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Abstract 

INTRODUCTION: Gaming has evolved over the years, and one of the exciting developments in the industry is the 
integration of hand gesture recognition. 
OBJECTIVES: This paper proposes gaming using different hand gestures using Artificial Neural Networks which allows 
players to interact with games using natural hand movements, providing a more immersive and intuitive gaming experience. 
METHODS: Introduces two modules: recognition and analysis of gestures. The gesture recognition module identifies the 
gestures, and the analysis module assesses them to execute game controls based on the calculated analysis. 
RESULTS: The main results obtained in this paper are enhanced accessibility, higher accuracy and improved performance. 
CONCLUSION: To communicate with any of the traditional systems, physical contact is necessary. In the hand gesture 
recognition system, the same functionality can be interpreted by gestures without requiring physical contact with the 
interfaced devices. 
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1. Introduction

In the past decade, computer technology has made 
remarkable advancements, becoming an essential part of our 
daily lives. While keyboards have traditionally played a 
central role in Human-Computer Interaction (HCI), there are 
situations in the real world where they may not be the most 
suitable means of facilitating this interaction. Hand gestures, 
as a highly natural and intuitive HCI technique, have emerged 
as a promising alternative to replace traditional keyboards. 
Leveraging camera technology for vision-based computer 
control can eliminate the need for physical keyboards 
altogether. 

An example of hand gestures in HCI is evident in the 
Nintendo Wii, which sold over 50 million units within its first 

year of release. This gaming console demonstrated how 
motion controls have not only shaped the future of the 
gaming industry but also significantly boosted video game 
sales. When it comes to one-on-one computer interaction, 
hand gestures used in HCI offer a Natural User Interface 
(NUI) that is highly intuitive and effective. 
New devices and techniques for using hand gestures to 
control the cursor have been the subject of numerous 
investigations. The technique is made much more crucial by 
the usage of hand gesture recognition in HCI and sign 
language recognition [1]. The gestures can be recognized 
using the gesture recognition module. The analysis module 
will then use the derived analysis to perform game controls 
after analysing a human hand motion. This method is also 
beneficial for athletes who may have injuries or physical 
impairments. Through analysis, users might be able to utilise 
identical gestures to accomplish different functions. 
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2. Motivation

Gamers have long grappled with the tedious and monotonous 
challenge of operating a keyboard, mouse, joystick, and 
various other computer peripherals for extended periods. As 
players grow tired of this routine, it can ultimately lead to 
losses for game companies. It is crucial to innovate and 
introduce a fresh approach for gaming to create a more 
dynamic, aesthetically pleasing, and enjoyable gaming 
environment. Our motivation stems from the desire to 
develop a system that allows gamers to fully immerse 
themselves in their gaming experience without the 
frustrations of cumbersome equipment. This drive is fueled 
by the shortcomings observed in the gaming industry and the 
shared vision of enhancing player interaction. For new 
advances to be made and for players to have new 
opportunities to play games in novel ways, a revolution must 
first take place prior to all of this. 

The user experience is elevated significantly by this. 
Our reliance on dated peripheral devices would decrease 
thanks to gesture control technology, which would also result 
in a reduction in the system's overall complexity. Initially, 
this technology was primarily envisioned for gaming 
purposes, as seen with the Xbox Kinect. Nevertheless, by 
expanding the application of motion and gesture control 
technology to various devices like personal computers, 
televisions, and beyond, it can cater to a wider range of uses, 
including everyday tasks such as scrolling, selecting, and 
clicking [2,3] 

This device serves as a means to virtually control a 
computer by detecting hand gestures, essentially providing us 
with a virtual interface to interact with the computer. 
However, due to limitations in budget and schedule, 
producing the required hardware for a device of this nature 
was not feasible. The main goal in crafting this system was to 
design a tool that drew inspiration from Leap Motion [4,5]. 

