
EAI Endorsed Transactions
on Internet of Things Research Article

1

FPGA implementation of sobel edge detection algorithm
K. Navinkumar1, R. Logesh2, P. VishnuBabu3, A.V. Ananthalakshmi4,

1,2,3Department of ECE, Puducherry Technological University, Puducherry, India.

Abstract

Sobel Edge detection algorithm is used to extract the edges (region of maximum variation) from an image. It is based on
the concept that the edges of an image contains maximum information whose computation depends on multipliers and
square root. As multipliers consume more logic, a modified sobel edge detection algorithm which does not employ
multipliers and square root function is proposed. A mathematical model of the proposed sobel edge algorithm was first
developed and MATLAB was used to verify the model. On comparing with the original model, the proposed model has a
SSIM of 96.43%. To analyse the hardware complexity, Verilog model of the modified sobel edge detection algorithm was
developed using Quartus II. The chosen evaluation board is Cylone III FPGA EP3C120F780. The performance metrics
such has Logic Elements utilization, Power dissipation and Maximum Operating Frequency were obtained. Open-Source
toolchain (Yosys, OpenVPR, and Google Skywater 130nm PDK) was used to obtain the RTL Netlist and Synthesis
reports. Verilog Modules for the Camera (CMOS OV7670) interface and FIFO Buffer were synthesized. The modified
algorithm was integrated with them. An HSMC (HSMB) breakout board was connected to the FPGA Development board
to increase the number of I/O ports. Thus in real time, the proposed modified Sobel Edge detection system can be used as a
pre-processor to reduce the amount of computations and power consumption.

Keywords: Sobel Algorithm, Edge Detection, Matlab, FPGA

Received on 3 May 2024, accepted on 2 September 2024, published on 23 October 2024

Copyright © 2024 Navinkumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as
the original work is properly cited.

doi: 10.4108/eetiot.5148

1. Introduction

Edge in an image contains the number of important
parameters which is widely used in image analysis. Thus,
edge detection acts as a pre-processing in the analysis of
an image, image segmentation and in image feature
extraction. Some of the widely employed edge detection
algorithms are Robert, Prewit, LOG, Canny, Sobel and
other algorithms all belong to spatial detection [1]. Of the
above mentioned, Robert and Prewit has low edge
positioning accuracy. LOG operators cannot identify the
direction of edges and are sensitive to noise. Canny
operators have superior functions but are complex to
implement [2]. It is difficult to use them in realtime
hardware systems. Although traditional Sobel algorithms
need to manually specify detection thresholds, they have
the advantages of simple detection principle and easy
hardware implementation.

The Sobel edge detection algorithm is a method for
detecting edges in images by applying a set of
convolution filters to the image data. It is widely used in
image processing and computer vision applications,
particularly for detecting edges in grayscale images. It is
relatively simple to implement and produces good results,
but it can be sensitive to noise and may produce some
false edges. It can be implemented on both a GPU
(graphics processing unit) and an FPGA. Both
implementations can provide significant performance
improvements over a CPU-based implementation,
particularly for large or complex images. Ultimately, the
choice between a GPU and an FPGA for the Sobel edge
detection algorithm will depend on the specific
requirements of the application. A GPU may be more
suitable for tasks that require high-performance graphics
processing or that can be parallelized, while an FPGA
may be more suitable for tasks that require custom
hardware acceleration or real-time processing. Thus the

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

*Corresponding author. Email: phd.kiranaswal@gmail.com

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

K. Navinkumar et al.

2

proposed modified sobel edge algorithm will be
implemented using FPGA.

The organization of the paper is as follows:- Section 2
elaborates on the literature survey, section 3 discusses the
methods employed in the proposed work. Section 4
discusses the results and finally section 5 concludes the
paper.

2. Related Works

Several works were reported on the implementation of
sobel edge detection algorithm using different platforms
as shown in Table 1.

