
EAI Endorsed Transactions
on Internet of Things Research Article

1

Gaming using different hand gestures using
artificial neural network
Prema S1*, G. Deena2, Hemalatha D1, Aruna K. B3, Hashini S1

1Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai
2SRMIST, Ramapuram Campus, Chennai
3S.A. Engineering College, Chennai

Abstract

INTRODUCTION: Gaming has evolved over the years, and one of the exciting developments in the industry is the
integration of hand gesture recognition.
OBJECTIVES: This paper proposes gaming using different hand gestures using Artificial Neural Networks which allows
players to interact with games using natural hand movements, providing a more immersive and intuitive gaming experience.
METHODS: Introduces two modules: recognition and analysis of gestures. The gesture recognition module identifies the
gestures, and the analysis module assesses them to execute game controls based on the calculated analysis.
RESULTS: The main results obtained in this paper are enhanced accessibility, higher accuracy and improved performance.
CONCLUSION: To communicate with any of the traditional systems, physical contact is necessary. In the hand gesture
recognition system, the same functionality can be interpreted by gestures without requiring physical contact with the
interfaced devices.

Keywords: Hand gestures; Physical controller; Gesture recognition; Gaming controls; Analysis of gestures

Received on 22 November 2023, accepted on 15 February 2024, published on 21 February 2024

Copyright © 2024 Prema S. et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetiot.5169

*Corresponding author. Email: premas89@gmail.com

1. Introduction

In the past decade, computer technology has made
remarkable advancements, becoming an essential part of our
daily lives. While keyboards have traditionally played a
central role in Human-Computer Interaction (HCI), there are
situations in the real world where they may not be the most
suitable means of facilitating this interaction. Hand gestures,
as a highly natural and intuitive HCI technique, have emerged
as a promising alternative to replace traditional keyboards.
Leveraging camera technology for vision-based computer
control can eliminate the need for physical keyboards
altogether.

An example of hand gestures in HCI is evident in the
Nintendo Wii, which sold over 50 million units within its first

year of release. This gaming console demonstrated how
motion controls have not only shaped the future of the
gaming industry but also significantly boosted video game
sales. When it comes to one-on-one computer interaction,
hand gestures used in HCI offer a Natural User Interface
(NUI) that is highly intuitive and effective.
New devices and techniques for using hand gestures to
control the cursor have been the subject of numerous
investigations. The technique is made much more crucial by
the usage of hand gesture recognition in HCI and sign
language recognition [1]. The gestures can be recognized
using the gesture recognition module. The analysis module
will then use the derived analysis to perform game controls
after analysing a human hand motion. This method is also
beneficial for athletes who may have injuries or physical
impairments. Through analysis, users might be able to utilise
identical gestures to accomplish different functions.

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:premas89@gmail.com

 Prema.S. et al.

2

2. Motivation

Gamers have long grappled with the tedious and monotonous
challenge of operating a keyboard, mouse, joystick, and
various other computer peripherals for extended periods. As
players grow tired of this routine, it can ultimately lead to
losses for game companies. It is crucial to innovate and
introduce a fresh approach for gaming to create a more
dynamic, aesthetically pleasing, and enjoyable gaming
environment. Our motivation stems from the desire to
develop a system that allows gamers to fully immerse
themselves in their gaming experience without the
frustrations of cumbersome equipment. This drive is fueled
by the shortcomings observed in the gaming industry and the
shared vision of enhancing player interaction. For new
advances to be made and for players to have new
opportunities to play games in novel ways, a revolution must
first take place prior to all of this.

The user experience is elevated significantly by this.
Our reliance on dated peripheral devices would decrease
thanks to gesture control technology, which would also result
in a reduction in the system's overall complexity. Initially,
this technology was primarily envisioned for gaming
purposes, as seen with the Xbox Kinect. Nevertheless, by
expanding the application of motion and gesture control
technology to various devices like personal computers,
televisions, and beyond, it can cater to a wider range of uses,
including everyday tasks such as scrolling, selecting, and
clicking [2,3]

This device serves as a means to virtually control a
computer by detecting hand gestures, essentially providing us
with a virtual interface to interact with the computer.
However, due to limitations in budget and schedule,
producing the required hardware for a device of this nature
was not feasible. The main goal in crafting this system was to
design a tool that drew inspiration from Leap Motion [4,5].