3. Literature Review

Akula et al [1] have Proposed   a distinctive application that 
integrates with the game. Input and interaction devices play a 
crucial role in gaming, enabling human interaction. In recent 
times, various technologies have been employed to control 
computer-based systems. Human interaction can take various 
forms, including gestures, speech, and text. Among these, 
gesture interaction is particularly well-suited for gaming. 
Additionally, the stochastic gradient descent approach to 
hand gesture recognition offers an efficient method to track 
both static and dynamic hand gestures. 
Tanay et al [2] have developed a system for gesture 
recognition application that leverages a connected camera or 
webcam to detect and interpret human hand gestures. The 
application's primary function is to analyse these gestures and 
convert them into corresponding actions, utilising the default 
controls of a game. It also comes equipped with a 
comprehensive set of guidelines for identifying and 

interpreting hand gestures performed on the palm of a 
person's hand. It's important to note that the development of 
a fully robust hand gesture recognition system is an ongoing 
area of research and development. This system's work 
represents a preliminary contribution towards establishing a 
flexible foundation for future endeavours in this field. 
Ahmed et al [3] have proposed a straightforward game system 
that relies on hand gestures to evaluate performance, 
cognitive load, comfort, and player satisfaction when 
utilising these gesture-based devices. The research findings 
indicated that participants exhibited a strong preference for 
and performed notably better when using Leap Motion and 
Kinect in comparison to RealSense. Leap Motion, in 
particular, displayed superior performance, or at the very 
least, matched the performance of Kinect. These findings 
were further supported by player feedback, which highlighted 
their positive experiences with these gesture-based devices. 
In light of these conclusions, delve into the potential 
applications of such devices for game designers and provide 
a series of design considerations to offer valuable insights for 
the development of gesture-based games. 
Kanishk et al [4] have suggested that everyone, particularly 
individuals with disabilities, should have the opportunity to 
live independently. In recent decades, technology has been 
increasingly focused on empowering individuals with 
disabilities to take control of their lives to the greatest extent 
possible. An assistive system designed for the visually 
impaired, enabling them to gain awareness of their 
surroundings. It achieves this by utilising YOLO, a deep 
neural network-based object detection method, to quickly 
identify objects within images and video streams. The system 
is implemented using OpenCV in Python on a Raspberry Pi 
3. The outcomes of this endeavour demonstrate the
effectiveness of the proposed model in providing blind users
with the ability to navigate unfamiliar indoor and outdoor
environments. This is accomplished through a user-friendly
device that incorporates person and object identification
capabilities.
D. Perez et al [5] proposed object detection, a widely
recognized field within computer technology, closely
associated with computer vision and image processing. The
main goal is to detect and recognize objects or instances
belonging to particular categories (e.g., humans, flowers,
animals) within digital images and videos. This technology
has been extensively researched and applied in various
domains, encompassing tasks like face detection, character
recognition, and vehicle counting. Object detection finds
application in diverse areas, including image retrieval and
surveillance. This research delves into the fundamental
principles of object detection, employing the Python 2.7-
based OpenCV library as a vital resource for investigation
and practical application.
Swiechowski et al [6] suggested the object detection system
described here is designed to identify real-world objects
within digital images or videos. These objects can belong to
various classes, including humans, cars, and more. For
effective object detection in images or videos, the system
depends on several essential elements: a model database, a
feature detector, a hypothesis generator, and a hypothesis
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verifier. This document provides a comprehensive overview 
of the various methods employed for object detection, 
localization, categorization, as well as feature and 
appearance information extraction in both images and 
videos. 
Kalyanam et al [7] suggested that Object detection and 
tracking are critical, primarily because they deal with the 
persistent challenges posed by changes in object movement, 
fluctuations in scene size, occlusions, modifications in 
appearance, shifts in ego-motion, and variations in 
illumination. In particular, the process of feature selection 
holds immense significance within the context of object 
tracking. This area of research remains significant for a wide 
range of real-time applications, including vehicle perception 
and video surveillance, among others. To tackle the 
obstacles associated with object detection and tracking, 
numerous algorithms focus on improving the continuity and 
consistency of video sequences. Conversely, a subset of 
methods leverages pre-existing information regarding object 
attributes like shape, colour, and texture. This research 
focuses on the analysis and discussion of tracking algorithms 
that amalgamate the aforementioned object parameters, 
aiming to provide a comprehensive solution to the complex 
task of object tracking in dynamic environments. 

4. Implementation of Proposed System

Capturing Images: At this stage, the device's video camera is 
employed to capture an image of the user's hand, ensuring that 
the hand is clearly visible on the screen as per the user's 
requirement. The computer then identifies that the user is 
presenting their hand during this phase. To accomplish this, 
the code makes use of the MediaPipe Python package. Data is 
received from the video camera with the aid of MediaPipe 33 
3D landmarks are inferred by MediaPipe using machine 
learning from a single image. Four separate segments of the 
hand image are created for improved processing. Moreover, 
grid lines are utilised to more accurately depict the hands and 
actions. 