Table 1. Related Works

Related
Works

Year Platform
Used

Inference

[3] 2007 FPGA Complex in hardware
architecture

[4] 2008 FPGA Complex in hardware
architecture

[5] 2012 FPGA Suffers from space
and time complexity

[6] 2013 FPGA Complex in hardware
architecture

[7] 2014 FPGA Complex in hardware
architecture

[8] 2014 GPU
(NVIDIA
GeForce
310) &
Xilinx
Virtex-5
FPGA
device

FPGA
implementation is
speed efficient than
GPU.

[9] 2017 FPGA Complex in hardware
architecture

[10] 2018 FPGA Complex in hardware
architecture

[11] 2018 Xilinx
Spartan 6
FPGA

Reduced the number
of resources and
space complexity
with higher clock
rate than the work
proposed in [5]

[12] 2018 FPGA No open source
implementation

[13],[14] 2015,
2018

OpenCL
software on
Intel Terasic
DE5 target
FPGA

Shows significant
improvement in
performance by
employing pipelining
but at the cost of

device hardware resources.
Thus OpenCL is not
preferred to program
FPGAs.

[15] 2020 FPGA Fastens the
performing processes
and has reduced the
spatial complexity of
the FPGA with
increase in hardware
resource.

[16] 2021 Software
platform
employed
(MATLAB)

Instead of employing
the hardware
accelerator, software
based method is
employed using
Standard C, AVX
intrinsics and
OpenMP
directives. Software
development time is
reduced at the cost of
latency.

[17] 2021 FPGA Edge detected image
cannot be obtained
completely and the
time and space
complexity are high.
No open-source
implementation.

[18] 2022 MATLAB
and
OpenCV,
Xilinx

Increased the
hardware resource as
well as the time delay
gets affected. Also
FPGA has increased
the performance
when compared to
software method.

From the literature survey, it is inferred that FPGA
implementation of sobel algorithm offers very good
performance when compared to software based methods.
The works proposed using FPGA either it has increased
the hardware complexity or it has increased the time
complexity. Further, there is no open source
implementation. The motivation of the proposed work is
to increase the speed and minimize the power
consumption by making the hardware architecture
simpler.

3. Methodology

An FPGA implementation of the Sobel algorithm
typically consists of a set of convolution filters, a gradient
computation unit, and a thresholding unit. To implement
the convolution filters, the Sobel algorithm requires a set
of shift registers and a set of multipliers. The shift
registers are used to store the image data and shift it

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

FPGA implementation of sobel edge detection algorithm

3

through the filters, while the multipliers are used to
perform the convolution operation. The filters can be
implemented as hardwired logic or as programmable
functions, depending on the specific requirements of the
application. The gradient computation unit combines the
results of the horizontal and vertical filters to produce the
gradient image. This unit may include a set of adders,
subtractors, and absolute value units to compute the
gradient magnitude and direction. The thresholding unit is
used to highlight the edges of interest by applying a
threshold to the gradient image. This unit may include a
comparator and a register to store the threshold value.
Figure 1 shows the Sobel Kernels.

Figure 1. Sobel Kernels

In earlier works reported so far, sobel filter has been
implemented with the use of multipliers and square root
operation for the kernel convolution. While this might be
available in higher end FPGAs, it is not always viable to
include these operations in all implementations. The
proposed work aims to eliminate these two operations. A
high similarity index is also achieved by eliminating the
multiplier and square root.

Also with the move towards the open-source hardware,
there is a dire need of open source implementations of
many systems. Till date, there is not much work in open-
source hardware implementation of sobel filter. Closed-
source hardware is proprietary to the company or
individual who owns it and is not publicly available. It is
typically distributed under a license that grants users the
right to use the hardware but not to modify or distribute
the source code or design files.

3.1 Mathematical Description of the Proposed
Sobel Algorithm

Let Sx and Sy be the matrices obtained after applying the
kernel convolution. Some of the entries will contain
negative values. To remove these values, magnitude is
taken by applying first multiplying the matrix (dot
product) and then applying the square root operation.

Instead of this, a simple sign reversal is used to remove
the negative signs and then they are added together. This
is then repeated for the entire image. This has been
explained in Figure 2.

