
EAI Endorsed Transactions
on Internet of Things Research Article

1

Major vulnerabilities in Ethereum smart contracts:
Investigation and statistical analysis

4, Qin Xin3, Rajeev Kumar*,2Mahdi Bahaghighat, 1Mohammad Pishdar

1Computer Engineering Department, Bu-Ali Sina University, Hamedan, Iran

2Computer Engineering Department, Imam Khomeini International University, Qazvin, Iran
3Department of Computer Science and Engineering, Delhi Technological University, Delhi, India
4Faculty of Science and Technology, University of the Faroe Islands, Faroe Islands

Abstract

The general public is becoming increasingly familiar with blockchain technology. Numerous new applications are made
possible by this technology's unique features, which include transparency, strong security via cryptography, and
distribution. These applications need certain programming tools and interfaces to be implemented. This is made feasible by
smart contracts. If the prerequisites are satisfied, smart contracts are carried out automatically. Any mistake in smart
contract coding, particularly security-related ones, might have an impact on the project as a whole, available funds, and
important data. The current paper discusses the flaws of the Ethereum smart contract in this respect. By examining
publically accessible scientific sources, this work aims to present thorough information about vulnerabilities, examples,
and current security solutions. Additionally, a substantial collection of current Ethereum (ETH) smart contracts has
undergone a static code examination to conduct the vulnerability-finding procedure. The output has undergone
assessments and statistical analysis. The study's conclusions demonstrate that smart contracts have several distinct flaws,
including arithmetic flaws, that developers should be more aware of. These vulnerabilities and the solutions that can be
used to address them are also included.

Keywords: Blockchain Security, Smart Contract Security, Cryptocurrency Security, Smart contracts Attacks

Received on 14 02 2024, accepted on 17 12 2024, published on 18 12 2024

Copyright © 2024 M. Pishdar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetiot.5120

*Corresponding author. Email: bahaghighat@eng.ikiu.ac.ir

1. Introduction

Blockchain is a kind of distributed database that combines
data replication with chain-based cryptography to offer
distribution, high security (because of encryption and
increased availability), and transaction transparency.
Blockchain technology has gained popularity in recent years
among programmers, IT firms, and even users of virtual
worlds as a leading solution for building distributed
databases and employing collective agreements. Multiple
networks have been made available to the general public as
a blockchain platform following the technology
competitions and the presentation of various blockchain
solutions in line with the better development of applications.
We can list some of the most well-known of these networks

as Bitcoin, Ethereum, Solana, and Avalanche. To offer their
users better services, each blockchain has published a
variety of protocols in this area. We might mention different
consensus systems between the nodes of a distributed
network of information as examples of these protocols [1-3].

Several blockchain projects have created a middle
and high-level layer as a user interface for developers after
developing the necessary hardware platform and
communication protocols. This work will make it easier for
blockchain network developers to create a wide range of
applications and handle the intricate technical and
specialized requirements of the blockchain's foundational
layer. This platform is known as smart contracts [1-2].
Programmers can use data structures, functions, and
different object-oriented systems in smart contracts, as well
as a number of unique functions and libraries that are
accessible over the blockchain network. In other words, they

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:bahaghighat@eng.ikiu.ac.ir

M. Pishdar et al.

 2

may quickly record information or query it on the
infrastructure blockchain network using the appropriate
technologies [2-4].

The automatic execution of smart contracts without
human interaction is another aspect. It will be feasible to
execute it if specific requirements are given for its operation
in the blockchain network. Any programming error the
developer makes can impact the application program, user
data, financial resources linked to the program, and even the
users' financial resources. A smart contract flaw can
occasionally impact the blockchain network infrastructure
[2-5]. Smart contracts feature a number of security flaws,
some unique to this kind of network and some derived from
broader ideas and applied to this particular kind of
technology [6-9].

One of the first and most active blockchain
networks is Ethereum, which powers smart contracts using a
unique programming language called Solidity. It is why this
study's focus is on Ethereum and the aforementioned
language [10].

After reviewing related literature for this study, we
concluded that the following questions still require a
response. The current research has attempted to answer
these questions in this regard.

• Which particular security flaws exist in smart
contracts?

• What is a thorough description of these circumstances
that includes examples?

• Is it possible to classify vulnerabilities?
• What methods are available to address these

vulnerabilities?
• Which vulnerabilities are verified through the use of

various techniques for static code analysis and a
comparison of the outcomes in smart contracts?

• Do these vulnerabilities occur more frequently in some
smart contracts than others? Or are some more
prevalent?

For this investigation, a huge variety of sources were
initially examined. The results were made to attain
sufficient value and comprehensiveness by analyzing a
pruning operation about the Ethereum (ETH)
blockchain network, the unique smart contract
vulnerabilities, and the Solidity programming language.
The second stage involved looking for flaws in 100
smart contracts active on the publicly accessible
Ethereum network until the study time, the number of
major transactions, and the financial resources
associated with four static code review tools. After
evaluation and agreement, the outcomes were presented
as a statistical analysis of the outputs. An extensive
investigation of the specific Ethereum smart contract
vulnerabilities has been attempted in this study. The list
below shows the main innovations of this research.
• A thorough examination of particular Ethereum

smart contract security flaws with pertinent
examples and solutions

• Using several automatic tools to perform static
analysis on a collection of smart contracts and
provide statistical analysis of vulnerabilities found.

• Establishing a category for smart contract
weaknesses.

• A description of fundamental blockchain ideas and
comparison data

The smart contract security problem inspired us to write this
paper. After creating smart contracts, many developers
become aware of security issues, but because of their
unchangeable structure, they must construct a new contract
in order to address them. This is quite expensive. We have
attempted to review the most significant issues and current
solutions in this study by looking at the security issues with
smart contracts and statically analyzing the codes of a
sample of them. To determine the status of these
vulnerabilities in actual contracts, we additionally analyze a
set of contracts' weaknesses in terms of static code review.
The rest of this paper organized as follows:

Section 2 describes related works. Section 3 introduces
known vulnerabilities and their detection process, and also
covers countermeasures. Based on the flaws described in
Section 3, a statistical analysis of a dataset of Ethereum
smart contracts has been presented in Section 4. Conclusions
and recommendations are included in Section 5.

2. Related works

Related work falls into one of three categories:

• Category 1: Research that only addresses one or a

few specific vulnerabilities does not provide a
comprehensive view of the security vulnerabilities of
smart contracts.

In [11] Wöhrer and his colleagues examined six security
patterns in Ethereum smart contracts. Of course, it should be
highlighted that these instances use the same smart contract
security flaws that are described in this study in a different
form. In [12], the researchers investigated re-entrancy
vulnerability in a data set of smart contracts. This review
consists of two review sections with several automated tools
and manual reviews. According to the research results, the
difference in these cases is very high, and this shows that
automatic tools have many false positive reports. In [13],
researchers have introduced various possible vulnerabilities
in smart contracts. In this research, a wide range of more
general vulnerabilities from the level of smart contracts have
been proposed. Failure to provide examples and solutions
for vulnerabilities is one of the problems of this research.
Researchers in this study have also investigated some
vulnerability detection methods.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

3

• Category 2: Research that covers a decent number
of existing vulnerabilities but does not include
providing solutions or examples in sufficient detail.

Researchers have presented nine security vulnerabilities in
reference [14] without offering a fix or outlining the
detection mechanisms in these situations. Then, False/True
positive and False/True negative criteria were developed to
evaluate the abovementioned vulnerabilities. Without
discussing the fix, researchers in research [15] published a
list of Ethereum smart contract vulnerabilities (some briefly
and others in detail). After assessing a vulnerability and
offering a solution, they covered several automatic checking
technologies. In [16], researchers created a dataset of
Ethereum smart contracts and labeled its vulnerabilities with
the outputs of five automatic detection tools. There are no
descriptions of vulnerabilities or recommendations for
solutions in this study. Furthermore, many of these contracts
are no longer in use because they have expired. The
research's methodology entails scanning a set of smart
contracts that were amassed by another study [17] and
classifying the data according to the results. In [18], the
research method served as the study of publicly available
scientific sources and their elimination to achieve the
research objective. With a sample contract and very brief
explanations. Researchers outline three areas of smart
contract weaknesses in [19]: blockchain, code, and
Ethereum virtual machine. In this approach, some
vulnerabilities are described with examples, while in others,
merely mentioning the subject is sufficient. It should be
highlighted that no remedy was discovered in this study, and
other more general and relevant smart contract
vulnerabilities have also been suggested. In the research
[20], the researchers have investigated a wide range of
vulnerabilities related to smart contracts in the form of a
general classification in terms of the impact and severity of
the vulnerability. Of course, many of these cases are not
specific to smart contracts, and a wide range of software
also faces them. Limited explanations in describing
vulnerabilities, examples and related solutions are another
feature of this research. Researchers have also examined
developers' views and provided some general solutions for
diagnosing security problems.

• Category 3: Research that has concentrated more on

static code analysis has not taken any action to
improve the accuracy of the static analysis output or
statistically assess the findings, in addition to not
giving enough details about each vulnerability.

The study's authors [21] have also looked at thirteen other
smart contract weaknesses and given corresponding
solutions, limited to the Ethereum blockchain and following
the current weaknesses through the review of English-
language scholarly sources. An overview of vulnerability
detection tools and their comparison was then completed. In
the study [22], the researchers presented, reviewed, and
contrasted the techniques for identifying these

vulnerabilities in static and dynamic methods (the research's
primary focus) after providing a very brief description of 11
major smart contract flaws. In the research [23], the
researchers have investigated a set of Ethereum smart
contracts (related to the SmartBugs tool) with nine
automatic static vulnerability-checking tools. In this
research, only the warnings related to automatic tools have
been investigated, and no proper effort has been made to
increase the accuracy of the results. For this reason, the
number of vulnerable contracts is reported to be very high.
In the research [24], after pointing out the vulnerabilities of
smart contracts, the researchers introduced the available
automatic detection tools and categorized and compared
them. In this comparison process, things such as the speed
and accuracy of diagnosis, the amount of error in diagnosis,
and the types of interfaces that can be used have been
examined. According to the research methods utilized in
three studies [16,24,25], valid scientific papers were found
through an academic search, and they were then culled
based on the requirements of the study questions.
The second and third category studies may not be able to
provide a proper view for the reader due to insufficient
information. In the third category, the accuracy of the results
can also be very poor because the output of error tools is
usually accompanied by many erroneous reports. Therefore,
it is necessary to provide appropriate analyses and sufficient
information in addition to paying attention to the issue of
increasing accuracy.