Image Manipulation: Unwanted noise and disturbances are 
eliminated at this stage. If this phase is skipped, the undesired 
information may interfere with the detection's accuracy. 
Filtering and smoothening are done here. 

Feature Selection: In this study, the issue of feature 
extraction was addressed through the application of two 
distinct methods: hand contour and complex moments. These 
two extraction techniques were selected due to their utilisation 
of different approaches in feature extraction. Hand contour 
relies on a boundary-oriented approach, whereas complex 
moments employ a region-based approach. These feature 
extraction algorithms were utilised to resolve common 
challenges encountered in hand gesture recognition, such as 
scaling, translation, and rotation [6,7,8]. 

Categorization: In the categorization phase, neural networks 

are employed to recognize the gesture image based on the 
extracted features. In this stage, concerns related to the 
performance are thoroughly examined and convergence of the 
neural network algorithm. Artificial Neural Networks (ANN) 
have found extensive use as a classification method, 
particularly in real-world applications. This is due to their 
capability to operate in parallel and perform online training. 

Figure: 1 Architecture of 
Proposed System

4.1 Issues & Challenges in Existing System 

Using a webcam to accurately detect the hand is the first 
difficult task. For this, a computer vision library is required. 
In this system OpenCV is used because it is the most widely 
translated into many languages and is supported by a wide 
range of operating systems, including Windows and 
Android. It has a decent selection of common image 
processing features. Next, OpenCV for our IDE (Python 3x 
Idle) is set up. Also, fundamentals of using OpenCV must be 
understood. Skin recognition methods must be 
comprehended after understanding OpenCV, as well as 
background subtraction, image smoothing, noise reduction, 
and noise removal methods. The foundational application 

     Capturing Images 
(Resizing,rotating,translatin

g and adjusting lighting 
conditions)

     Image Manipulation 
(Refining,Enhancing,,etc..) 

     Feature Selection 
(Hand Contour & Complex 

Moments) 
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Contour based data
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based on the hand after accurately identifying it and mapping 
the movements must be developed. Given the high cost 
associated with top-tier cameras and sensors, this system 
opted to utilise a simple webcam instead [4,9,10]. 

4.2 Problem Statement 

Hand gestures have a wide range of potential applications for 
interacting with systems, including video games, UAV 
control, medical equipment operation, and more. These 
gestures can also provide a means of interaction for 
individuals with disabilities, offering an alternative to 
traditional input devices like keyboards, mice, and 
touchscreens that require physical contact with the interface. 
However, a challenge in utilising hand gestures lies in 
interpreting them accurately. The same gesture performed by 
different individuals may appear differently while serving the 
same function. Deep learning techniques, notably 
Convolutional Neural Networks (CNNs), have risen as 
valuable tools for addressing the challenges of gesture 
recognition. Nonetheless, one limitation of deep learning 
approaches is their potential performance issues in real-world 
recognition scenarios, often demanding significant 
computational power for gesture processing [11,12]. 

4.3 Algorithm & Pseudo Code 

Algorithm 

● Open Visual Studio Code. 
● Install the necessary libraries: OpenCV, Mediapipe and 

Python. 
● Start writing the Code in the Python file. 
● Import the required libraries. 
● Create a video capture object. 
● Initialise the hand tracking module from Mediapipe. 
● Create a drawing utility for the landmarks detected by 

Mediapipe. 
● Start the main loop to read frames from the video 

capture object. 
● Perform hand gesture recognition using the landmarks 

obtained from step 8. 
● Use a machine learning algorithm (Artificial Neural 

Networks) for this task. 
● Display the output on the screen. 
● Release the video capture object and destroy any open 

windows. 

Pseudo Code 

●  Import the necessary libraries. 
●  Create a video capture object. 
●  Initialise the hand tracking module from Media pipe. 
●  Create a drawing utility for the landmarks detected by 

Media pipe. 

●  Start the main loop to read frames from the video capture 
object. 

●  Read a frame from the video capture object. While true: 
●  Convert the frame to RGB format for processing by 

Media pipe. 
●  Process the frame using Media pipe. 
●  Check if any hand is detected in the frame and get the 

landmarks. 
●  Perform hand gesture recognition using the landmarks 

obtained from above. Use a machine learning algorithm 
or a rule-based system for this task. 

●  Display the output on the screen. 
●  Release the video capture object and destroy any open 

windows. 