Figure 2. Proposed sobel algorithm

3.2 Matlab Simulation Flowchart

Figure 3 shows the flowchart of the MATLAB
Simulation. The necessary in-built functions are imported
as needed. It is done for both the existing and proposed
model for various scenarios. The results are then
compared.

Figure 3. Matlab Simulation Flowchart

3.3 Verilog Implementation Flowchart

Figure 4 shows the Verilog implementation of the
proposed Sobel algorithm. It is a pipelined
implementation. Pipelined design is a technique that is
used to improve the performance of digital circuits by
breaking a complex operation into smaller stages and
executing them in parallel. In Verilog, pipelined design
can be implemented by creating a pipeline of stages, each
of which performs a specific operation on the data.

Figure 4. Verilog Implementation Flowchart

To implement pipelined design in Verilog, a combination
of registers and combinational logic can be used. Each
stage performs a specific operation on the data and then
passes the result to the next stage. The stages are
connected by registers, which hold the data as it moves
through the pipeline.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

K. Navinkumar et al.

4

3.4. Real-Time Implementation of the
Proposed Sobel algorithm using Cyclone
III FPGA

The requirements for the real time implementation are:
• Live feed from an input source
• Input source – can be a camera (OV7670) or

from PC through UART Module
• Need a buffer for read and write operations.
• On-board SRAM insufficient.
• SDRAM – For holding the data temporarily
• FIFO Buffer for interfacing modules with

different speeds

The OV7670 is a low-power CMOS image sensor
designed for use in portable devices such as mobile
phones, laptops, and digital still cameras. It is a VGA
(640x480) resolution image sensor that can operate at up
to 60 frames per second and is capable of capturing high-
quality images and video in a wide range of lighting
conditions. The OV7670 includes on-chip image
processing functions, such as color interpolation, gamma
correction, and white balance, which can improve the
quality of the captured images. The OV7670 has good
low light sensitivity, allowing it to capture good-quality
images in low light conditions.

SDRAM DDR2 module is the most challenging part of
the real-time implementation. To interface an FPGA
(field-programmable gate array) with DDR2 SDRAM,
design and implement a memory controller that can
handle the communication between the FPGA and the
SDRAM. The memory controller is responsible for
managing the transfer of data between the FPGA and the
SDRAM, as well as handling the timing and control
signals required for the SDRAM to operate correctly.

The PLL circuit includes a phase detector and a low-pass
filter. The phase detector compares the input clock with
the output clock and generates a feedback signal based on
the phase difference between the two clocks. The low-
pass filter filters the feedback signal and generates the
output clock. The proposed sobel algorithm is
implemented using Cyclone III FPGA as shown in Figure
5.

Figure 5. Proposed sobel edge architecture using
Cyclone III FPGA

The Cyclone III FPGA core has two parts working in
different clock domains. The camera module continuously
senses and sends the data to the camera interface module.
It is then interfaced with the Sobel Unit using a FIFO
buffer. It allows the data to be read in the same order in
which it is inserted. The results are then stored in the
RAM module. PLL is used to provide the necessary
clocks from the on-board oscillator. The specification
sheets should be referred to know the frequency of
operation of various peripherals.

The orange coloured regions depict the domain, which
works in 24 MHz clock domain. The blue is for 166.67
MHz clock domain. The camera works in I2C mode.

PHY is the physical layer of the SDRAM Controller. An
FSM based design is used. The IP is obtained from the
megacore function wizard of Quartus II. While creating
the IP, specifications such as the frequency, burst mode,
frames, error correction mode must be set properly in
accordance with datasheet of the SDRAM DDR2
controller.

4. Results and Discussion

Three samples were chosen to compare the existing and
the proposed model. Figure 6, shows the MATLAB
simulation results for the given sample. From the
simulation results, it is inferred that the outputs of the
proposed Sobel model is virtually indistinguishable from
the output of the existing sobel model.

Figure 6. MATLAB Comparison of the Proposed and
the Existing Sobel Model

A similarity index of 96.43% has been achieved with the
proposed model in comparison with the existing model.
Figure 7 shows the Quartus II RTL netlist of the proposed
sobel model.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

FPGA implementation of sobel edge detection algorithm

5

Figure 7. Quartus II RTL netlist view

4.1 Performance Metrics of the Proposed and the
Existing Sobel Algorithm

The performance metrics chosen are number of logic
elements, total thermal power dissipation, maximum
frequency of operation and the number of multipliers
used. Figure 8 shows the number of logic elements
utilized in the existing and in the proposed work.