3. Research background

Some useful and crucial concepts related to smart contract
vulnerabilities are provided in this section.body.

3.1. Blockchain network

Blockchain is a decentralized digital collective agreement
that uses one-way encryption technology or hashing to stop
information from being changed or manipulated. Due to the
limited public access to this disseminated information, this
network also exhibits transparency. These networks
maintain duplicate copies of transaction information—
information recorded in the network and made up of
numerous blocks—between dispersed nodes. The likelihood
of data loss will be significantly decreased in this approach.
Some blockchain terminology is defined in the sentences
that follow [8], [24-25].

3.1.1. Blocks
The blockchain network collects transactions in the form of
blocks over a predetermined period. The following data [24-
25] is saved in a block next to the transactions mentioned
above :
Magic number: used to identify a block as a certain digital
currency's network component.

• Block header: provides details about the block.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

M. Pishdar et al.

 4

• Block size: specifies the maximum block size for
writing a given data .

• Transaction Counter: A transaction counter is a
number that indicates how many transactions have
been stored in a block .

• Transactions: Lists each transaction that took
place within a block.

• Version: Displays the current version of the digital
currency.

• Preceding block hash: Contains the preceding
block's header's hash (an encrypted number) .

• Root Merkle Hash: The current block comprises
the hash codes of the transactions in the Merkel

tree, a tree structure designed to minimize storage
capacity and transaction calculations.

• Time: includes the time stamp of the blockchain
block submission .

• Bit: Contains information describing the
complexity of finding the nonce number and the
difficulty of the target hash function .

• Nonce: A random number that the miner must find
to validate and close the block.

An abstract block structure from the blockchain network is
shown in Table 1 .

Table 1. Block structure [21]

3.1.2. Validator
According to the decentralized collective consensus
protocol, the systems in the blockchain network are in
charge of validating and logging network transactions.
The network validators are rewarded for completing these
duties. It should be highlighted that any actions taken by
validators that violate the blockchain's rules are detected
and removed by the decentralized collective consensus
protocol [25-27].

3.1.3. Consensus protocols
In the blockchain, a decentralized consensus protocol
allows different nodes to agree on a network element
(blocks). The blockchain network's nodes all concur to
record the same data according to mutual understanding.
Without the assistance of a centralized organization, this
activity is carried out decentralized. We will look at the
most well-known decentralized collective consensus
protocols introduced [25-26].

• The POW (Proof of Work) protocol pits high-
powered systems against one another in a race to
crack tricky computational riddles. The first
miner to find the solution, or, to put it another
way, a hash compatible with the prior blocks,
sends it to the network for confirmation by other
nodes. It is better to describe the hashing method

to comprehend this problem briefly. There is a
form of one-way encryption used in the hashing
method. This means that if X is present, a
specific hashing technique can be used to quickly
determine the value of h(x), although this
problem requires a lot of computation and is
expensive. The POW protocol reward miners to
use trial and error to develop h(x) solutions
compatible with the earlier blocks. This allows

the miner who solves h(x) to broadcast it to the
network first, where other miners can quickly
verify it and validate its accuracy [26-28].

• The POS protocol (proof of stake) eliminates the
prior form's flaw of requiring high processing
costs and electrical resources from the verifiers.
One of the network nodes is selected randomly
(in a transparent procedure), with no longer any
competition amongst the block verifiers, to
validate the block. People with a higher amount
in these two parameters have more chances in
this selection process, which is based on the
number of shares staked and the length of time
the staked capital is locked. Age, a protocol
parameter that describes the nodes' waiting time,
is present in this protocol. This value will be zero
if a validator is chosen to confirm the block,

0200000 Block Version

b6ff0b1b1680a2867a30ca44d34d9e8910d334be
b48ca0c000000000000000

Parent Block Hash

9d10aa52ee949386ca9385695f04ede270dda208
10decd12bc9b048aaab31471

Merkle tree Root

24d95a54 Time Stamp

30c31b18 nBits

Fe9f0864 Nounce

Transaction Counter
TX1 TX2 TX3 ……………………….TXn

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

5

increasing the likelihood that a fair procedure
will involve waiting for validators. A validator
receives a bonus in the form of the network's
native currency after validating a block and
submitting it to the network [26-27], [29].

• Proof-of-authority protocol: This protocol, which
aims to utilize fewer computational resources
than the POS protocol, is an alternative. This
approach bases agreement on Proof-of-authority.
This means that validators are chosen using a
strict method, and then the accuracy of those
validators is evaluated using a monitoring
standard. A validator loses his validity and is
removed from the system if his performance falls
short of the required level. As a result, the right
to validation is directly impacted by standard
compliance. The identity of the validator, his
history, and the amount of investment are all
examined during the selection process [30-33].

• The enhanced POS Consensus Protocol is DPoS
(Delegated Proof of Stake). By putting their
tokens (the principal infrastructure blockchain
token) into an investment pool, users in this
system can cast votes for validators which will
approve and create the block. Naturally, more
deposits increase power in a way that prevents
the system from being dominated by one or a
few actors. Depending on the proportion of
tokens invested, the validator will distribute a
portion of the profit to the voters if the block is
written correctly. By garnering more votes, more
trustworthy and accepted validators are given
more authority to change the block. It should be
highlighted that only a few validators can vote
and are chosen to write blocks. Naturally, this list
is flexible [34-37].

• PBFT protocol (Practical Byzantine Fault
Tolerance) Even with faults in specific dispersed
nodes, this system may reach a consensus.
Assume that the PBFT protocol allows a
distributed system with 3f+1 nodes to have a
maximum of error nodes (Byzantine nodes). In
other words, when 2f+1 nodes agree on a
message, the system as a whole will likewise
agree. In this system, the process of republishing
and confirming these messages in the form of a
"preparation message" in the network is carried
out by a set of pre-defined messages. These
messages are called the first preparation message
that is transmitted from a node called Primary
Node to several additional nodes called
Replicator. Validator nodes can advertise their
ability to write the current block by broadcasting
the "confirmation" message after receiving 2f+1
messages compatible with their sent item. It is
done by rebroadcasting preparation messages.
When the first node receives 2f+1 compatible
messages of this type, It sends the confirmation
message in the following step, known as the

commitment step, writes the block, and modifies
the system state [38-40].

The comparison of the blockchain consensus protocols is
shown in Table 2 [41-43]. Table 2 indicates that every
methodology has pros and cons of its own. Some of them
have been improved from this perspective and
outperformed POW in terms of speed, energy
consumption, and scalability. Of course, in these cases,
security weaknesses, power distribution, or increased
communication overhead are seen.

3.1.4. Blockchain generations
In general, three different generations are defined in the
blockchain. In the first generation (the first form of
blockchain), network miners expended much energy and
money to confirm decentralized transactions without a
central processing unit. A prolonged process that was
completed peer-to-peer and without the use of
middlemen. The Bitcoin cryptocurrency project, of
course, had fewer modifications from this generation than
the first, but second-generation blockchains have
undergone major alterations since the first generation.
Deploying apps with smart contracts and asset
management on the blockchain became possible with the
second-generation blockchains. The second generation's
key features also include the ability to issue blockchain
shares (along with money and smart wallets). In
comparison to the prior generation, transaction speeds
also significantly improved in this generation [44-48].

Low scalability and security issues were caused
by high prices and slow speed. For this reason, new
blockchains emerged to solve this problem under the title
of the third generation. The critical features of this
generation of blockchains are simplicity in data access,
better scalability, and higher speed. The third generation
of blockchains made it possible for blockchains to
connect with one another, which was also impossible in
the prior two generations. The layer definition is another
characteristic of the third generation of blockchain
technology, which has considerably increased both the
speed and security of the system [44-46].

3.2. Smart contracts

On the blockchain network, smart contracts are deployed
and carried out as automated applications that are
programmed. If the required conditions (described in the
code) are established in the blockchain network, this
contract can operate autonomously. Naturally, smart
contracts must pay a GAS fee or network usage fee to
register information in the network to prevent excessive
consumption of blockchain network resources. The
information in the blockchain network is disseminated
among all users, as was indicated in the previous section.
It is no longer possible to update information once it has
been published. In other words, once a smart contract has
been executed and has reached its expiration, it cannot be

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 6

stopped. Gas fees are particularly important in reducing
resource usage. To put it another way, they are employed
to stop malicious users from abusing the blockchain
network's limited resources by creating fictitious
transactions to take up available memory, processing
power, and other resources. Additionally, by using this
strategy, network management can get financial resources
that they can utilize to grow, enhance performance, or
better administer the network. [1-2], [5], [49-50].

After programming in the blockchain and using
the VM (or executive virtual machine), the codes for a
smart contract are performed. Then, to interact with it,
users must carry out a specific transaction. With the aid of
this transaction, users sign the smart contract and validate
its usage within the blockchain network using their

private key and asymmetric encryption. After the smart
contract has been signed and verified, users can interact
with it and use it (for instance, purchasing the tokens
provided by the smart contract using tokens associated
with the native blockchain network). Usually, specialist
programming languages like Solidity or Serpent are used
to create smart contracts. Of course, common languages
such as Python are also active in this field. These kinds of
languages offer particular functionality utilized by
blockchain in addition to the standard characteristics
provided by programming languages (concepts like
variables, functions, classes, computing operations, and
strings) [1-2], [5]. Some of the most effective uses for
smart contracts in use today are depicted in Figure 1.