4.4 Module Description 

Pose Estimation 

Posture estimation is a crucial component of hand gesture 
recognition since it aids in identifying and following the 
major points or landmarks of the hand. For recognizing 
hand gestures, MediaPipe offers a posture estimation 
package for Python. Human pose estimation from video 
feeds or real-time sources is a critical aspect in various 
domains, including full body gesture control, quantifying 
physical activity, and sign language recognition. 
MediaPipe Pose stands out as a framework for highly 
accurate body pose tracking. It operates by taking input 
from RGB (Red Green Blue) video frames and deducing 
the positions of 21 3D landmarks across the entire human 
body. 

Current state-of-the-art methods often depend on high-
performance desktop computing setups for inference, and 
this approach excels in terms of performance, delivering 
impressive real- time results. Leveraging machine 
learning algorithms, it becomes possible to recognize 
hand gestures by analysing the landmarks obtained from 
MediaPipe's pose estimation module. 

In Figure 2, 21 3D landmarks of Hand show the landmarks 
of the hand marked on the entire hand. The numbering of 
the landmark starts from 0 and ends with 20 and hence the 
complete human hand has 21 3D landmarks on the hand to 
play games using hand gestures. According to the 
landmarks identified and then the shape of the hand shown 
to the camera is finalised and edges of the hand are 
recognized, and action is performed. 
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Figure:2 21 3D landmarks of Hand 

Preprocessing 

Preprocessing is a crucial module in the recognition 
of hand gestures since it helps to improve the quality of the 
input data, reduce noise, and increase the precision of the 
recognition algorithm. For the purpose of recognizing hand 
gestures, Python’s OpenCV library offers a variety of image 
preprocessing tools. In this Phase the BGR (Blue Green Red) 
image is converted to RGB image. The system’s 
computational complexity can be decreased by converting 
the image, which can also increase recognition precision. In 
this Preprocessing to improve the process performance, 
prepare a model or image as not writable. As completed or 
trained the model then made a model or image as writable 
and covert back the RGB image to BGR image [13,14]. 

Feature Extraction 

The process of feature extraction is a pivotal 
component in hand gesture recognition. OpenCV in 
Python offers a range of functions for performing 
feature extraction in the context of hand gesture 
recognition. 

In the field of image processing and pattern 
recognition, feature extraction serves as a specific type 
of dimensionality reduction. When dealing with large 
input data that may contain considerable redundancy, 
this process involves transforming the data into a more 
compact set of features, commonly known as a feature 
vector. This transformation of input data into a reduced 
feature set is termed "feature extraction." This module 
focuses on analysing features such as the height, width, 
finger counts, and image coordinates of the hand visible 
to the camera. 

Segmentation 

In the process of recognition, the goal is to distinguish the 
hand from the background and extract information suitable 
for classification. OpenCV for Python offers several 

segmentation techniques that can be applied in hand 
gesture recognition. This segmented hand can then be used 
for classification purposes, particularly in identifying 
characters as letters and converting the image into text. 

Once the image is cleaned and transformed into a binary 
format containing only the text, it is saved, and memory 
resources are released. This step is crucial for enhancing 
system speed. Following segmentation, the classification 
phase comes into play. The gesture image is identified using 
neural networks, leveraging the extracted features for 
recognition. In this phase, various challenges related to 
neural network algorithm recognition and convergence are 
analyzed. ANN serve as a prevalent classification method, 
especially in real-world applications, owing to their 
capacity for parallel processing and online training. 

Import Libraries 

Import necessary libraries, in our system only three 
libraries are required. 

Initializing model 

Initialization of the Holistic model and the utilisation of 
drawing utilities for the purpose of detecting and illustrating 
landmarks on the image. 

 

Figure 3: Initialising Holistic model 

Implementation 

The procedure includes the identification of facial and hand 
landmarks within an image by employing the Holistic model. 
This model analyses the image, identifying landmarks for the 
face, left hand, and right hand, while also detecting the pose 
of the hand movement. 
 

To accomplish this, a continuous stream of frames is captured 
from the camera using OpenCV. To obtain a live webcam feed, 
the initial line in the main function is modified to "cap = 
cv2.VideoCapture(0)." The captured BGR image is 
subsequently converted into an RGB image to facilitate 

import mediapipe 

as mp import cv2 
import pydirectinput 

mp_draw=mp.solutions.drawing_utils 

mp_holistic=mp.solutions.holistic 

mp_pose=mp.solutions.pose 
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predictions using a pre-initialized holistic model. 
The predictions generated by the holistic model are then stored 
in the "results" variable.The landmarks for the face, right 
hand, and left hand can be accessed using 

"results.facelandmarks," 
"results.righthandlandmarks,"and 
"results.lefthandlandmarks" respectively. 