3. Literature Review

Akula et al [1] have Proposed a distinctive application that
integrates with the game. Input and interaction devices play a
crucial role in gaming, enabling human interaction. In recent
times, various technologies have been employed to control
computer-based systems. Human interaction can take various
forms, including gestures, speech, and text. Among these,
gesture interaction is particularly well-suited for gaming.
Additionally, the stochastic gradient descent approach to
hand gesture recognition offers an efficient method to track
both static and dynamic hand gestures.
Tanay et al [2] have developed a system for gesture
recognition application that leverages a connected camera or
webcam to detect and interpret human hand gestures. The
application's primary function is to analyse these gestures and
convert them into corresponding actions, utilising the default
controls of a game. It also comes equipped with a
comprehensive set of guidelines for identifying and

interpreting hand gestures performed on the palm of a
person's hand. It's important to note that the development of
a fully robust hand gesture recognition system is an ongoing
area of research and development. This system's work
represents a preliminary contribution towards establishing a
flexible foundation for future endeavours in this field.
Ahmed et al [3] have proposed a straightforward game system
that relies on hand gestures to evaluate performance,
cognitive load, comfort, and player satisfaction when
utilising these gesture-based devices. The research findings
indicated that participants exhibited a strong preference for
and performed notably better when using Leap Motion and
Kinect in comparison to RealSense. Leap Motion, in
particular, displayed superior performance, or at the very
least, matched the performance of Kinect. These findings
were further supported by player feedback, which highlighted
their positive experiences with these gesture-based devices.
In light of these conclusions, delve into the potential
applications of such devices for game designers and provide
a series of design considerations to offer valuable insights for
the development of gesture-based games.
Kanishk et al [4] have suggested that everyone, particularly
individuals with disabilities, should have the opportunity to
live independently. In recent decades, technology has been
increasingly focused on empowering individuals with
disabilities to take control of their lives to the greatest extent
possible. An assistive system designed for the visually
impaired, enabling them to gain awareness of their
surroundings. It achieves this by utilising YOLO, a deep
neural network-based object detection method, to quickly
identify objects within images and video streams. The system
is implemented using OpenCV in Python on a Raspberry Pi
3. The outcomes of this endeavour demonstrate the
effectiveness of the proposed model in providing blind users
with the ability to navigate unfamiliar indoor and outdoor
environments. This is accomplished through a user-friendly
device that incorporates person and object identification
capabilities.
D. Perez et al [5] proposed object detection, a widely
recognized field within computer technology, closely
associated with computer vision and image processing. The
main goal is to detect and recognize objects or instances
belonging to particular categories (e.g., humans, flowers,
animals) within digital images and videos. This technology
has been extensively researched and applied in various
domains, encompassing tasks like face detection, character
recognition, and vehicle counting. Object detection finds
application in diverse areas, including image retrieval and
surveillance. This research delves into the fundamental
principles of object detection, employing the Python 2.7-
based OpenCV library as a vital resource for investigation
and practical application.
Swiechowski et al [6] suggested the object detection system
described here is designed to identify real-world objects
within digital images or videos. These objects can belong to
various classes, including humans, cars, and more. For
effective object detection in images or videos, the system
depends on several essential elements: a model database, a
feature detector, a hypothesis generator, and a hypothesis

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Gaming using different hand gestures using artificial neural network

3

verifier. This document provides a comprehensive overview
of the various methods employed for object detection,
localization, categorization, as well as feature and
appearance information extraction in both images and
videos.
Kalyanam et al [7] suggested that Object detection and
tracking are critical, primarily because they deal with the
persistent challenges posed by changes in object movement,
fluctuations in scene size, occlusions, modifications in
appearance, shifts in ego-motion, and variations in
illumination. In particular, the process of feature selection
holds immense significance within the context of object
tracking. This area of research remains significant for a wide
range of real-time applications, including vehicle perception
and video surveillance, among others. To tackle the
obstacles associated with object detection and tracking,
numerous algorithms focus on improving the continuity and
consistency of video sequences. Conversely, a subset of
methods leverages pre-existing information regarding object
attributes like shape, colour, and texture. This research
focuses on the analysis and discussion of tracking algorithms
that amalgamate the aforementioned object parameters,
aiming to provide a comprehensive solution to the complex
task of object tracking in dynamic environments.

