at some time, stopping all future 
transactions. The function iteration in the loop is based on 
the current length of the address array. It can allow an 
attacker to exhaust resources by adding new return 
addresses to the array [70]. Additionally, since the refund 
function's transaction depends on the fixed sending 
function, which has a value of 2300 GAS, it is possible to 
artificially increase the GAS fee in this function. 
 

Code snippet 10:  DOS attack 2 
 
address[] private refundAddresses; 
mapping (address => uint) public refunds; 

function refundAll() external onlyOwner { 
// unknown length iteration based on how many addresses 
participated 
for(uint i; i < refundAddresses.length; i++) { 
// doubly bad, now a single failure on send will hold up all 
funds 
require(refundAddresses[i].send(refunds[refundAddresses
[i]])) 
} 
} 
 

4.5.2. A solution to Denial of Service attacks 
The smart contract's codes should be securely examined, 
particularly in the control discussion, to defend against 
denial of service attacks (checking the actions of all 
departments and access permissions). Before deployment 
in the blockchain network, these codes must be rewritten 
if there are any issues. Additionally, the ability to interact 
with the smart contract should be limited, especially 
during procedures like the withdrawal of funds, and 
appropriate thresholds should be set to regulate the 
volume of requests. This procedure should be carried out 
within the block limit for the GAS Fee. Instead of using 
the transmit() method in certain circumstances, utilizing a 
transferFrom() function is preferable. 

4.6. Failure to use appropriate random 
numbers 

4.6.1. The challenge of generating random and 
pseudo-random numbers 
In general, using actual random numbers is exceedingly 
challenging and impossible. Cyber attackers can also 
duplicate numbers and take advantage of the system, 
regardless of how far this process of creating random 
numbers is from reality. Despite the widespread use of 
random numbers (used in many programs such as 
lotteries, games, airdrops, etc.) and the direct link to 
financial issues, this issue is of utmost importance in 
smart contracts [7], [9]. Pay close attention to the lottery 
game example below to better understand the topic—a 
lottery based on random numbers where the winner 
receives cryptocurrency for their prize. 

The DiceGame smart contract (Code snippet 11) 
serves as a prime illustration of this. The user must 
estimate the smart contract's random number in this code; 
if successful, he will be rewarded with one Ethereum. It is 
carried out using the random() function and the 
guess_the_dice() function. The random() function creates 
a random number by using the previous block's block 
number and the current block's timestamp [72]. 

 
Code snippet 11:  Random Number Problem 

 
contract DiceGame 
{ 
constructor() payable{ } 
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function guess_the_dice(uint8 _guessDice) public { 
uint8 dice = random(); 
if (dice == _guessDice) { 
(bool sent, ) = msg.sender.call{value: 1 ether}(""); 
require(sent , "failed to transfer"); 
} 
} 
// source of randomness (1-6) 
function random() private view returns (uint8) { 
uint256 blockValue = uint256(blockhash(block.number-1 
+ block.timestamp)); 
return uint8(blockValue % 5) + 1; 
} 
} 
 
Looking at the smart contract's random function, it is 
obvious that a hacker could create this number using the 
following function and drain the balance of the account by 
guessing the winning lottery number [68]. 
 

Code snippet 12:  Random Number Problem 2 
 
function random() private view returns (uint8) { 
uint256 blockValue = uint256(blockhash(block.number-1 
+ block.timestamp)); 
return uint8(blockValue % 5) + 1; 
} 

4.6.2. The solution to the challenge of generating 
random and pseudo-random numbers 
You should not use publicly accessible and predictable 
information, such as details about blocks (also known as 
Onchain) in the network, to defend against this attack. 
Additionally, it is preferable to generate random numbers 
using the provided libraries and special functions. One of 
the most crucial tools for this problem is libraries that 
offer VRF (Verifiable Random Function), offered by 
businesses like Chainlink. Smart contracts can produce 
statistically random numbers using these libraries. With 
one-way and asymmetric encryption, this method may 
verify the legitimacy of the random number's creator. It 
will cause anyone can identify the random numbers 
produced outside of the smart contract [73-74]. 