†. Some of the most important applications of smart contracts today [51]Figure 1

† All figures generated by Edraw Max Tool

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 7

Table 2. Comparison of consensus protocols

Table 3. shows the characteristics of different blockchain generations comparatively

Disadvantages Advantages Consensus
Protocol

 • High energy consumption
 • The need for high-processing equipment
 • High cost
 • The possibility of network control falling into the hands of a specific group,

especially in smaller networks
 • Ability to control the network by a specific group

 • Moderate scalability

• High network security
• Creating more employment

POW

 • The possibility of greater vulnerability
 • Increase concentration
 • Ability to control the network by a specific group
 • Moderate scalability

 • lower cost
 • Less energy consumption
 • Higher speed

POS

• Vulnerability to some network attacks due to increased communication • Cost optimization and energy
consumption
• Increased processing speed

DPOS

 • Hard implementation
 • Good protection against denial of service attacks
 • Less distribution

 • Lower transfer cost
 • Good security
 • High scalability

POA

 • High communication overhead
 • Vulnerability to some network attacks due to increased communication

• vulnerable to denial of service attacks
 • High communication complexity

 • Low energy consumption
 • High processing speed
 • Low cost

PBFT

Disadvantages Sample projects Advantages Blockchain
High cost, power consumption, low
speed, poor scalability, and security
issues

Bitcoin Distributed transactions without
intermediaries

Generation 1

Low scalability, security issues, lack
of proper communication between
blockchains

Ethereum, Ethereum Classic, and
Neo

Better speed than 1st generation,
distributed, transactionless
transaction, smart contracts, smart
money, and wallet.

Generation 2

Security issues, privacy issues, and
lack of global policies .

Cardano, Algorand Distributedness, transaction
without intermediaries, smart
contracts, money and smart
wallet, inter-blockchain
communication, simplicity in data
access, layered structure, better
security, and higher speed .

Generation 3

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 8

3.3. Solidity programing language

One of the most well-known programming languages for
smart contracts is called Solidity. This high-level, object-
oriented language is compatible with Ethereum, Solana,
and Binance Smart Chain, among other blockchains. In
the Solidity programming language, a smart contract is
made up of both data and code. Copies of the smart
contract are placed on different network nodes, and it is
given a public address (connected to public key
cryptography). After that, users register their transaction
for network execution by calling the contract using this
address. Solidity smart contracts are carried out on the
Ethereum network's virtual machine. With vast memory
and processing resources, this virtual machine is a full
Turing computer for mathematical calculations [16], [52-
53].
3-4. Security Vulnerabilities
A vulnerability in smart contracts refers to a kind of
security weakness that can satisfy the three rules in the list
below. The existence of vulnerability will also be violated
if any one of these three situations does not present [54]

• a flaw in the system that puts information
security at risk.

• The potential for an attacker to access the
pertinent defect

• The potential for an attacker to exploit that
defect.

4. Vulnerabilities in smart contracts

In this section, we present the vulnerabilities in smart
contracts along with the appropriate countermeasures.
This section mostly addresses smart contract
vulnerabilities. Things that are universal from a broader
idea have not been included.

4.1. Re-entrancy vulnerability Check

4.1.1. Introduction of reentrance vulnerability
Reentrance vulnerability describes an external contract's
ability under a cyber attacker's command to call contract
functions. It may result in the depletion or intrusion of
Ethereum (smart contract inventory). In other words, this
vulnerability occurs if a smart contract uses the call,
share, and send functions to transfer flow control to
another smart contract, then updates the status of the
primary contract using the callback function (in this case,
the smart contract status may be "Not completed"). The
smart contract is incomplete under the circumstances
above (the callback function does not return the expected
value), and the calling contract may run further smart
contracts or functions based on the written codes. Pay

attention to Sender's smart contract code [7] ,[55-57] for a
better understanding.

Code snippet 1: Reentrancy Vulnerability

pragma solidity >=0.4.22 <0.6.0;
contract Sender {
uint public amount;
address payable public sender;
address payable public receiver;
 constructor() public payable {
 sender = msg.sender;
 amount = msg.value;
}
function send(receiver) payable {
receiver.call.value(value).gas(20317)();
}
}
contract Receiver {
uint public balance = 0;
function () payable {
balance += msg.value;
}
}

Ethereum is transmitted to the recipient address, and the
callback function is activated when this contract's send
function is used. To implement this function, the average
consumption of GAS is 2300 [58], which is received even
in the incorrect implementation. While the amount of gas
in the transfer and call functions is altered or left
unrestricted, they are similar to this function in other
ways. It should be noted that GAS is not deducted in the
transfer function when a problem occurs. code snippet 2
has a related vulnerability [55].

Code snippet 2: Reentrancy Vulnerability 2

function transferBalance(address receiver, uint
amount)
public {
require(balances[msg.sender] >= amount);
receiver.transfer(amount);
/* flow control transferred before the sender’
s balance is updated before an event
is emitted. Potentially the start of
trouble. */
balances[receiver] -= amount;
LogTransactions(msg.sender,receiver, amount);

}
As can be seen, this contract's balance is transferred
through the transfer function. After executing this
function, the user's inventory status will be updated (in
actuality, the contract status will change). By calling this
method and modifying the callback function in this
scenario, the malicious smart contract can empty the
Ethereum balance of the smart contract [55]. When two
functions or smart contracts share a state, a reentrancy
attack can still succeed. For instance, the code below
demonstrates this. Because of the value of balance[msg.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

9

Sender] is not set to zero in this contract after the
reentrancy attack. The transfer function in the code
snippet 3 can use this variable to send additional
Ethereum by calling the call function in the withdraw
function [55]. The general layout of the reentrancy assault
is depicted in Figure 2.

Code snippet 3: Reentrancy Vulnerability 3

mapping (address => uint) private balance;
function transfer(address to, uint amount) {
if (balance[msg.sender] >= amount){
balance[to] += amount;

balance[msg.sender] -= amount;
}
}
function withdraw() public {
uint amount = balance[msg.sender];
require(msg.sender.call.value(amount)());

/* At this point, the caller’s code is
executed and can call transfer() */
balance[msg.sender] = 0;

Figure 2. The overall structure of the Reentrancy attack [59]

4.1.2. The Solution to Reentrancy vulnerability
Changing the status or value of the influencing variables
should be transferred before invoking the call, transmit, or
send functions, as was stated, to address this issue. The
reentrancy attack can no longer be successfully
undertaken in this situation [55].

4.2. Investigating the vulnerability of access
control in smart contracts

4.2.1. Access control vulnerability
User roles and privileges within an application are
restricted using access controls. This notion in smart
contracts can be connected to governance and crucial
logic, including token issuance, proposal voting, money
withdrawals, suspension and contract upgrades,
ownership changes, etc. The access control mechanisms
used by intelligent contracts have some flaws. The
following can be listed as weaknesses among them [7],
[9], [60].

Non-Validation of Modifiers: In critical functions,
validating modifiers is crucial. The owner can be
changed, tokens and existence can be transferred, and
contracts can be stopped and canceled, among other
things, thanks to modifier functions. Modifiers' access
levels to key functions must be verified before use to
avoid risks like money loss or contract termination.
Incorrect Modifier names: A Modifier's name or even
the name of a function may be written differently than
what is specified in the validation library due to
programmer error. As a result, neither function nor
modifier is subject to the modifier process anymore.
Which, depending on performance, may result in a loss of
cash or a change of ownership.

 Having too many roles defined: Enabling users to have
an excessive number of roles could result in an access
control vulnerability.
Take a look at the example below for a better
understanding.An access control problem that allowed
anyone to burn Hosp tokens led to the hacking of the
Hospowise project a while back. This smart contract's

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 10

susceptible token burning function is related to the burn
function [61].

function _burn (account, amount); public; burn(address
account, uint256 amount);

Put another way. A hacker might buy any token and then
use the public write function. This function burns all of
the Hospo tokens on the UniSwap exchange. The attacker
can now trade his tokens for the Ethereum cryptocurrency
because the token's value has increased [57].

4.2.2. Access control vulnerability solution
The process needing access control permissions must be
reviewed to address this kind of vulnerability. This can be
used by smart contract programmers with specialized
access management libraries. The name of one of these
libraries is OpenZeppelin. This library's Openzeppline's
Ownable subsection offers modifiers like "only owner" to
ensure that a function is called by its owner. It should be
noted that other access control management sub-sections
in OpenZeppelin employ modifiers or functions like
"hasRole" to determine whether a user has the authority to
invoke a function [62]. There are also a few appropriate
models for controlling access in smart contracts [63].

4.3. Investigating arithmetic vulnerabilities

4.3.1. Introduction of arithmetic vulnerabilities
Smart contracts are extremely vulnerable to integer
overflows. Unsigned integers are typically used in smart
contracts, and most developers work with simple integer
types (often only signed integers). Many code paths can
become carriers for information theft or service denial
when there is a buffer overflow [9-10], [64,65].
The below smart contract's ability to remove balances
serves as a vivid illustration of this vulnerability. This
function should permit withdrawals if the balance is
greater than zero (and more significant than the minimum
transaction cost). It is true even though it is possible to
withdraw larger sums of money via the integer overflow
vulnerability. In other words, the withdraw () function's
check result is always positive, allowing the attacker to
withdraw more than the permitted amount. Consider the
following function [65] to gain a better understanding of
the problem.