Figure 8. Comparison of the hardware complexity

Figure 9 compares the thermal power dissipation in the
existing and in the proposed work.

Figure 9. Thermal Power dissipation comparison

Figure 10 shows the maximum frequency of operation in
the existing and in the proposed work.

Figure 10. Maximum frequency of operation
comparison

From Figures 8, 9 and 10, it is inferred that the proposed
work has completely eliminated the use of multiplier.
However this has led to the slight increase 21.62% in the

number of logic elements used. The thermal power
dissipation remains the same in both the models. However
the proposed sobel algorithm operates at a higher speed
than the existing sobel algorithm.

4.2 Real Time implementation results of the
Proposed sobel Algorithm using the open source
YOSYS tool

Real time implementation of the proposed sobel algorithm
has been carried out by interfacing camera with Cyclone
III FPGA module using the open source YOSYS tool.
Figure 11 shows the YOSYS RTL netlist.

Figure 11. YOSYS RTL netlist

Figure 12 shows the DDR2 SDRAM RTL netlist.

Figure 12. DDR2 SDRAM RTL netlist

Figure 13 shows the real time implementation RTL netlist
of the proposed sobel algorithm by interfacing the camera
module with Cyclone III FPGA.

Figure 13. RTL Netlist of the proposed sobel edge
algorithm

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

K. Navinkumar et al.

6

Figure 14 shows the performance metrics of the proposed
sobel algorithm in real time.

Figure 14. Real-time implementation Performance
metrics

From the results, it is inferred that the proposed sobel
algorithm in real time uses totally 603 logic elements,
dissipates 118.77 mW and operates at a speed of 219
MHz as shown in Table 2.

Table 2. Performance Metrics of the proposed sobel
edge in real time

Performance metrics Proposed
Sobel

algorithm in
Real Time

Logic Element Utilization 603
Total Thermal Power Dissipation 118.77 mW

Maximum Frequency of Operation 219 MHz
No. of Multipliers Used 0

Total Registers 310

Figure 15 shows the real time implementation of the
proposed sobel algorithm by interfacing the camera
module with Cyclone III FPGA.

Figure 15. Real time implementation of the
proposed sobel algorithm by interfacing the camera

module with Cyclone III FPGA

References
[1] B. Saha Tchinda, D. Tchiotsop, M. Noubom, V. Louis-

Dorr, and D. Wolf, “Retinal blood vessels segmentation
using classical edge detection filters and the neural
network,” Informatics in Medicine Unlocked, 23, 2021,
p.100521, doi: 10.1016/j.imu.2021.100521.

[2] Y. H. Kwon and J. W. Jeon, "Comparison of FPGA
Implemented Sobel Edge Detector and Canny Edge
Detector", In Proceedings of the IEEE International

Conference on Consumer Electronics - Asia (ICCE-Asia),
2020, pp. 1-2, doi: 10.1109/ICCE-
Asia49877.2020.9277425.

[3] A. Abbasi, M. Abbasi, A proposed FPGA based
architecture for sobel edge detection operator, J. Act.
Passive Electron. Devices, 2, 2007.

[4] I. Yasri, N. H. Hamid, and V. V. Yap, “Performance
analysis of FPGA based Sobel edge detection operator,”
2008 International Conference on Electronic Design, Dec.
2008, doi: 10.1109/ICED.2008.4786751.

[5] S. Halder, D. Bhattacharjee, M. Nasipuri, D.K. Basu, A
Fast FPGA Based Architecture for Sobel Edge Detection,
Springer, 2012.

[6] J. Monson, M. Wirthlin, B. L. Hutchings, “Optimization
techniques for a high level synthesis implementation of the
Sobel filter”, In Proceedings of the International
Conference on Reconfigurable Computing and FPGAs
(ReConFig), 2013, pp. 1-6.
https://doi.org/10.1109/ReConFig.2013.6732315.