4. Implementation of Proposed System

Capturing Images: At this stage, the device's video camera is
employed to capture an image of the user's hand, ensuring that
the hand is clearly visible on the screen as per the user's
requirement. The computer then identifies that the user is
presenting their hand during this phase. To accomplish this,
the code makes use of the MediaPipe Python package. Data is
received from the video camera with the aid of MediaPipe 33
3D landmarks are inferred by MediaPipe using machine
learning from a single image. Four separate segments of the
hand image are created for improved processing. Moreover,
grid lines are utilised to more accurately depict the hands and
actions.

Image Manipulation: Unwanted noise and disturbances are
eliminated at this stage. If this phase is skipped, the undesired
information may interfere with the detection's accuracy.
Filtering and smoothening are done here.

Feature Selection: In this study, the issue of feature
extraction was addressed through the application of two
distinct methods: hand contour and complex moments. These
two extraction techniques were selected due to their utilisation
of different approaches in feature extraction. Hand contour
relies on a boundary-oriented approach, whereas complex
moments employ a region-based approach. These feature
extraction algorithms were utilised to resolve common
challenges encountered in hand gesture recognition, such as
scaling, translation, and rotation [6,7,8].

Categorization: In the categorization phase, neural networks

are employed to recognize the gesture image based on the
extracted features. In this stage, concerns related to the
performance are thoroughly examined and convergence of the
neural network algorithm. Artificial Neural Networks (ANN)
have found extensive use as a classification method,
particularly in real-world applications. This is due to their
capability to operate in parallel and perform online training.

Figure: 1 Architecture of
Proposed System

4.1 Issues & Challenges in Existing System

Using a webcam to accurately detect the hand is the first
difficult task. For this, a computer vision library is required.
In this system OpenCV is used because it is the most widely
translated into many languages and is supported by a wide
range of operating systems, including Windows and
Android. It has a decent selection of common image
processing features. Next, OpenCV for our IDE (Python 3x
Idle) is set up. Also, fundamentals of using OpenCV must be
understood. Skin recognition methods must be
comprehended after understanding OpenCV, as well as
background subtraction, image smoothing, noise reduction,
and noise removal methods. The foundational application

 Capturing Images
(Resizing,rotating,translatin

g and adjusting lighting
conditions)

 Image Manipulation
(Refining,Enhancing,,etc..)

 Feature Selection
(Hand Contour & Complex

Moments)

 Categorization
(Utilizing ANN)

 Assessing and
Contrasting Artificial Neural
Networks(ANNs) Utilizing

Contour based data

Image

Hand Region

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Prema.S. et al.

 4

based on the hand after accurately identifying it and mapping
the movements must be developed. Given the high cost
associated with top-tier cameras and sensors, this system
opted to utilise a simple webcam instead [4,9,10].

4.2 Problem Statement

Hand gestures have a wide range of potential applications for
interacting with systems, including video games, UAV
control, medical equipment operation, and more. These
gestures can also provide a means of interaction for
individuals with disabilities, offering an alternative to
traditional input devices like keyboards, mice, and
touchscreens that require physical contact with the interface.
However, a challenge in utilising hand gestures lies in
interpreting them accurately. The same gesture performed by
different individuals may appear differently while serving the
same function. Deep learning techniques, notably
Convolutional Neural Networks (CNNs), have risen as
valuable tools for addressing the challenges of gesture
recognition. Nonetheless, one limitation of deep learning
approaches is their potential performance issues in real-world
recognition scenarios, often demanding significant
computational power for gesture processing [11,12].

4.3 Algorithm & Pseudo Code

Algorithm

● Open Visual Studio Code.
● Install the necessary libraries: OpenCV, Mediapipe and

Python.
● Start writing the Code in the Python file.
● Import the required libraries.
● Create a video capture object.
● Initialise the hand tracking module from Mediapipe.
● Create a drawing utility for the landmarks detected by

Mediapipe.
● Start the main loop to read frames from the video

capture object.
● Perform hand gesture recognition using the landmarks

obtained from step 8.
● Use a machine learning algorithm (Artificial Neural

Networks) for this task.
● Display the output on the screen.
● Release the video capture object and destroy any open

windows.