Code snippet 4: Arithmetic vulnerabilities

function withdraw(uint _amount) {
 require(balances[msg.sender] - _amount > 0);
 msg.sender.transfer(_amount);
 balances[msg.sender] -= _amount;
}

This method's sole criteria to determine whether the
function caller has permission to withdraw funds balance
is [msg. Sender] - _amount > 0. a procedure that enables

free withdrawal in case of a buffer sequence vulnerability
and can be bypassed.
The code snippet 5 has an arithmetic flaw and is
connected to the Beauty Chain blockchain. A susceptible
function named batch transfer is employed in the

Code snippet 5: Arithmetic vulnerabilities 2

BeautyChain smart contract, and it is in this function that
the vulnerability mentioned above exists [66].

function batchTransfer(address[] _receivers, uint256
_value) public whenNotPaused returns (bool) {
uint cnt = _receivers.length;
uint256 amount = uint256 (cnt) * _value;
require(cnt > 0 && cnt <= 20);
require (_value > 0 && balances[msg.sender] >=
amount);
balances [msg.seneder] =
balances[msg.sender].sub(amount);
for (uint i=0; i<cnt; i++) {
balances[_receivers[i]] =
balances[_receivers[i]].add(_value);
Transfer(msg.sender, _receivers[i], _value)’
}
return true;
 }
}

The local variable value code determines the sum by
multiplying the cnt and _value variables. A 256-bit
integer may be used as the second parameter in this
multiplication, designated as _value. Due to the
batchTransfer() function's ability to accept two inputs, a
hacker might overflow the amount variable and set it to
zero by passing an extremely large number in the _value
parameter. All checks on colored lines will succeed by
setting this variable to zero, and the subsequent line's
subtraction won't matter. Finally, the code will dump
numerous recipients' balances with a very big value
without incurring any fees to the attacker's account [66].
4-3-2. Solution of arithmetic vulnerabilities
Rewriting the susceptible sections of the code using the
supplied libraries is a security fix for this vulnerability.
SafeMath is one of these libraries, and it can be used to
address arithmetic flaws. The safe functions add sub, mu,
and div were used to construct the library's four core
activities [67]. After including the SafeMath library in
your smart contract, swap out all four major operations
with the functions mentioned above to address the
vulnerability. These alterations are listed below.

Code snippet 6: Arithmetic vulnerability Solution

a * b becomes a.mul(b)
a / b becomes a.div(b)
a - b becomes a.sub(b)
For example, the add function in this library is as follows.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

11

function add(uint256 a, uint256 b) internal pure returns
(uint256) {
 return a + b;
 }

You can see that the result is returned as a pure function
and uint256. It is guaranteed not to read or modify the
status information in the pure function.

4.4. Not checking return values in low-level
calls

4.4.1. Challenge return values in low-level calls
The availability of low-level Solidity functions like call(),
call code (), delegate call (), and transmit() is one of the
aspects of programming languages for smart contracts. In
smart contract coding, it is often preferable to employ
alternatives to low-level calls whenever available.
Incorrect calling of these functions could result in the
contract's security being jeopardized. These functions in
Solidity behave entirely differently from the rest when it
comes to accounting for errors. In other words, the error
in a function of this kind is not even broadcast and does
not result in a full return from the present execution. In
other words, these functions only ever yield the logical
value false, after which the Ethereum virtual engine is still
executing the code. Consider the example in [9], [68] to
better understand the problem.
Using the recipient's wallet address is the most
straightforward approach to creating a contract to send
Ethereum to another address in this blockchain network.
The following conditional check (Code snippet 7) is a
game component on a board where the winner receives
money in the form of Ethereum digital currency [68].

Code snippet 7: Not checking return values in low-level
calls

if (gameHasEnded && !(prizePaidOut)) {
 winner.send(1000); // send a prize to the winner
 prizePaidOut = True;
}

The issue is that the sending procedure—for instance, the
send function in the Code snippet above—might not
succeed. The prizePaidOut variable will be set to True,
and the winner won't get any money. This value shouldn't
be set to true because the correct transfer has not yet been
made. The leading cause of this problem is that the
programmer neglected to examine the send function's
output. There are two situations in which the
winner.send() function might not work as intended. First,
an exception is made when the winning address relates to
a contract rather than a user account. In this instance, the
failure to mail the award is the winner's responsibility
because they provided an erroneous address. In the second
scenario, other contract programs (which have already
been executed in the transaction) can use a finite resource

called "Callstack" that is available on the Ethereum virtual
machine. This operation will fail (and the winner's award
will be forfeited) if this resource is used up before
transmitting Ethereum to the winner's address. The smart
contract must be appropriately secured to protect the
winner. It should be mentioned that depending on the type
of smart contract code, the results of this vulnerability
may be extremely dangerous. For instance, by altering the
values of the variables without providing any inventory, a
cyberattacker could purposefully improve his access level
to the smart contract [68-69].

4.4.2. Resolving return values in low-level calls
Two ideas are mentioned below [68] as a means of
addressing this vulnerability:
Examining the results of low-level functions: This method
uses vulnerable functions to check the output linked to
vulnerable spots before using it if there are no issues. The
following code snippet fragment provides a viable
solution for the previously mentioned example using the
same methodology.

Code snippet 8: Not checking return values in low-level
call solution

if (gameHasEnded && !(prizePaidOut)) {
 if (callStackIsEmpty()) {
 if (winner.send(1000)){
 prizePaidOut = True;
}
 else throw;
} else throw;
}

In this example, the stack's emptiness is verified using the
callStackIsEmpty method, and only if there are no issues
is the sending procedure started and the prizePaidOut
variable set. You should modify your code to ensure that
the outcomes of unsuccessful sending are distinguished
from other scenarios [68].
Utilizing exceptions Making use of exceptions is another
method to address this problem. By specifying an
exception in this method, the programmer can take control
of unusual circumstances, including the results of not
inspecting the return values in low-level calls. In other
words, when the circumstances mentioned above occur,
the program's execution flow departs from normal mode,
and the code relating to the exception is run.

4.5. Investigation of denial of service
attacks

4.5.1. Denial of service attacks
A denial of service attack is one in which the attacker
sends the victim's system numerous input requests to deny
service to the main users. Smart contracts may be
permanently shut down following a denial-of-service

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 12

assault, in contrast to web services that can occasionally
recover from these attacks. Denial of service attacks can
be implemented in smart contracts in a variety of ways.
The following list of instances can be listed among these
[7], [70-71].

• Malicious behavior when receiving a transaction
• Artificial increase of Gas Fee necessary to

calculate a function
• Abuse of access controls to access confidential

parts of the smart contract

Take a look at the example below for a better
understanding. The code snippet 9 relates to the
blockchain game King of the Ether, which lets players
buy access to the president through payments made in
Ethereum to other players. The access transfer process
will now fail if the other user is a smart contract, and the
stated smart contract will always have the president's
access authorization. Based on this, a denial of service
attack has been conducted due to faulty access
authorization management [70].

Code snippet 9: DOS attack

function becomePresident() payable {
 require(msg.value >= price); // must pay the price to
become president
 president.transfer(price); // we pay the previous
president
 president = msg.sender; // we crown the new
president
 price = price * 2; // we double the price to
become president
}

Additionally, the smart contract may be terminated if the
GAS Fee for a transaction exceeds the maximum amount
allowed in a block because other network transactions
will not be able to be accepted. A smart contract may
unintentionally cause it to occur, as well as online
hackers. Consider a cyber attacker who creates many
destination addresses to steal modest amounts from the
victim's smart contract. The following function is where
this kind of assault can be carried out. The code even
states that many current transactions may cause the smart
contract to break at some time, stopping all future
transactions. The function iteration in the loop is based on
the current length of the address array. It can allow an
attacker to exhaust resources by adding new return
addresses to the array [70]. Additionally, since the refund
function's transaction depends on the fixed sending
function, which has a value of 2300 GAS, it is possible to
artificially increase the GAS fee in this function.

Code snippet 10: DOS attack 2

address[] private refundAddresses;
mapping (address => uint) public refunds;

function refundAll() external onlyOwner {
// unknown length iteration based on how many addresses
participated
for(uint i; i < refundAddresses.length; i++) {
// doubly bad, now a single failure on send will hold up all
funds
require(refundAddresses[i].send(refunds[refundAddresses
[i]]))
}
}

4.5.2. A solution to Denial of Service attacks
The smart contract's codes should be securely examined,
particularly in the control discussion, to defend against
denial of service attacks (checking the actions of all
departments and access permissions). Before deployment
in the blockchain network, these codes must be rewritten
if there are any issues. Additionally, the ability to interact
with the smart contract should be limited, especially
during procedures like the withdrawal of funds, and
appropriate thresholds should be set to regulate the
volume of requests. This procedure should be carried out
within the block limit for the GAS Fee. Instead of using
the transmit() method in certain circumstances, utilizing a
transferFrom() function is preferable.

4.6. Failure to use appropriate random
numbers

4.6.1. The challenge of generating random and
pseudo-random numbers
In general, using actual random numbers is exceedingly
challenging and impossible. Cyber attackers can also
duplicate numbers and take advantage of the system,
regardless of how far this process of creating random
numbers is from reality. Despite the widespread use of
random numbers (used in many programs such as
lotteries, games, airdrops, etc.) and the direct link to
financial issues, this issue is of utmost importance in
smart contracts [7], [9]. Pay close attention to the lottery
game example below to better understand the topic—a
lottery based on random numbers where the winner
receives cryptocurrency for their prize.

The DiceGame smart contract (Code snippet 11)
serves as a prime illustration of this. The user must
estimate the smart contract's random number in this code;
if successful, he will be rewarded with one Ethereum. It is
carried out using the random() function and the
guess_the_dice() function. The random() function creates
a random number by using the previous block's block
number and the current block's timestamp [72].

Code snippet 11: Random Number Problem

contract DiceGame
{
constructor() payable{ }

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

13

function guess_the_dice(uint8 _guessDice) public {
uint8 dice = random();
if (dice == _guessDice) {
(bool sent,) = msg.sender.call{value: 1 ether}("");
require(sent , "failed to transfer");
}
}
// source of randomness (1-6)
function random() private view returns (uint8) {
uint256 blockValue = uint256(blockhash(block.number-1
+ block.timestamp));
return uint8(blockValue % 5) + 1;
}
}

Looking at the smart contract's random function, it is
obvious that a hacker could create this number using the
following function and drain the balance of the account by
guessing the winning lottery number [68].