 
To visualise these landmarks, the "drawlandmarks" function 
from drawing utilities is employed, and the detected 
landmarks are illustrated on the image. The resulting image is 
used to portray pose movements according to the axis, 
enhancing the image window's interactivity. 

5. Implementation & Testing 

Input Design of Hand Gesture System 

 
Figure 4: Input Image for Hand Gesture System 

 

In Figure 4, Input Image for Hand Gesture System shows that 
the button present in hill climbing race (Brake) is operated 
through the gesture of closed palm. The registered gesture for 
performing the action of the brake button is closed palm. 
So,When the closed palm is shown to the camera the palm is 
recognized and the action of the brake button is performed. 
There are different buttons present in the game like brake, 
gas. Where both the buttons are replaced by the hand 
gestures. 

Output Design of Hand Gesture System 

Output Image for Hand Gesture System in 
Figure 5, describes that the hand gesture to operate the 
brake button is captured and in this figure the action is 
performed through operating the brake button. The 
registered gesture for performing the action of the brake 
button is closed palm. So, when the closed palm is 
shown to the camera the palm is recognized and the 
action of the brake button is performed. Hence the game 
can be played using different hand gestures. The game 
is played here with the hand gestures. 
 

 
 

 
Figure 5: Output Image for Hand Gesture System 

Testing 

System Testing-Segmentation 

Input 
main.py 

import cv2 
import mediapipe as mp 
import time 
from directkeys import 
rightpressed,leftpressed,uppressed,downpresse
d from directkeys import PressKey , 
ReleaseKey brakekeypressed=leftpressed 
acceleratekeypressed=rightpressed 
jumpkeypressed=uppressed 
slidekeypressed=downpressed 
time.sleep(2.0) #suspends execution for a no.of 
sec 
currentkeypressed=set( ) # build an unordered 
collection of unique elements assigns to a 
variable 
mp draw=mp.solutions.drawingutils #solution 
for drawingutils mp hand=mp.solutions.hands 
#solution for handpose tipIds=[4,8,12,16,20] # 
List of landmarks of tip of fingers 
video=cv2.VideoCapture(0) #Start capturing 
video from webcam,0 refers to computer or 
default camera 
with mphand.Hands(max numhands =1 
,mindetection confidence=0.5, #max numhands 
= no.of.hands to be detected at a time 
mintracking confidence=0.5)as hands: 

# mindetection confidence=min 

confidence value for 

detectedperson−model to be 
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considered as successful . 
whileTrue: 

#mintrackingconfidence=min 

confidence value with which the 

detection from the landmar k − 

tracking model must be 
considered as successful keyPressed=False 
brakepressed=False acceleratorpressed=False 
jumppressed=False slidepressed=False 
keycount=0 keypressed=0 
ret,image=video.read( ) #Readvideoframe by 
frame & rechecks whether camera is working(1) 
or not(0) 
image=cv2.cvtColor(image,cv2.COLOR 
BGR2RGB ) #Convert BGR image to RGB 
image as opencv gives us BGR image 
image.flags.writeable=False directkeys.py 
import ctypes import time 
SendInput=ctypes.windll.user32.SendInputright
pressed=0x4D uppressed=0x48 
downpressed=0x50 leftpressed=0x4B 
PULS=ctypes.POINTER(ctypes.culong) Class 
KeyBdInput(ctypes.Structure): 
fields=[(”wVk”,ctypes.cushort),(”wScan 
”,ctypes.cushort) ,(”dwFlags ” 
,ctypes.culong),(”time”,ctypes.culong),(”dwExtr
aInfo”,PULS)] class 
HardwareInput(ctypes.Structure) : 
fields=[(”uMsg”,ctypes.culong),(”wParamL”,ct
ypes.cshort),(”wParamH”,ctypes.cushort)] class 
MouseInput(ctypes.Structure): 
fields=[(”dx”,ctypes.clong),(”dy”,ctypes.clong),
(”mouseData”,ctypes.culong),(”dwFlags”,ctyp 
es.culong),(”time”,ctypes.culong),(”dwExtraInf
o”, PULS ) ] 

Test Result 

 

Figure 6: Hand Gesture System-Test result 
 

In Figure 6, System testing results of the Hand Gesture 
System describes that the system testing is done. Here, it is 
verified whether the system is working or not and whether 
the game can be played using hand gestures and whether the 
webcam is activated, and frames are detected or not. the 
testing done using the system here. This System is 
completely working, and System Testing is done 
successfully. During system testing, the integrated 
components that have passed integration testing are used as 
input. The objective of integration testing is to identify any 
anomalies or inconsistencies that may arise when combining 
these integrated units. 