Pseudo Code

● Import the necessary libraries.
● Create a video capture object.
● Initialise the hand tracking module from Media pipe.
● Create a drawing utility for the landmarks detected by

Media pipe.

● Start the main loop to read frames from the video capture
object.

● Read a frame from the video capture object. While true:
● Convert the frame to RGB format for processing by

Media pipe.
● Process the frame using Media pipe.
● Check if any hand is detected in the frame and get the

landmarks.
● Perform hand gesture recognition using the landmarks

obtained from above. Use a machine learning algorithm
or a rule-based system for this task.

● Display the output on the screen.
● Release the video capture object and destroy any open

windows.

4.4 Module Description

Pose Estimation

Posture estimation is a crucial component of hand gesture
recognition since it aids in identifying and following the
major points or landmarks of the hand. For recognizing
hand gestures, MediaPipe offers a posture estimation
package for Python. Human pose estimation from video
feeds or real-time sources is a critical aspect in various
domains, including full body gesture control, quantifying
physical activity, and sign language recognition.
MediaPipe Pose stands out as a framework for highly
accurate body pose tracking. It operates by taking input
from RGB (Red Green Blue) video frames and deducing
the positions of 21 3D landmarks across the entire human
body.

Current state-of-the-art methods often depend on high-
performance desktop computing setups for inference, and
this approach excels in terms of performance, delivering
impressive real- time results. Leveraging machine
learning algorithms, it becomes possible to recognize
hand gestures by analysing the landmarks obtained from
MediaPipe's pose estimation module.

In Figure 2, 21 3D landmarks of Hand show the landmarks
of the hand marked on the entire hand. The numbering of
the landmark starts from 0 and ends with 20 and hence the
complete human hand has 21 3D landmarks on the hand to
play games using hand gestures. According to the
landmarks identified and then the shape of the hand shown
to the camera is finalised and edges of the hand are
recognized, and action is performed.

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Gaming using different hand gestures using artificial neural network

5

Figure:2 21 3D landmarks of Hand

Preprocessing

Preprocessing is a crucial module in the recognition
of hand gestures since it helps to improve the quality of the
input data, reduce noise, and increase the precision of the
recognition algorithm. For the purpose of recognizing hand
gestures, Python’s OpenCV library offers a variety of image
preprocessing tools. In this Phase the BGR (Blue Green Red)
image is converted to RGB image. The system’s
computational complexity can be decreased by converting
the image, which can also increase recognition precision. In
this Preprocessing to improve the process performance,
prepare a model or image as not writable. As completed or
trained the model then made a model or image as writable
and covert back the RGB image to BGR image [13,14].

Feature Extraction

The process of feature extraction is a pivotal
component in hand gesture recognition. OpenCV in
Python offers a range of functions for performing
feature extraction in the context of hand gesture
recognition.

In the field of image processing and pattern
recognition, feature extraction serves as a specific type
of dimensionality reduction. When dealing with large
input data that may contain considerable redundancy,
this process involves transforming the data into a more
compact set of features, commonly known as a feature
vector. This transformation of input data into a reduced
feature set is termed "feature extraction." This module
focuses on analysing features such as the height, width,
finger counts, and image coordinates of the hand visible
to the camera.

Segmentation

In the process of recognition, the goal is to distinguish the
hand from the background and extract information suitable
for classification. OpenCV for Python offers several

segmentation techniques that can be applied in hand
gesture recognition. This segmented hand can then be used
for classification purposes, particularly in identifying
characters as letters and converting the image into text.

Once the image is cleaned and transformed into a binary
format containing only the text, it is saved, and memory
resources are released. This step is crucial for enhancing
system speed. Following segmentation, the classification
phase comes into play. The gesture image is identified using
neural networks, leveraging the extracted features for
recognition. In this phase, various challenges related to
neural network algorithm recognition and convergence are
analyzed. ANN serve as a prevalent classification method,
especially in real-world applications, owing to their
capacity for parallel processing and online training.

Import Libraries

Import necessary libraries, in our system only three
libraries are required.

Initializing model

Initialization of the Holistic model and the utilisation of
drawing utilities for the purpose of detecting and illustrating
landmarks on the image.