4.7. Forward transaction attacks 

4.7.1. The challenge of forward transaction 
attacks 
Transactions in the blockchain network are typically not 
immediately recorded. In fact, following the registration 
request, a collection of these transactions must be 
compiled into a block and come to a consensus in the 

network. Before choosing a block, all nodes in a network 
must be informed of transaction details due to the 
distributed nature of block creation. In other words, when 
a node in the blockchain creates a transaction, the 
pertinent information is broadcast to other nodes. After 
obtaining the indicated info by nodes, they place the 
transactional information in the "an unused pool" 
structure. The block creator node adds transactions to the 
block with the priority of the paid fee amount (the block 
creator seeks more profit) after adding a sufficient number 
of transactions (the size of writing a block) to this pool 
[64], [75-77]. Blockchain network users can prioritize 
their transactions by paying a more significant price. A 
cyber attacker can exploit this problem and elevates his 
transaction above other cases by charging a hefty fee for 
it. In smart contracts where timing is crucial (like NFT 
purchase competitions, first response competitions, etc.), 
it is possible to get around other users in this fashion [58-
59]. The Findkey smart contract deserves your attention 
(Code snippet 13) [78]. 
 

Code snippet 13:  Forward Transaction Attack 
 
contract Findkey { 
    bytes32 public constant key = 
        
0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4ea
c0cc4b04711cd0e2; 
    constructor() payable {} 
 
    function guess(string memory solution) public { 
        require(key == 
keccak256(abi.encodePacked(solution)), "Incorrect 
answer"); 
        (bool sent, ) = msg.sender.call{value: 5 ether}(""); 
        require(sent, "Failed"); 
    } 
} 
 
Finding the value of a string will earn users 5 Ethereum in 
this smart contract. Let's say user number 1 is successful 
in figuring out this number and submits it in response to 
the guess function. The hacker in the blockchain network 
is currently looking at the transaction data in the "unused 
pool." He can immediately register it in the blockchain 
network with a greater registration charge after 
recognizing the amount in the transaction relating to User 
Number 1. By using the precedence of transactions in this 
way, it is possible to get around user number 1 and win 5 
Ethereum in its place. You can see how to generally carry 
out the prior transaction assault in the Figure  3. 
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Figure 3. How to execute the front-end transaction attack [79] 

 
4.7.2. Solution of forward transaction attacks 
The use of the Commit-Reveal method is a viable answer 
to this issue. Using encryption techniques, user number 1 
in the previous example sends his message locked and 
immutable over the network. After registering on the 
blockchain, he can unlock it. Because the attacker cannot 
see the transaction information before it is registered in 
the network, the forward transaction attack is no longer 
viable. The Submarine Send technique is another 
approach that experts have suggested to handle this 
predicament. This method involves sending the smart 
contract's related response to a third address in the 
blockchain network, encrypted using asymmetric 
encryption and viewable by the smart contract. The 
transaction details will then be made available to the 
smart contract by the sender, who will also disclose this 
transaction to it. Using this technique prevents the cyber 
attacker from seeing the transaction data in the collection 
of unused transactions [80-81]. 

4.8. Wrong time dependency vulnerability 

4.8.1. The challenge of wrong time dependency 
vulnerability 
The programmer may need to precisely record the time in 
smart contracts to use it in the program's logic. This value 
is called the time stamp. Any error in the definition of this 
topic could lead to a security flaw. This issue might arise, 
for instance, if the programmer utilizes a seal associated 
with the most recent block in the infrastructure blockchain 
network. One of the most difficult problems in this area is 
distributing an accurate clock among the nodes of a 
blockchain network. Therefore, the timing gap between 
nodes in a blockchain network is correct. 
Additionally, this value may be modified by a node or 
smart contract [7], [9], [82-83]. Study the Code snippet 
for the EtherLotto smart contract to gain a better 
understanding of the problem [84]. This lottery 
application uses the smart contract code. Users must 
prepare a certain sum equal to the "competition ticket" 
and deposit it into the smart contract account to take part 
in this competition. Following (code snippet 14) the 
generation of a random number, if its value equals zero, 

the corresponding user will win the lottery. The matching 
award will then be sent to his address when this occurs.  
 