Code snippet 12: Random Number Problem 2

function random() private view returns (uint8) {
uint256 blockValue = uint256(blockhash(block.number-1
+ block.timestamp));
return uint8(blockValue % 5) + 1;
}

4.6.2. The solution to the challenge of generating
random and pseudo-random numbers
You should not use publicly accessible and predictable
information, such as details about blocks (also known as
Onchain) in the network, to defend against this attack.
Additionally, it is preferable to generate random numbers
using the provided libraries and special functions. One of
the most crucial tools for this problem is libraries that
offer VRF (Verifiable Random Function), offered by
businesses like Chainlink. Smart contracts can produce
statistically random numbers using these libraries. With
one-way and asymmetric encryption, this method may
verify the legitimacy of the random number's creator. It
will cause anyone can identify the random numbers
produced outside of the smart contract [73-74].

4.7. Forward transaction attacks

4.7.1. The challenge of forward transaction
attacks
Transactions in the blockchain network are typically not
immediately recorded. In fact, following the registration
request, a collection of these transactions must be
compiled into a block and come to a consensus in the

network. Before choosing a block, all nodes in a network
must be informed of transaction details due to the
distributed nature of block creation. In other words, when
a node in the blockchain creates a transaction, the
pertinent information is broadcast to other nodes. After
obtaining the indicated info by nodes, they place the
transactional information in the "an unused pool"
structure. The block creator node adds transactions to the
block with the priority of the paid fee amount (the block
creator seeks more profit) after adding a sufficient number
of transactions (the size of writing a block) to this pool
[64], [75-77]. Blockchain network users can prioritize
their transactions by paying a more significant price. A
cyber attacker can exploit this problem and elevates his
transaction above other cases by charging a hefty fee for
it. In smart contracts where timing is crucial (like NFT
purchase competitions, first response competitions, etc.),
it is possible to get around other users in this fashion [58-
59]. The Findkey smart contract deserves your attention
(Code snippet 13) [78].

Code snippet 13: Forward Transaction Attack

contract Findkey {
 bytes32 public constant key =

0x564ccaf7594d66b1eaaea24fe01f0585bf52ee70852af4ea
c0cc4b04711cd0e2;
 constructor() payable {}

 function guess(string memory solution) public {
 require(key ==
keccak256(abi.encodePacked(solution)), "Incorrect
answer");
 (bool sent,) = msg.sender.call{value: 5 ether}("");
 require(sent, "Failed");
 }
}

Finding the value of a string will earn users 5 Ethereum in
this smart contract. Let's say user number 1 is successful
in figuring out this number and submits it in response to
the guess function. The hacker in the blockchain network
is currently looking at the transaction data in the "unused
pool." He can immediately register it in the blockchain
network with a greater registration charge after
recognizing the amount in the transaction relating to User
Number 1. By using the precedence of transactions in this
way, it is possible to get around user number 1 and win 5
Ethereum in its place. You can see how to generally carry
out the prior transaction assault in the Figure 3.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 14

Figure 3. How to execute the front-end transaction attack [79]

4.7.2. Solution of forward transaction attacks
The use of the Commit-Reveal method is a viable answer
to this issue. Using encryption techniques, user number 1
in the previous example sends his message locked and
immutable over the network. After registering on the
blockchain, he can unlock it. Because the attacker cannot
see the transaction information before it is registered in
the network, the forward transaction attack is no longer
viable. The Submarine Send technique is another
approach that experts have suggested to handle this
predicament. This method involves sending the smart
contract's related response to a third address in the
blockchain network, encrypted using asymmetric
encryption and viewable by the smart contract. The
transaction details will then be made available to the
smart contract by the sender, who will also disclose this
transaction to it. Using this technique prevents the cyber
attacker from seeing the transaction data in the collection
of unused transactions [80-81].

4.8. Wrong time dependency vulnerability

4.8.1. The challenge of wrong time dependency
vulnerability
The programmer may need to precisely record the time in
smart contracts to use it in the program's logic. This value
is called the time stamp. Any error in the definition of this
topic could lead to a security flaw. This issue might arise,
for instance, if the programmer utilizes a seal associated
with the most recent block in the infrastructure blockchain
network. One of the most difficult problems in this area is
distributing an accurate clock among the nodes of a
blockchain network. Therefore, the timing gap between
nodes in a blockchain network is correct.
Additionally, this value may be modified by a node or
smart contract [7], [9], [82-83]. Study the Code snippet
for the EtherLotto smart contract to gain a better
understanding of the problem [84]. This lottery
application uses the smart contract code. Users must
prepare a certain sum equal to the "competition ticket"
and deposit it into the smart contract account to take part
in this competition. Following (code snippet 14) the
generation of a random number, if its value equals zero,

the corresponding user will win the lottery. The matching
award will then be sent to his address when this occurs.

Code snippet 14: Wrong Time Dependency

contract EtherLotto {
 uint constant TICKET_AMOUNT = 10;
 uint constant FEE_AMOUNT = 1;
 address public bank ;
 uint public pot;
 function EtherLotto { ()
 bank = msg.sender ;
}
 function play() payable }
 assert(msg.value == TICKET_AMOUNT);
 pot += msg.value ;
 var random = uint(sha3(block.timestamp)) % 2 ;
 if (random == 0) {
 bank.transfer(FEE_AMOUNT);
 msg.sender.transfer(pot - FEE_AMOUNT);
 pot = 0 ;
 }
 }

The use of the block timestamp (block.timestamp) to
produce a random value in the play function is the source
of the issue in this smart contract. This timestamp is
simple to change for the node to have the desired result.
For instance, altering this number to 0 can result in the
hacker winning the lottery.

Table 4. Changing the value of amount and address

in the vulnerability of short addresses

4.8.2. Fixed the wrong time dependency
vulnerability
Regarding how to address this vulnerability, there are two
options. The first step is to adopt alternate techniques and
eliminate vulnerable timestamps. Other secure techniques,
such as Chainlink VRF, can be used to obtain the random
number for the sample in the case above. Additionally, the
timestamp can be obtained in another manner (for
instance, by using JavaScript functions like the date() and
converting it to the Unix timestamp standard or similar
libraries) before comparing the two values. According to

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

15

the application's logic, the execution should be terminated
if the difference exceeds a specific threshold.

4.9. Vulnerability of short addresses

4.9.1. The vulnerability challenge of short
addresses
In general, the Ethereum virtual machine will append
many zeros to the end of an address if it finds one shorter
than the needed length. By altering the call function
values and removing zeros from the end of the destination
wallet address, a hacker can exploit this vulnerability
[7,64,85] and make an unlawful credit withdrawal from
the susceptible smart contract account. Consider the
function Send(address, amount) to send a specific amount
of cryptocurrency (amount) to the account associated with
the address variable in the Ethereum blockchain network
to better understand the topic. Below is a sample call to
this function [64].
Send(0x1234...67890, 10).

The problem is how to deal with and manage the
address and unit values in the smart contract before
sending. Assume that these items are assigned values of
20 and 32 bytes in memory, respectively. Now, if a cyber
attacker, instead of sending 20 bytes of the address, sends
19 bytes after removing the trailing zeros. With this, the
API adds zeros to the amount section after coding. The
binary equivalent of the address and the value are placed
in the memory in a serialized form. A zero in the memory
is added to the address part again (the zero corresponding
to the beginning of the amount), but the amount part can
be changed to multiples of the desired amount. Table 4
shows how this matter is. According to these values and
the limitation in the number of zeros on the left side of the
amount value in the memory, it is possible to add two of
these zeros to the address value and turn the amount value
into a multiple of the original request.

4.9.2. Short address vulnerability solution
Simply include a check function in the smart contract to
address this problem. The size of the user's input is

verified in this function. In the smart contract for the
NonPayloadAttackableToken, in code snippet 15 an
illustration of this review is provided. The transfer
function's expectations for this checking are two 32-byte
parameters and a 4-byte method signature [86].

Code snippet 15: Short Address Attack

contract NonPayloadAttackableToken {
 modifier onlyPayloadSize(uint size) {
 assert(msg.data.length == size + 4);
 _;
 }
 function transfer(address _to, uint256 _value)
onlyPayloadSize(2 * 32) {
 // Do stuff
 }
}

4.10. Inventory lock vulnerability

4.10.1. Inventory lock vulnerability challenge
This vulnerability exists if it is feasible to deposit a
balance of local blockchain network tokens to the smart
contract address without being able to withdraw them. In
fact, in the mentioned case, the deposit balance is locked
to the contract, and the user can no longer withdraw it.
The user may have forgotten to declare the withdrawal
function, which can lead to this [9], [87-89]. Pay close
attention to the code snippet 16 [90] to better understand
the problem.

Code snippet16: Inventory lock vulnerability

contract Market {
 function deposit() payable {
 }

 function transfer() {
 uint y = msg.value;
 }
}

In this contract, there is only a deposit function, and if the
token is deposited to the relevant address, withdrawing is
no longer possible.

4.10.2. Inventory lock vulnerability solution
The answer to this vulnerability is simple—you must
build a function that will withdraw the deposit balance
using the program's logic.
The proposed vulnerabilities are organized into categories
in Figure 4. The number of these vulnerabilities can
undoubtedly rise. Additional categories, such as [91], are
also offered. Unlike previous examples, the proposed
taxonomy places the vulnerabilities in smaller groups and
does not stop with a list of cases.

Amount and address in memory Condition

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f00
0…001010

Normal
Condition

0x3bdde1e9fbaef2579dd63e2abbf0be445ab93f
00…0101000

Execution
of the
attack

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 16

5. Statistical investigation of
vulnerabilities in a dataset of Ethereum
smart contracts

In this section, descriptive statistics are employed. Tables
and graphs are examples of data visualization tools used
in descriptive statistics, which facilitate analysis and
understanding.
The findings of the analysis of a dataset of Ethereum
smart contracts with public access to the source code are
presented in this section concerning the pertinent

vulnerabilities [92]. The prerequisites for the randomly
chosen contracts were that they had an adequate number
of transactions and the application had been active for at
least the previous ten days. The average number of
transactions, the time of the most recent transaction, and
the total number of contracts are all displayed in Figure 5,
the contracts in question. This figure indicates a lot of
active transactions for the contracts indicated. The
contracts, as mentioned earlier, also contain considerable
cash resources.