Figure 3: Initialising Holistic model

Implementation

The procedure includes the identification of facial and hand
landmarks within an image by employing the Holistic model.
This model analyses the image, identifying landmarks for the
face, left hand, and right hand, while also detecting the pose
of the hand movement.

To accomplish this, a continuous stream of frames is captured
from the camera using OpenCV. To obtain a live webcam feed,
the initial line in the main function is modified to "cap =
cv2.VideoCapture(0)." The captured BGR image is
subsequently converted into an RGB image to facilitate

import mediapipe

as mp import cv2
import pydirectinput

mp_draw=mp.solutions.drawing_utils

mp_holistic=mp.solutions.holistic

mp_pose=mp.solutions.pose

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Prema.S. et al.

 6

predictions using a pre-initialized holistic model.
The predictions generated by the holistic model are then stored
in the "results" variable.The landmarks for the face, right
hand, and left hand can be accessed using

"results.facelandmarks,"
"results.righthandlandmarks,"and
"results.lefthandlandmarks" respectively.

To visualise these landmarks, the "drawlandmarks" function
from drawing utilities is employed, and the detected
landmarks are illustrated on the image. The resulting image is
used to portray pose movements according to the axis,
enhancing the image window's interactivity.

5. Implementation & Testing

Input Design of Hand Gesture System

Figure 4: Input Image for Hand Gesture System

In Figure 4, Input Image for Hand Gesture System shows that
the button present in hill climbing race (Brake) is operated
through the gesture of closed palm. The registered gesture for
performing the action of the brake button is closed palm.
So,When the closed palm is shown to the camera the palm is
recognized and the action of the brake button is performed.
There are different buttons present in the game like brake,
gas. Where both the buttons are replaced by the hand
gestures.

Output Design of Hand Gesture System

Output Image for Hand Gesture System in
Figure 5, describes that the hand gesture to operate the
brake button is captured and in this figure the action is
performed through operating the brake button. The
registered gesture for performing the action of the brake
button is closed palm. So, when the closed palm is
shown to the camera the palm is recognized and the
action of the brake button is performed. Hence the game
can be played using different hand gestures. The game
is played here with the hand gestures.

Figure 5: Output Image for Hand Gesture System

Testing

System Testing-Segmentation

Input
main.py

import cv2
import mediapipe as mp
import time
from directkeys import
rightpressed,leftpressed,uppressed,downpresse
d from directkeys import PressKey ,
ReleaseKey brakekeypressed=leftpressed
acceleratekeypressed=rightpressed
jumpkeypressed=uppressed
slidekeypressed=downpressed
time.sleep(2.0) #suspends execution for a no.of
sec
currentkeypressed=set() # build an unordered
collection of unique elements assigns to a
variable
mp draw=mp.solutions.drawingutils #solution
for drawingutils mp hand=mp.solutions.hands
#solution for handpose tipIds=[4,8,12,16,20] #
List of landmarks of tip of fingers
video=cv2.VideoCapture(0) #Start capturing
video from webcam,0 refers to computer or
default camera
with mphand.Hands(max numhands =1
,mindetection confidence=0.5, #max numhands
= no.of.hands to be detected at a time
mintracking confidence=0.5)as hands:

mindetection confidence=min

confidence value for

detectedperson−model to be

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Gaming using different hand gestures using artificial neural network

7

considered as successful .
whileTrue:

#mintrackingconfidence=min

confidence value with which the

detection from the landmar k −

tracking model must be
considered as successful keyPressed=False
brakepressed=False acceleratorpressed=False
jumppressed=False slidepressed=False
keycount=0 keypressed=0
ret,image=video.read() #Readvideoframe by
frame & rechecks whether camera is working(1)
or not(0)
image=cv2.cvtColor(image,cv2.COLOR
BGR2RGB) #Convert BGR image to RGB
image as opencv gives us BGR image
image.flags.writeable=False directkeys.py
import ctypes import time
SendInput=ctypes.windll.user32.SendInputright
pressed=0x4D uppressed=0x48
downpressed=0x50 leftpressed=0x4B
PULS=ctypes.POINTER(ctypes.culong) Class
KeyBdInput(ctypes.Structure):
fields=[(”wVk”,ctypes.cushort),(”wScan
”,ctypes.cushort) ,(”dwFlags ”
,ctypes.culong),(”time”,ctypes.culong),(”dwExtr
aInfo”,PULS)] class
HardwareInput(ctypes.Structure) :
fields=[(”uMsg”,ctypes.culong),(”wParamL”,ct
ypes.cshort),(”wParamH”,ctypes.cushort)] class
MouseInput(ctypes.Structure):
fields=[(”dx”,ctypes.clong),(”dy”,ctypes.clong),
(”mouseData”,ctypes.culong),(”dwFlags”,ctyp
es.culong),(”time”,ctypes.culong),(”dwExtraInf
o”, PULS)]