[7] G. Chaple, R.D. Daruwala, “Design of Sobel operator
based image edge detection algorithm on FPGA”, In
Proceedings of the International Conference on
Communication and Signal Processing, 2014, pp. 788-792.
https://doi.org/10.1109/ICCSP.2014.6949951

[8] M. Chouchene, F. E. Sayadi, Y. Said, M. Atri, and R.
Tourki, “Efficient implementation of Sobel edge detection
algorithm on CPU, GPU and FPGA”, International
Journal of Advanced Media and Communication, 5,(2/3),
2014, p.105.

[9] M. Amiri, F. M. Siddiqui, C. Kelly, “FPGA-Based Soft-
Core Processors for Image Processing Applications” J Sign
Process Syst, 87, 2017, pp. 139–156.
https://doi.org/10.1007/s11265-016-1185-7

[10] K. Zhang, Y. Zhang, P. Wang, Y. Tian, and J. Yang, “An
improved sobel edge algorithm and FPGA
implementation,” Procedia Computer Science, 131, 2018,
pp. 243–248, doi: 10.1016/j.procs.2018.04.209.

[11] N. Nausheen, A. Seal, P. Khanna, S. Halder, “A FPGA
based implementation of Sobel edge detection,” Science
Direct, Microprocessors and Microsystems, 56, 2018, pp.
84-91, https://doi.org/10.1016/j.micpro.2017.10.011.

[12] Z. Xiangxi, Z. Yonghui, Z. Shuaiyan, Z. Jian, “FPGA
implementation of edge detection for Sobel operator in
eight directions”, In Proceedings of the IEEE Asia Pacific
Conference on Circuits and Systems, Chengdu. 2018, pp.
520-523.

[13] K. Hill, S. Craciun, A. George, H. Lam, “Comparative
analysis of OpenCL vs. HDL with image-processing
kernels on stratix-v FPGA”, In Proceedings of the IEEE
26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP),
2015, https://doi.org/10.1109/asap.2015.7245733.

[14] H. Waidyasooriya, M. Hariyama, and K. Uchiyama,
“Design of FPGA-based computing systems with
OpenCL”, Springer International Publishing,
2018, https://doi.org/10.1007/978-3-319-68161-0

[15] D. R. Menaka, D. R. Janarthanan, and D. K. Deeba,
“FPGA implementation of low power and high speed
image edge detection algorithm,” Microprocessors and
Microsystems, 75, 2020, p. 103053, doi:
10.1016/j.micpro.2020.103053.

[16] G. K. Ijemaru et al., “Image processing system using
matlab-based analytics,” Bulletin of Electrical Engineering
and Informatics, 10, (5), 2021, pp. 2566–2577, doi:
10.11591/eei.v10i5.3160.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

https://doi.org/10.1109/ReConFig.2013.6732315
https://doi.org/10.1109/ICCSP.2014.6949951
https://doi.org/10.1007/s11265-016-1185-
https://doi.org/10.1016/j.micpro.2017.10.011
https://doi.org/10.1016/j.micpro.2017.10.011
https://doi.org/10.1109/asap.2015.7245733
https://doi.org/10.1007/978-3-319-68161-0

FPGA implementation of sobel edge detection algorithm

7

[17] M. A. Dávila-Guzmán, R. G. Tejero, M. Villarroya-Gaudó,
D. S. Gracia, L. Kalms, and D. Göhringer, “A Cross-
platform openVX library for FPGA accelerators,” In
Proceedings of the 29th Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing, PDP 2021, 2021, pp. 75–83, doi:
10.1109/PDP52278.2021.00020.

[18] Ahmed Khazal Younis, Basma MohammedKamal Younis,
Mohammed Sabah Jarjees, “Hardware implementation of
Sobel edge detection system for blood cells images-based
field programmable gate array”, Indonesian Journal of
Electrical Engineering and Computer Science, 26, (1),
2022, pp. 86~95 ISSN: 2502-4752, DOI:
10.11591/ijeecs.v26.i1.pp86-95.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