Figure 4. Classification of vulnerabilities related to smart contracts

Figure 5. Information of smart contracts reviewed

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 17

Our review process includes static scanning at the code
level with the help of four automatic vulnerability-
checking tools: Slither, Smartcheck, Oyente, and Mythril
[92-95]. In this review, a vulnerability warning in other
tools is also considered with the help of observing the
relevant outputs by each tool. In other words, some
verification procedure has also been carried out for
vulnerabilities with alerts in many tools. It should be
recalled that a vulnerability requires three different
circumstances, which were also discussed in sections 3-4.
Only when employing the smart contract in the
application, or, in other words, the final system, can all
these things be investigated. As a result, some of these
warnings might be inaccurate (the concept of a False
Positive), or certain vulnerabilities might still be present
in the system (the concept of a False Negative).
Slither: Slither is a smart contract static inspection tool
that can sort the data in the code. This program creates an
AST (Tree Syntax Abstract) structure to start, then pulls
data from smart contracts like an inheritance graph, flow
control graph, and list of Expressions to find the
vulnerability. The vulnerability detection procedure is
then performed using operations, including checking
dependencies, variables, and accesses [93].
Smart check: a dynamic analysis tool for Solidity smart
contracts that can be expanded. By transforming smart
contract code into an intermediate XML representation
and comparing it with patterns gathered from the actual
world, this program finds weaknesses [94].
Oyente: A Symbolic review tool specifically made for
analyzing smart contract code. This tool uses the CFG
Builder (flow control graph maker) and Ethereum
Blockchain Explorer modules to deliver the smart
contract-related bytecodes in symbolic form to the central
review module. This module's vulnerability detection
procedure involves checking the smart contract's
Symbolic output [95].
Mythril: An Ethereum virtual machine bytecode review
tool that employs symbolic analysis, the SMT solver
method, and the effect of different inputs on the program
with the taint analysis approach to find smart contracts'
weaknesses [96].

The reason for choosing these tools is to cover most of the
introduced vulnerabilities. In addition, these tools must
detect common vulnerabilities to be used in this
investigation. Other tools, including Soda and Sfuzz [97-
99], have also been published to check the security of
smart contracts. However, these cases have been omitted
due to the lack of direct coverage of the mentioned
vulnerabilities or the lack of sharing in the list of
detectable vulnerabilities.

In terms of percentage and diversity of
vulnerability alerts, Figure 6 presents comparisons
between smart contracts. As shown, at least one
vulnerability warning exists at the code level for around a
third of the extant smart contracts at the dataset level. This
problem demonstrates both the significance of the issue
and the lack of sufficient attention given by smart contract
developers to the field's vulnerabilities. In Figure 7, you
can also see the results of the vulnerability warning check
in the data set by the vulnerability. According to the graph
of arithmetic-type vulnerabilities, forward transactions
and locked ether have the most repetitions among the
examined data sets. Based on this, it can be said that
inattention to the security of at least one calculation, as
well as not considering (or not knowing) the definition of
priorities in the infrastructure blockchain network or not
defining a method for capital withdrawal from the smart
contract are the most common vulnerabilities in smart
contracts (at least in this data set). In this way, smart
contract developers may employ an equal methodology.
 This issue was validated by looking at the coding
associated with the vulnerable smart contracts for the
three vulnerabilities above. For instance, smart contracts
that were flagged for having an arithmetic vulnerability
employed unsecured routine methods to perform their
computations. In addition, the outputs linked to the tools
mentioned above still have many inaccuracies, as we
discovered when manually reviewing the vulnerabilities.
Put otherwise, and many pertinent reports were false
positives since they could not be verified through manual
examination.

Figure 6. Comparison of smart contracts in terms of the number and type of vulnerability warning

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 18

Figure 7. The results of checking the vulnerability alert in the dataset

In the chart below, you can see the mean, median and
mode for alerts with confirmation in more than one tool.

Figure 8. The mean, median and mode for alerts with
confirmation in more than one tool

In Table 5, all tools that used in this section are compared.

Table 5. Comparison of automatic vulnerability
detection tools

Dynamic
checking
coverage

Ability
to access

tool
codes

The number of
vulnerabilities to
check from the

list of 10
covered

Check
method

Tool
name

NO yes (open
source)

8 Intermedi
ate
Represent
ation

Slither

NO yes (open
source)

6 Intermedi
ate
Represent
ation

Smartc
heck

NO yes (open
source)

4 Symbolic
Execution

Oyente

Yes yes (open
source)

8 Symbolic
Execution

Mythri
l

6. Conclusion and future work

Users can access the distributed infrastructure network
through smart contracts in the blockchain sector. These
agreements are crucial for information security since, in
addition to their numerous uses, they directly impact the
user's financial resources. Therefore, disclosing these
contracts' vulnerabilities can be very helpful to blockchain
application developers. In this study, the backdrop of the
research and an explanation of a few technical words used
in the field of blockchain technology were covered, along
with an introduction to the issue and its significance.

In this study, the current vulnerabilities were
thoroughly described, with real-world examples and
practical solutions that were provided to fix them.
Additionally, a statistical analysis of 100 active Ethereum
smart contracts was done using the average results from
four static security analysis tools. The Investigation's
findings highlight the significance of the problem while
also showing that several security weaknesses like
arithmetic problem in the smart contracts under
consideration recur. This represents a common response
from developers to smart contract vulnerabilities. One of
the primary causes of these problems in smart contracts
may be the high complexity of large smart contracts and
the developers' unfamiliarity with standard practices. With
more contracts being evaluated and more (or more
accurate and powerful) technologies being used, it is
evident that the results will be more accurate. As a result,
in further works based on this research, the number of
vulnerabilities that have been identified would be raised,
and testing can be carried out on a more considerable
number of smart contracts. In addition, new automatic
tools with various solutions are constantly being presented
due to the spirit of active communities in this field. Future
work should examine these tools' capabilities to finally
identify why smart contract developers fail to pay
attention to some widespread vulnerabilities. Better

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

19

training alternatives or ways to make smart contract
programs less complicated for developers might be
investigated further.

References
[1] Zou W, Lo D, Kochhar PS, Le XB, Xia X, Feng Y, Chen

Z, Xu B. Smart contract development: Challenges and
opportunities. IEEE Transactions on Software Engineering.
2019 Sep 24;47(10):2084-106.

[2] Wang S, Yuan Y, Wang X, Li J, Qin R, Wang FY. An
overview of smart contract: architecture, applications, and
future trends. In2018 IEEE Intelligent Vehicles
Symposium (IV) 2018 Jun 26 (pp. 108-113). IEEE.

[3] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H.
N. (2022). Systematic review of security vulnerabilities in
ethereum blockchain smart contract. IEEE Access, 10,
6605-6621.

[4] Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R.,
Bracciali, A., & Hierons, R. (2018, March). Smart
contracts vulnerabilities: a call for blockchain software
engineering?. In 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE) (pp.
19-25). IEEE.

[5] Sharma T, Zhou Z, Miller A, Wang Y. Exploring security
practices of smart contract developers. arXiv preprint
arXiv:2204.11193. 2022 Apr 24.

[6] Sifra EM. Security vulnerabilities and countermeasures of
smart contracts: A survey. In2022 IEEE International
Conference on Blockchain (Blockchain) 2022 Aug 22 (pp.
512-515). IEEE.

[7] Qian P, Liu Z, He Q, Huang B, Tian D, Wang X. Smart
contract vulnerability detection technique: A survey. arXiv
preprint arXiv:2209.05872. 2022 Sep 13.

[8] Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R., &
Dehghantanha, A. (2020). Blockchain smart contracts
formalization: Approaches and challenges to address
vulnerabilities. Computers & Security, 88, 101654.

[9] Praitheeshan P, Pan L, Yu J, Liu J, Doss R. Security
analysis methods on ethereum smart contract
vulnerabilities: a survey. arXiv preprint arXiv:1908.08605.
2019 Aug 22.

[10] Wang Z, Jin H, Dai W, Choo KK, Zou D. Ethereum smart
contract security research: survey and future research
opportunities. Frontiers of Computer Science. 2021
Apr;15:1-8.

[11] Wohrer M, Zdun U. Smart contracts: security patterns in
the ethereum ecosystem and solidity. In2018 International
Workshop on Blockchain Oriented Software Engineering
(IWBOSE) 2018 Mar 20 (pp. 2-8). IEEE.

[12] Zheng Z, Zhang N, Su J, Zhong Z, Ye M, Chen J. Turn the
Rudder: A Beacon of Reentrancy Detection for Smart
Contracts on Ethereum. arXiv preprint arXiv:2303.13770.
2023 Mar 24.

[13] Chen J, Huang M, Lin Z, Zheng P, Zheng Z. To healthier
ethereum: A comprehensive and iterative smart contract
weakness enumeration. arXiv preprint arXiv:2308.10227.
2023 Aug 20.

[14] Ray I. Security vulnerabilities in smart contracts as
specifications in linear temporal logic (Master's thesis,
University of Waterloo).

[15] He D, Deng Z, Zhang Y, Chan S, Cheng Y, Guizani N.
Smart contract vulnerability analysis and security audit.
IEEE Network. 2020 Jul 17;34(5):276-82.

[16] Yashavant CS, Kumar S, Karkare A. Scrawld: A dataset of
real world ethereum smart contracts labelled with
vulnerabilities. arXiv preprint arXiv:2202.11409. 2022 Feb
23.

[17] Ren M, Yin Z, Ma F, Xu Z, Jiang Y, Sun C, Li H, Cai Y.
Empirical evaluation of smart contract testing: What is the
best choice?. InProceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and
Analysis 2021 Jul 11 (pp. 566-579).

[18] Zhou H, Milani Fard A, Makanju A. The state of ethereum
smart contracts security: Vulnerabilities, countermeasures,
and tool support. Journal of Cybersecurity and Privacy.
2022 May 27;2(2):358-78.

[19] Prasad B. Vulnerabilities and attacks on smart contracts
over blockChain. Turkish Journal of Computer and
Mathematics Education (TURCOMAT). 2021 May
10;12(11):5436-49.