Test Result

Figure 6: Hand Gesture System-Test result

In Figure 6, System testing results of the Hand Gesture
System describes that the system testing is done. Here, it is
verified whether the system is working or not and whether
the game can be played using hand gestures and whether the
webcam is activated, and frames are detected or not. the
testing done using the system here. This System is
completely working, and System Testing is done
successfully. During system testing, the integrated
components that have passed integration testing are used as
input. The objective of integration testing is to identify any
anomalies or inconsistencies that may arise when combining
these integrated units.

6. Results and Discussions

Efficiency of the proposed system

The proposed system employs a shape-based methodology
encompassing multiple stages for recognizing hand
gestures, including palm recognition and finger counting.
It represents an effort to consolidate various endeavours in
the field of gesture recognition, with a primary focus on
gaming applications. Currently, the system's primary
domain of application is gaming.

In comparison to prior methods, the system has achieved
an approximately 22 percent increase in success rates. To
enhance its robustness, several obstacles present in earlier
approaches have been addressed and eliminated. The
ultimate goal of the system is to empower users to create
personalised gestures for triggering specific events or
actions across different domains.

However, it's important to note that the system cannot
entirely replace the conventional computer keyboard. This
limitation arises from the common use of computers in
outdoor settings with suboptimal lighting conditions.

Comparison of Existing and Proposed system

Table 1: Comparison Table for
Existing and Proposed System

Classification Accuracy
Existing Model

K-Means
Algorithm &

CNN

64.8%

Proposed Model
Artificial
Neural

Networks

86.3%

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Prema.S. et al.

 8

Existing System:(K-means algorithm and
CNN)

In the current system, hand classification following detection
is carried out using the K-means algorithm. Through the
combination of the K-means algorithm model and CNN for
classification, the system transforms detected gestures into
actionable commands, primarily for game control purposes.
During testing, this approach is applied to games such as
Rock, Paper and Scissors, Hill Climb Racing, and Off-Road
Super Racing. The system allows for control using both
static and dynamic gestures, with dynamic gestures serving
to modify game controls [10,11].

The results obtained indicate that HCI can be achieved with
minimal hardware requirements, although the accuracy of
the output is lower when compared to the proposed system.
The proposed system aims to establish a unique application
that integrates with games. Additionally, it introduces a
stochastic gradient descent-based hand gesture recognition
system, which efficiently tracks both static and dynamic
hand gestures.

Proposed System: (ANN Algorithm)

The system under consideration tackles the task of creating
a vision-based static hand gesture recognition algorithm with
a specific focus on recognizing four commonly used static
hand gestures: left, right, up, and down arrows. These
gestures were selected due to their frequent use in
communication and their potential applications, including
creating a virtual keyboard for specific software.

Feature selection techniques are employed to handle typical
challenges encountered in hand gesture recognition,
including scaling, translation, and rotation. In the
classification stage, neural networks are leveraged to identify
the gesture image using the extracted features, and this phase
includes an examination of issues related to neural network
recognition and convergence. ANN are chosen as the
classification method, as they are widely adopted,
particularly in real-world applications, due to their parallel
processing capabilities. The implemented proposed system
aims to achieve higher accuracy compared to the existing
system, enhancing the recognition of static hand gestures for
improved performance.

7. Conclusion and Future Enhancements

Conclusion

 A computer vision-based system for controlling the
keyboard cursor using hand gestures has been developed
using the Python language and the OpenCV library.
MediaPipe package is used for highly accurate pose tracking.
This system allows users to control the movement of a virtual

keyboard key by tracking their hand, primarily for gaming
applications. Various hand gestures are employed to activate
different keyboard key functions. Although the system holds
promise as a viable alternative to the conventional computer
keyboard, it is important to note that certain limitations and
restrictions currently prevent it from entirely supplanting the
keyboard.