6. Results and Discussions 

Efficiency of the proposed system 

The proposed system employs a shape-based methodology 
encompassing multiple stages for recognizing hand 
gestures, including palm recognition and finger counting. 
It represents an effort to consolidate various endeavours in 
the field of gesture recognition, with a primary focus on 
gaming applications. Currently, the system's primary 
domain of application is gaming. 

In comparison to prior methods, the system has achieved 
an approximately 22 percent increase in success rates. To 
enhance its robustness, several obstacles present in earlier 
approaches have been addressed and eliminated. The 
ultimate goal of the system is to empower users to create 
personalised gestures for triggering specific events or 
actions across different domains. 

However, it's important to note that the system cannot 
entirely replace the conventional computer keyboard. This 
limitation arises from the common use of computers in 
outdoor settings with suboptimal lighting conditions. 

Comparison of Existing and Proposed system 

Table 1: Comparison Table for 
Existing and Proposed System 

 
  

Classification Accuracy 
Existing Model 

K-Means 
Algorithm & 

CNN 

64.8% 

Proposed Model 
Artificial 
Neural 

Networks 

86.3% 
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Existing System:(K-means algorithm and 
CNN) 

In the current system, hand classification following detection 
is carried out using the K-means algorithm. Through the 
combination of the K-means algorithm model and CNN for 
classification, the system transforms detected gestures into 
actionable commands, primarily for game control purposes. 
During testing, this approach is applied to games such as 
Rock, Paper and Scissors, Hill Climb Racing, and Off-Road 
Super Racing. The system allows for control using both 
static and dynamic gestures, with dynamic gestures serving 
to modify game controls [10,11]. 

The results obtained indicate that HCI can be achieved with 
minimal hardware requirements, although the accuracy of 
the output is lower when compared to the proposed system. 
The proposed system aims to establish a unique application 
that integrates with games. Additionally, it introduces a 
stochastic gradient descent-based hand gesture recognition 
system, which efficiently tracks both static and dynamic 
hand gestures. 

Proposed System: (ANN Algorithm) 

The system under consideration tackles the task of creating 
a vision-based static hand gesture recognition algorithm with 
a specific focus on recognizing four commonly used static 
hand gestures: left, right, up, and down arrows. These 
gestures were selected due to their frequent use in 
communication and their potential applications, including 
creating a virtual keyboard for specific software. 
 

Feature selection techniques are employed to handle typical 
challenges encountered in hand gesture recognition, 
including scaling, translation, and rotation. In the 
classification stage, neural networks are leveraged to identify 
the gesture image using the extracted features, and this phase 
includes an examination of issues related to neural network 
recognition and convergence. ANN are chosen as the 
classification method, as they are widely adopted, 
particularly in real-world applications, due to their parallel 
processing capabilities. The implemented proposed system 
aims to achieve higher accuracy compared to the existing 
system, enhancing the recognition of static hand gestures for 
improved performance. 

7. Conclusion and Future Enhancements 

Conclusion 

 A computer vision-based system for controlling the 
keyboard cursor using hand gestures has been developed 
using the Python language and the OpenCV library. 
MediaPipe package is used for highly accurate pose tracking. 
This system allows users to control the movement of a virtual 

keyboard key by tracking their hand, primarily for gaming 
applications. Various hand gestures are employed to activate 
different keyboard key functions. Although the system holds 
promise as a viable alternative to the conventional computer 
keyboard, it is important to note that certain limitations and 
restrictions currently prevent it from entirely supplanting the 
keyboard. 

Future Enhancements 

The application proposed in this paper can be seen as an 
initial stride in the domain of HCI applications, and there 
exists substantial potential for considerable improvements 
and advancements. It has the capacity for extension to 
include mouse cursor control through the incorporation of 
additional HCI concepts and OpenCV algorithms. To further 
enhance accuracy, the integration of Neural Networks-based 
logic can be explored. Tracking performance can be 
improved to ensure better results. For enhanced precision in 
hand gesture recognition, adopting a template matching 
approach along with a machine learning classifier is an 
option. Although this implementation may require a longer 
development timeline, it is expected to result in improved 
accuracy in gesture recognition. 
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