[20] Chen J, Xia X, Lo D, Grundy J, Luo X, Chen T. Defining
smart contract defects on ethereum. IEEE Transactions on
Software Engineering. 2020 Apr 20;48(1):327-45.

[21] Vani S, Doshi M, Nanavati A, Kundu A. Vulnerability
Analysis of Smart Contracts. arXiv preprint
arXiv:2212.07387. 2022 Dec 14.

[22] Durieux T, Ferreira JF, Abreu R, Cruz P. Empirical review
of automated analysis tools on 47,587 ethereum smart
contracts. InProceedings of the ACM/IEEE 42nd
International conference on software engineering 2020 Jun
27 (pp. 530-541).

[23] Kushwaha SS, Joshi S, Singh D, Kaur M, Lee HN.
Ethereum smart contract analysis tools: A systematic
review. IEEE Access. 2022 Apr 22;10:57037-62.

[24] Wohrer M, Zdun U. Smart contracts: security patterns in
the ethereum ecosystem and solidity. In2018 International
Workshop on Blockchain Oriented Software Engineering
(IWBOSE) 2018 Mar 20 (pp. 2-8). IEEE.

[25] Zheng Z, Xie S, Dai HN, Chen X, Wang H. Blockchain
challenges and opportunities: A survey. International
journal of web and grid services. 2018;14(4):352-75.

[26] Lashkari B, Musilek P. A comprehensive review of
blockchain consensus mechanisms. IEEE Access. 2021
Mar 12;9:43620-52.

[27] Zheng Z, Xie S, Dai H, Chen X, Wang H. An overview of
blockchain technology: Architecture, consensus, and future
trends. In2017 IEEE international congress on big data
(BigData congress) 2017 Jun 25 (pp. 557-564). Ieee.

[28] Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf
H, Capkun S. On the security and performance of proof of
work blockchains. InProceedings of the 2016 ACM
SIGSAC conference on computer and communications
security 2016 Oct 24 (pp. 3-16).

[29] Bentov I, Lee C, Mizrahi A, Rosenfeld M. Proof of
activity: Extending bitcoin's proof of work via proof of
stake [extended abstract] y. ACM SIGMETRICS
Performance Evaluation Review. 2014 Dec 8;42(3):34-7.

[30] Joshi S. Feasibility of proof of authority as a consensus
protocol model. arXiv preprint arXiv:2109.02480. 2021
Aug 30.

[31] Ekparinya P, Gramoli V, Jourjon G. The attack of the
clones against proof-of-authority. arXiv preprint
arXiv:1902.10244. 2019 Feb 26.

[32] Manolache MA, Manolache S, Tapus N. Decision making
using the blockchain proof of authority consensus.
Procedia Computer Science. 2022 Jan 1;199:580-8.

[33] Singh PK, Singh R, Nandi SK, Nandi S. Managing smart
home appliances with proof of authority and blockchain.
InInnovations for Community Services: 19th International

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 20

Conference, I4CS 2019, Wolfsburg, Germany, June 24-26,
2019, Proceedings 19 2019 (pp. 221-232). Springer
International Publishing.

[34] Saad SM, Radzi RZ. Comparative review of the
blockchain consensus algorithm between proof of stake
(pos) and delegated proof of stake (dpos). International
Journal of Innovative Computing. 2020 Nov 19;10(2).

[35] Yang F, Zhou W, Wu Q, Long R, Xiong NN, Zhou M.
Delegated proof of stake with downgrade: A secure and
efficient blockchain consensus algorithm with downgrade
mechanism. IEEE Access. 2019 Aug 14;7:118541-55.

[36] Hu Q, Yan B, Han Y, Yu J. An improved delegated proof
of stake consensus algorithm. Procedia Computer Science.
2021 Jan 1;187:341-6.

[37] Snider M, Samani K, Jain T. Delegated proof of stake:
features & tradeoffs. Multicoin Cap. 2018 Mar 2;19:1-9.

[38] Castro M, Liskov B. Practical byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer
Systems (TOCS). 2002 Nov 1;20(4):398-461.

[39] Abraham I, Gueta G, Malkhi D, Alvisi L, Kotla R, Martin
JP. Revisiting fast practical byzantine fault tolerance.
arXiv preprint arXiv:1712.01367. 2017 Dec 4.

[40] Gao S, Yu T, Zhu J, Cai W. T-PBFT: An EigenTrust-based
practical Byzantine fault tolerance consensus algorithm.
China Communications. 2019 Dec;16(12):111-23.

[41] Consensus Algorithms in Blockchain Systems [Internet].
DEV Community. 2020 [cited 2024 Feb 3]. Available
from: https://dev.to/akroutihamza/consensus-algorithms-
in-blockchain-systems-44ag

[42] Makhdoom I, Abolhasan M, Ni W. Blockchain for IoT:
The challenges and a way forward. InICETE 2018-
Proceedings of the 15th International Joint Conference on
e-Business and Telecommunications 2018 Jan 1.

[43] Lang D, Friesen M, Ehrlich M, Wisniewski L, Jasperneite
J. Pursuing the vision of Industrie 4.0: Secure plug-and-
produce by means of the asset administration shell and
blockchain technology. In2018 IEEE 16th International
Conference on Industrial Informatics (INDIN) 2018 Jul 18
(pp. 1092-1097). IEEE.

[44] 1.The Blockchain Generations [Internet]. Ledger.
Available from:
https://www.ledger.com/academy/blockchain/web-3-the-
three-blockchain-generations

[45] Anwar S, Anayat S, Butt S, Butt S, Saad M. Generation
Analysis of Blockchain Technology: Bitcoin and
Ethereum. International Journal of Information
Engineering & Electronic Business. 2020 Aug 1;12(4).

[46] Efanov D, Roschin P. The all-pervasiveness of the
blockchain technology. Procedia computer science. 2018
Jan 1;123:116-21.

[47] Nakamoto S. Bitcoin: A peer-to-peer electronic cash
system. Decentralized business review. 2008 Oct 31.

[48] Rostami M, Bahaghighat M, Zanjireh MM. Bitcoin daily
close price prediction using optimized grid search method.
Acta Universitatis Sapientiae, Informatica.
2021;13(2):265-87.

[49] Brighente A, Conti M, Kumar S. Extorsionware:
Exploiting smart contract vulnerabilities for fun and profit.
arXiv preprint arXiv:2203.09843. 2022 Mar 18.

[50] Egbertsen W, Hardeman G, van den Hoven M, van der
Kolk G, van Rijsewijk A. Replacing paper contracts with
Ethereum smart contracts. Semantic Scholar. 2016 Jun
10;35:1-35.

[51] Top Smart Contract Applications and Use Cases - Scalable
Solutions [Internet]. 2021. Available from:

https://scalablesolutions.io/news/smart-contract-applications-and-
use-cases/

[52] Dannen C. Introducing Ethereum and solidity. Berkeley:
Apress; 2017.

[53] Zhang P, Xiao F, Luo X. A framework and dataset for
bugs in ethereum smart contracts. In2020 IEEE
International Conference on Software Maintenance and
Evolution (ICSME) 2020 Sep 28 (pp. 139-150). IEEE.

[54] Krsul I, Spafford E, Tripunitara M. Computer vulnerability
analysis. COAST Laboratory, Purdue University, West
Lafayette, IN, Technical Report. 1998 May 6.

[55] Samreen NF, Alalfi MH. Reentrancy vulnerability
identification in ethereum smart contracts. In2020 IEEE
International Workshop on Blockchain Oriented Software
Engineering (IWBOSE) 2020 Feb 18 (pp. 22-29). IEEE.

[56] Mehar MI, Shier CL, Giambattista A, Gong E, Fletcher G,
Sanayhie R, Kim HM, Laskowski M. Understanding a
revolutionary and flawed grand experiment in blockchain:
the DAO attack. Journal of Cases on Information
Technology (JCIT). 2019 Jan 1;21(1):19-32.

[57] Grossman S, Abraham I, Golan-Gueta G, Michalevsky Y,
Rinetzky N, Sagiv M, Zohar Y. Online detection of
effectively callback free objects with applications to smart
contracts. Proceedings of the ACM on Programming
Languages. 2017 Dec 27;2(POPL):1-28.

[58] Prechtel D, Groß T, Müller T. Evaluating spread of
‘gasless send’in ethereum smart contracts. In2019 10th
IFIP international conference on new technologies,
mobility and security (NTMS) 2019 Jun 24 (pp. 1-6).
IEEE.

[59] Oualid Z, Oualid Z. What is a reentrancy attack in
Solidity? | Technical examples [Internet]. Get Secure
World. 2022. Available from:
https://www.getsecureworld.com/blog/what-is-a-
reentrancy-attack-in-solidity-technical-examples/

[60] Samreen NF, Alalfi MH. A survey of security
vulnerabilities in ethereum smart contracts. arXiv preprint
arXiv:2105.06974. 2021 May 14.

[61] Samreen NF, Alalfi MH. A survey of security
vulnerabilities in ethereum smart contracts. arXiv preprint
arXiv:2105.06974. 2021 May 14.

[62] Palladino S. The parity wallet hack explained. July-
2017.[Online]. Available: https://blog. zeppelin.
solutions/on-the-parity-wallet-multisighack-405a8c12e8f7.
2017 Jul 20.

[63] Wöhrer M, Zdun U. Design patterns for smart contracts in
the ethereum ecosystem. In2018 IEEE International
Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData) 2018 Jul 30 (pp. 1513-
1520). IEEE.

[64] DASP - TOP 10 [Internet]. www.dasp.co. [cited 2024 Feb
3]. Available from: https://www.dasp.co

[65] Khan ZA, Namin AS. Ethereum smart contracts:
Vulnerabilities and their classifications. In2020 IEEE
International Conference on Big Data (Big Data) 2020 Dec
10 (pp. 1-10). IEEE.