Future Enhancements

The application proposed in this paper can be seen as an
initial stride in the domain of HCI applications, and there
exists substantial potential for considerable improvements
and advancements. It has the capacity for extension to
include mouse cursor control through the incorporation of
additional HCI concepts and OpenCV algorithms. To further
enhance accuracy, the integration of Neural Networks-based
logic can be explored. Tracking performance can be
improved to ensure better results. For enhanced precision in
hand gesture recognition, adopting a template matching
approach along with a machine learning classifier is an
option. Although this implementation may require a longer
development timeline, it is expected to result in improved
accuracy in gesture recognition.

Acknowledgements.

I thank my co-authors Dr. G. Deena, Ms. Hemalatha. D, Ms.
Aruna K. B, Ms. Hashini S for their expertise and assistance
throughout all aspects of our study and for their help in
writing the manuscript.

References
[1] Akula G, Shitanshu R, Aditya D. Playing Games Using Hand
Gesture Recognition. International Research Journal of
Modernization in Engineering Technology and Science.2022; Vol.
04, pp.662-668.

[2] Tanay T, Vidya B. Hand Gesture Controlled Gaming
Application. International Research Journal of Engineering and
Technology (IRJET). 2021; Vol. 8, No. 4, pp. 3654.

[3] Ahmed S, Ali A. A Comparative Study of Hand-Gesture
Recognition Devices for Games. National Science Foundation
government Journal.2020; pp. 397-402.

[4] Kanishk C, Khushboo S, Mahak S, Mayank S. Gesture
Recognition using OpenCV. International Journal of Advanced
Networking Applications (IJANA).2018; Vol. 5, No. 4, pp. 3528.

[5] Perez D, Samothrakis S, Togelius J, Schaul T, Lucas S. The
2014 general video game playing competition. IEEE Transactions
on Computational Intelligence and AI in Games.2016; Vol. 8, No.
3, pp. 229.

[6] Nhat V, Majed Q, Yu Z, Haoren Z, Cungang Y. Hand Gesture
Recognition System for Games. IEEE Asia-Pacific Conference on
Computer Science and Data Engineering (CSDE),2022; pp. 1-6.

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

 Gaming using different hand gestures using artificial neural network

9

[7] Świechowski M, Mandziuk J. Specialisation of a UCT- based
General Game Playing Program to Single-Player Games. IEEE
Transactions on Computational Intelligence and AI in Games.2015;
vol. 8, no. 3, pp. 218-228.

[8] Richa D, Pooja L, Nongmeikapam T. Different Categories of
Feature Extraction and Machine Learning Classification Models
Used for Hand Gesture Recognition Systems. A Review, IEEE 8th
International Conference for Convergence in Technology (I2CT).
2023; pp. 1-7.

[9] Urvil P, Sourabh R, Vipin S, Xing T. Gesture Recognition Using
MediaPipe for Online Real Time Gameplay. IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT).2022; pp. 223-229.

[10] Wu J, Kalyanam R, Givan R. Stochastic enforced hill-
climbing. Journal of Artificial Intelligence Research.2011; Vol. 42,
pp. 815–850.

[11] Rafi A, Rezki Y, Agus K. Hand Gesture Recognition for
Controlling Game Objects Using Two- Stream Faster Region
Convolutional Neural Networks Methods. International Conference
on Information Technology Research and Innovation
(ICITRI).2022; pp. 59-64.

[12] Perez D, Samothrakis S, Lucas S. Knowledge-based fast
evolutionary MCTS for general video game playing. IEEE
Conference on Computational Intelligence and Games
(CIG’14).2014; pp. 1–8.

[13] Manoj, G, Manohar, V, Banoth, R, Prasad, S, Sreeja, P. Game
Controlling using Hand Gestures. IEEE Conference on
Advancements in Smart, Secure and Intelligent Computing
(ASSIC), 2022; pp. 1-5.

[14] Elisa C, Tiemi S, Luciana Z. Playing a Computational
Thinking Game using Hand Gestures. IEEE International
Conference on Advanced Learning Technologies (ICALT),2019;
pp. 105-109.

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

	Figure: 1 Architecture of Proposed System
	"results.facelandmarks," "results.righthandlandmarks,"and "results.lefthandlandmarks" respectively.