Code snippet 14:  Wrong Time Dependency 
 
contract EtherLotto   {  
    uint constant TICKET_AMOUNT = 10; 
    uint constant FEE_AMOUNT = 1; 
    address public bank ; 
    uint public pot; 
    function EtherLotto { () 
         bank = msg.sender ; 
} 
    function play() payable   }  
        assert(msg.value == TICKET_AMOUNT); 
         pot += msg.value ; 
         var random = uint(sha3(block.timestamp)) % 2 ; 
        if (random == 0)   {  
            bank.transfer(FEE_AMOUNT); 
            msg.sender.transfer(pot - FEE_AMOUNT); 
            pot = 0 ; 
     }  
 }  

 
The use of the block timestamp (block.timestamp) to 
produce a random value in the play function is the source 
of the issue in this smart contract. This timestamp is 
simple to change for the node to have the desired result. 
For instance, altering this number to 0 can result in the 
hacker winning the lottery. 
 
Table 4. Changing the value of amount and address 

in the vulnerability of short addresses 

4.8.2. Fixed the wrong time dependency 
vulnerability 
Regarding how to address this vulnerability, there are two 
options. The first step is to adopt alternate techniques and 
eliminate vulnerable timestamps. Other secure techniques, 
such as Chainlink VRF, can be used to obtain the random 
number for the sample in the case above. Additionally, the 
timestamp can be obtained in another manner (for 
instance, by using JavaScript functions like the date() and 
converting it to the Unix timestamp standard or similar 
libraries) before comparing the two values. According to 
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the application's logic, the execution should be terminated 
if the difference exceeds a specific threshold. 

4.9. Vulnerability of short addresses 

4.9.1. The vulnerability challenge of short 
addresses 
In general, the Ethereum virtual machine will append 
many zeros to the end of an address if it finds one shorter 
than the needed length. By altering the call function 
values and removing zeros from the end of the destination 
wallet address, a hacker can exploit this vulnerability 
[7,64,85] and make an unlawful credit withdrawal from 
the susceptible smart contract account. Consider the 
function Send(address, amount) to send a specific amount 
of cryptocurrency (amount) to the account associated with 
the address variable in the Ethereum blockchain network 
to better understand the topic. Below is a sample call to 
this function [64]. 
Send(0x1234...67890, 10). 

The problem is how to deal with and manage the 
address and unit values in the smart contract before 
sending. Assume that these items are assigned values of 
20 and 32 bytes in memory, respectively. Now, if a cyber 
attacker, instead of sending 20 bytes of the address, sends 
19 bytes after removing the trailing zeros. With this, the 
API adds zeros to the amount section after coding. The 
binary equivalent of the address and the value are placed 
in the memory in a serialized form. A zero in the memory 
is added to the address part again (the zero corresponding 
to the beginning of the amount), but the amount part can 
be changed to multiples of the desired amount. Table 4 
shows how this matter is. According to these values and 
the limitation in the number of zeros on the left side of the 
amount value in the memory, it is possible to add two of 
these zeros to the address value and turn the amount value 
into a multiple of the original request. 

4.9.2. Short address vulnerability solution 
Simply include a check function in the smart contract to 
address this problem. The size of the user's input is 

verified in this function. In the smart contract for the 
NonPayloadAttackableToken, in code snippet 15 an 
illustration of this review is provided. The transfer 
function's expectations for this checking are two 32-byte 
parameters and a 4-byte method signature [86]. 
 

Code snippet 15:  Short Address Attack 

 
contract NonPayloadAttackableToken { 
  modifier onlyPayloadSize(uint size) { 
    assert(msg.data.length == size + 4); 
    _; 
  }  
 function transfer(address _to, uint256 _value) 
onlyPayloadSize(2 * 32) { 
   // Do stuff 
 }    
} 

4.10. Inventory lock vulnerability 

4.10.1. Inventory lock vulnerability challenge 
This vulnerability exists if it is feasible to deposit a 
balance of local blockchain network tokens to the smart 
contract address without being able to withdraw them. In 
fact, in the mentioned case, the deposit balance is locked 
to the contract, and the user can no longer withdraw it. 
The user may have forgotten to declare the withdrawal 
function, which can lead to this [9], [87-89]. Pay close 
attention to the code snippet 16 [90] to better understand 
the problem. 
 