[66] Thanh LY. Prevent Integer Overflow in Ethereum Smart
Contracts [Internet]. Medium. 2018 [cited 2024 Feb 3].
Available from: https://yenthanh.medium.com/prevent-integer-
overflow-in-ethereum-smart-contracts-a7c84c30de66

[67] Gao J, Liu H, Liu C, Li Q, Guan Z, Chen Z. Easyflow:
Keep ethereum away from overflow. In2019 IEEE/ACM
41st International Conference on Software Engineering:

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

https://scalablesolutions.io/news/smart-contract-applications-and-use-cases/
https://scalablesolutions.io/news/smart-contract-applications-and-use-cases/
https://www.getsecureworld.com/blog/what-is-a-reentrancy-attack-in-solidity-technical-examples/
https://www.getsecureworld.com/blog/what-is-a-reentrancy-attack-in-solidity-technical-examples/
https://www.dasp.co/
https://yenthanh.medium.com/prevent-integer-overflow-in-ethereum-smart-contracts-a7c84c30de66
https://yenthanh.medium.com/prevent-integer-overflow-in-ethereum-smart-contracts-a7c84c30de66

 Major vulnerabilities in Ethereum smart contracts: Investigation and statistical analysis

21

Companion Proceedings (ICSE-Companion) 2019 May 25
(pp. 23-26). IEEE.

[68] Scanning Live Ethereum Contracts for the “Unchecked-
Send” Bug [Internet]. Hacking Distributed. Available
from: https://hackingdistributed.com/2016/06/16/scanning-live-
ethereum-contracts-for-bugs/

[69] Atzei N, Bartoletti M, Cimoli T. A survey of attacks on
ethereum smart contracts (sok). InPrinciples of Security
and Trust: 6th International Conference, POST 2017, Held
as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings 6 2017 (pp. 164-186).
Springer Berlin Heidelberg.

[70] Kulkarni Y. Denial of Service (DoS) Attack on Smart
Contracts [Internet]. Be on the Right Side of Change.
2022. Available from: https://blog.finxter.com/denial-of-
service-dos-attack-on-smart-contracts/

[71] Bhardwaj A, Shah SB, Shankar A, Alazab M, Kumar M,
Gadekallu TR. Penetration testing framework for smart
contract blockchain. Peer-to-Peer Networking and
Applications. 2021 Sep;14:2635-50.

[72] Smart Contract Randomness or ReplicatedLogic Attack –
Be on the Right Side of Change [Internet]. 2023 [cited
2024 Feb 3]. Available from:
https://blog.finxter.com/randomness-or-replicatedlogic-attack-on-
smart-contracts/

[73] Yao S, Zhang D. An Anonymous Verifiable Random
Function with Applications in Blockchain. Wireless
Communications and Mobile Computing. 2022 Apr
19;2022.

[74] Verifiable Random Function (VRF) - Explained |
Chainlink [Internet]. chain.link. [cited 2024 Feb 3].
Available from: https://blog.chain.link/verifiable-random-
function-vrf/

[75] Behnke R. What Is a Front-Running Attack? [Internet].
www.halborn.com. 2021 [cited 2024 Feb 3]. Available
from: https://halborn.com/what-is-a-front-running-attack/

[76] Frontrunning - Ethereum Smart Contract Best Practices
[Internet]. consensys.github.io. Available from:
https://consensys.github.io/smart-contract-best-
practices/attacks/frontrunning/

[77] Mense A, Flatscher M. Security vulnerabilities in ethereum
smart contracts. InProceedings of the 20th international
conference on information integration and web-based
applications & services 2018 Nov 19 (pp. 375-380).

[78] ImmuneBytes. A Techno-Manual on the Front Running
Attack - ImmuneBytes [Internet]. 2022 [cited 2024 Feb 3].
Available from: https://www.immunebytes.com/blog/front-
running-attack/

[79] Front-running attack in DeFi applications - how to deal
with it? [Internet]. Securing. 2022. Available from:
https://www.securing.pl/en/front-running-attack-in-defi-
applications-how-to-deal-with-it/

[80] Libsubmarine.org. 2022. Available from:
https://libsubmarine.org/

[81] Arulprakash M, Jebakumar R. Commit-reveal strategy to
increase the transaction confidentiality in order to counter
the issue of front running in blockchain. InAIP Conference
Proceedings 2022 Aug 26 (Vol. 2460, No. 1). AIP
Publishing.

[82] Dika A, Nowostawski M. Security vulnerabilities in
ethereum smart contracts. In2018 IEEE international
conference on Internet of Things (iThings) and IEEE green
computing and communications (GreenCom) and IEEE
cyber, physical and social computing (CPSCom) and IEEE
Smart Data (SmartData) 2018 Jul 30 (pp. 955-962). IEEE.

[83] Tang X, Zhou K, Cheng J, Li H, Yuan Y. The
vulnerabilities in smart contracts: A survey. InAdvances in
Artificial Intelligence and Security: 7th International
Conference, ICAIS 2021, Dublin, Ireland, July 19-23,
2021, Proceedings, Part III 7 2021 (pp. 177-190). Springer
International Publishing.

[84] Ethereum Contract Diff Checker [Internet]. etherscan.io.
[cited 2024 Feb 3]. Available from:
https://etherscan.io/contractdiffchecker?a1=0xa11e4ed59dc94e69
612f3111942626ed513cb172

[85] Zhu H, Niu W, Liao X, Zhang X, Wang X, Li B, He Z.
Attacker Traceability on Ethereum through Graph
Analysis. Security and Communication Networks. 2022
Jan 27;2022.

[86] CoinFabrik. Smart Contract Short Address Attack
Mitigation Failure [Internet]. CoinFabrik. 2017 [cited 2024
Feb 3]. Available from: https://blog.coinfabrik.com/smart-
contract-short-address-attack-mitigation-failure/

[87] Perez D, Livshits B. Smart contract vulnerabilities:
Vulnerable does not imply exploited. In30th USENIX
Security Symposium (USENIX Security 21) 2021 (pp.
1325-1341).

[88] Perez D, Livshits B. Smart contract vulnerabilities:
Vulnerable does not imply exploited. In30th USENIX
Security Symposium (USENIX Security 21) 2021 (pp.
1325-1341).

[89] Sayeed S, Marco-Gisbert H, Caira T. Smart contract:
Attacks and protections. IEEE Access. 2020 Jan
30;8:24416-27.

[90] Bug Security : Locked Ether · Issue #19930 · ethereum/go-
ethereum [Internet]. GitHub. [cited 2024 Feb 3]. Available
from: https://github.com/ethereum/go-ethereum/issues/19930

[91] Smart Contract Weakness Classification (SWC) [Internet].
swcregistry.io. [cited 2024 Feb 3]. Available from:
https://swcregistry.io

[92] SmartCDS/Addresses.txt at main ·
Csreasercher/SmartCDS [Internet]. GitHub. [cited 2024
Feb 3]. Available from:
https://github.com/Csreasercher/SmartCDS/blob/main/Add
resses.txt

[93] Feist J, Grieco G, Groce A. Slither: a static analysis
framework for smart contracts. In2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB) 2019 May 27 (pp.
8-15). IEEE.

[94] Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev
R, Marchenko E, Alexandrov Y. Smartcheck: Static
analysis of ethereum smart contracts. InProceedings of the
1st international workshop on emerging trends in software
engineering for blockchain 2018 May 27 (pp. 9-16).

[95] Luu L, Chu DH, Olickel H, Saxena P, Hobor A. Making
smart contracts smarter. InProceedings of the 2016 ACM
SIGSAC conference on computer and communications
security 2016 Oct 24 (pp. 254-269).

[96] MythX: Preparing for a smart contract audit [Internet].
mythx.io. [cited 2024 Feb 3]. Available from:
https://mythx.io/about

[97] Chen T, Cao R, Li T, Luo X, Gu G, Zhang Y, Liao Z, Zhu
H, Chen G, He Z, Tang Y. SODA: A Generic Online
Detection Framework for Smart Contracts. InNDSS 2020
Feb 23.

[98] Nguyen TD, Pham LH, Sun J, Lin Y, Minh QT. sfuzz: An
efficient adaptive fuzzer for solidity smart contracts.
InProceedings of the ACM/IEEE 42nd International
Conference on Software Engineering 2020 Jun 27 (pp.
778-788).

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

https://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
https://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/
https://blog.finxter.com/denial-of-service-dos-attack-on-smart-contracts/
https://blog.finxter.com/denial-of-service-dos-attack-on-smart-contracts/
https://blog.finxter.com/randomness-or-replicatedlogic-attack-on-smart-contracts/
https://blog.finxter.com/randomness-or-replicatedlogic-attack-on-smart-contracts/
https://blog.chain.link/verifiable-random-function-vrf/
https://blog.chain.link/verifiable-random-function-vrf/
https://halborn.com/what-is-a-front-running-attack/
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
https://consensys.github.io/smart-contract-best-practices/attacks/frontrunning/
https://www.immunebytes.com/blog/front-running-attack/
https://www.immunebytes.com/blog/front-running-attack/
https://www.securing.pl/en/front-running-attack-in-defi-applications-how-to-deal-with-it/
https://www.securing.pl/en/front-running-attack-in-defi-applications-how-to-deal-with-it/
https://libsubmarine.org/
https://etherscan.io/contractdiffchecker?a1=0xa11e4ed59dc94e69612f3111942626ed513cb172
https://etherscan.io/contractdiffchecker?a1=0xa11e4ed59dc94e69612f3111942626ed513cb172
https://blog.coinfabrik.com/smart-contract-short-address-attack-mitigation-failure/
https://blog.coinfabrik.com/smart-contract-short-address-attack-mitigation-failure/
https://github.com/ethereum/go-ethereum/issues/19930
https://mythx.io/about

Mohammad Pishdar1, Mahdi Bahaghighat2 , Rajeev Kumar3, Qin Xin4

 22

[99] Chen J, Xia X, Lo D, Grundy J, Luo X, Chen T.
Defectchecker: Automated smart contract defect detection
by analyzing evm bytecode. IEEE Transactions on
Software Engineering. 2021 Jan 27;48(7):2189-207.

EAI Endorsed Transactions
on Internet of Things|
| Volume 11 | 2025 |