Code snippet16:  Inventory lock vulnerability 
 
 
contract Market { 
    function deposit() payable { 
    } 
 
    function transfer() { 
        uint y = msg.value; 
    } 
} 
 
In this contract, there is only a deposit function, and if the 
token is deposited to the relevant address, withdrawing is 
no longer possible. 

4.10.2. Inventory lock vulnerability solution 
The answer to this vulnerability is simple—you must 
build a function that will withdraw the deposit balance 
using the program's logic.  
The proposed vulnerabilities are organized into categories 
in Figure 4. The number of these vulnerabilities can 
undoubtedly rise. Additional categories, such as [91], are 
also offered. Unlike previous examples, the proposed 
taxonomy places the vulnerabilities in smaller groups and 
does not stop with a list of cases. 
 
 
 

Amount and address in memory Condition 

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00 
0…001010 

Normal 
Condition 

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f 
00…0101000 

Execution 
of the 
attack 
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5. Statistical investigation of 
vulnerabilities in a dataset of Ethereum 
smart contracts  
 
In this section, descriptive statistics are employed. Tables 
and graphs are examples of data visualization tools used 
in descriptive statistics, which facilitate analysis and 
understanding. 
The findings of the analysis of a dataset of Ethereum 
smart contracts with public access to the source code are 
presented in this section concerning the pertinent 

vulnerabilities [92]. The prerequisites for the randomly 
chosen contracts were that they had an adequate number 
of transactions and the application had been active for at 
least the previous ten days. The average number of 
transactions, the time of the most recent transaction, and 
the total number of contracts are all displayed in Figure 5, 
the contracts in question. This figure indicates a lot of 
active transactions for the contracts indicated. The 
contracts, as mentioned earlier, also contain considerable 
cash resources. 

 

 
  

Figure 4. Classification of vulnerabilities related to smart contracts
  

 

 
Figure 5. Information of smart contracts reviewed 
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Our review process includes static scanning at the code 
level with the help of four automatic vulnerability-
checking tools: Slither, Smartcheck, Oyente, and Mythril 
[92-95]. In this review, a vulnerability warning in other 
tools is also considered with the help of observing the 
relevant outputs by each tool. In other words, some 
verification procedure has also been carried out for 
vulnerabilities with alerts in many tools. It should be 
recalled that a vulnerability requires three different 
circumstances, which were also discussed in sections 3-4. 
Only when employing the smart contract in the 
application, or, in other words, the final system, can all 
these things be investigated. As a result, some of these 
warnings might be inaccurate (the concept of a False 
Positive), or certain vulnerabilities might still be present 
in the system (the concept of a False Negative). 
Slither: Slither is a smart contract static inspection tool 
that can sort the data in the code. This program creates an 
AST (Tree Syntax Abstract) structure to start, then pulls 
data from smart contracts like an inheritance graph, flow 
control graph, and list of Expressions to find the 
vulnerability. The vulnerability detection procedure is 
then performed using operations, including checking 
dependencies, variables, and accesses [93].  
Smart check: a dynamic analysis tool for Solidity smart 
contracts that can be expanded. By transforming smart 
contract code into an intermediate XML representation 
and comparing it with patterns gathered from the actual 
world, this program finds weaknesses [94].  
Oyente: A Symbolic review tool specifically made for 
analyzing smart contract code. This tool uses the CFG 
Builder (flow control graph maker) and Ethereum 
Blockchain Explorer modules to deliver the smart 
contract-related bytecodes in symbolic form to the central 
review module. This module's vulnerability detection 
procedure involves checking the smart contract's 
Symbolic output [95].  
Mythril: An Ethereum virtual machine bytecode review 
tool that employs symbolic analysis, the SMT solver 
method, and the effect of different inputs on the program 
with the taint analysis approach to find smart contracts' 
weaknesses [96]. 
 

The reason for choosing these tools is to cover most of the 
introduced vulnerabilities. In addition, these tools must 
detect common vulnerabilities to be used in this 
investigation. Other tools, including Soda and Sfuzz [97-
99], have also been published to check the security of 
smart contracts. However, these cases have been omitted 
due to the lack of direct coverage of the mentioned 
vulnerabilities or the lack of sharing in the list of 
detectable vulnerabilities. 

In terms of percentage and diversity of 
vulnerability alerts, Figure 6 presents comparisons 
between smart contracts. As shown, at least one 
vulnerability warning exists at the code level for around a 
third of the extant smart contracts at the dataset level. This 
problem demonstrates both the significance of the issue 
and the lack of sufficient attention given by smart contract 
developers to the field's vulnerabilities. In Figure 7, you 
can also see the results of the vulnerability warning check 
in the data set by the vulnerability. According to the graph 
of arithmetic-type vulnerabilities, forward transactions 
and locked ether have the most repetitions among the 
examined data sets. Based on this, it can be said that 
inattention to the security of at least one calculation, as 
well as not considering (or not knowing) the definition of 
priorities in the infrastructure blockchain network or not 
defining a method for capital withdrawal from the smart 
contract are the most common vulnerabilities in smart 
contracts (at least in this data set). In this way, smart 
contract developers may employ an equal methodology.
 This issue was validated by looking at the coding 
associated with the vulnerable smart contracts for the 
three vulnerabilities above. For instance, smart contracts 
that were flagged for having an arithmetic vulnerability 
employed unsecured routine methods to perform their 
computations. In addition, the outputs linked to the tools 
mentioned above still have many inaccuracies, as we 
discovered when manually reviewing the vulnerabilities. 
Put otherwise, and many pertinent reports were false 
positives since they could not be verified through manual 
examination.  
 

 
 

 
 

Figure 6. Comparison of smart contracts in terms of the number and type of vulnerability warning 
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Figure 7. The results of checking the vulnerability alert in the dataset 
 
 

 
In the chart below, you can see the mean, median and 
mode for alerts with confirmation in more than one tool.  

 

 
 

Figure 8. The mean, median and mode for alerts with 
confirmation in more than one tool 

 
In Table 5, all tools that used in this section are compared. 
 

Table 5. Comparison of automatic vulnerability 
detection tools 

 

Dynamic 
checking 
coverage 

Ability 
to access 

tool 
codes 

The number of 
vulnerabilities to 
check from the 

list of 10 
covered 

 

Check 
method 

Tool 
name 

NO yes (open 
source) 

8 Intermedi
ate 
Represent
ation 

Slither 

NO yes (open 
source) 

6 Intermedi
ate 
Represent
ation 

Smartc
heck 

NO yes (open 
source) 

4 Symbolic 
Execution 

Oyente 

Yes yes (open 
source) 

8 Symbolic 
Execution 

Mythri
l 

6. Conclusion and future work 

Users can access the distributed infrastructure network 
through smart contracts in the blockchain sector. These 
agreements are crucial for information security since, in 
addition to their numerous uses, they directly impact the 
user's financial resources. Therefore, disclosing these 
contracts' vulnerabilities can be very helpful to blockchain 
application developers. In this study, the backdrop of the 
research and an explanation of a few technical words used 
in the field of blockchain technology were covered, along 
with an introduction to the issue and its significance.  

In this study, the current vulnerabilities were 
thoroughly described, with real-world examples and 
practical solutions that were provided to fix them. 
Additionally, a statistical analysis of 100 active Ethereum 
smart contracts was done using the average results from 
four static security analysis tools. The Investigation's 
findings highlight the significance of the problem while 
also showing that several security weaknesses like 
arithmetic problem in the smart contracts under 
consideration recur. This represents a common response 
from developers to smart contract vulnerabilities. One of 
the primary causes of these problems in smart contracts 
may be the high complexity of large smart contracts and 
the developers' unfamiliarity with standard practices. With 
more contracts being evaluated and more (or more 
accurate and powerful) technologies being used, it is 
evident that the results will be more accurate. As a result, 
in further works based on this research, the number of 
vulnerabilities that have been identified would be raised, 
and testing can be carried out on a more considerable 
number of smart contracts. In addition, new automatic 
tools with various solutions are constantly being presented 
due to the spirit of active communities in this field. Future 
work should examine these tools' capabilities to finally 
identify why smart contract developers fail to pay 
attention to some widespread vulnerabilities. Better 
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training alternatives or ways to make smart contract 
programs less complicated for developers might be 
investigated further. 
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