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Abstract 

The reliability of fuel cells during testing is crucial for their development on test benches. For the development of fuel cells 
on test benches, it is essential to maintain their dependability during testing. It is only possible for the alarm module of the 
control software to identify the most serious failures because of the large operating parameter range of a fuel cell. This study 
presents a novel approach to monitoring fuel cell stacks during testing that relies on machine learning to ensure precise 
outcomes. The use of machine learning to track fuel cell operating variables can achieve improvements in performance, 
economy, and reliability. ML enables intelligent decision-making for efficient fuel cell operation in varied and dynamic 
environments through the power of data analytics and pattern recognition. Evaluating the performance of fuel cells is the 
first and most important step in establishing their reliability and durability. This introduces methods that track the fuel cell's 
performance using digital twins and clustering-based approaches to monitor the test bench's operating circumstances. The 
only way to detect the rate of accelerated degradation in the test scenarios is by using the digital twin LSTM-NN model that 
is used to evaluate fuel cell performance. The proposed methods demonstrate their ability to detect discrepancies that the 
state-of-the-art test bench monitoring system overlooked, using real-world test data. An automated monitoring method can 
be used at a testing facility to accurately track the operation of fuel cells. 
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1. Introduction

Hydrogen is a zero-emissions fuel source since its 
combustion produces only water. Therefore, hydrogen 
energy is a viable means to either a low-carbon or carbon-
neutral economy [1, 2]. In addition, hydrogen is a possible 
future energy carrier [3,20], with 1 kilogramme of 
hydrogen-containing 33.33 kWh of usable energy 
compared to only roughly 12 kWh in petrol and diesel 
[4,19]. The fuel cell is the most widely utilized technology 

for transforming the chemical energy of hydrogen into 
electricity for use in mobile and stationary power 
generation. However, the main obstacles that prevent the 
commercialization of this clean energy alternative are the 
fuel cells' limited durability and reliability [5,12]. Fuel cell 
status monitoring approaches for realistic durability and 
reliability evaluation are crucial for overcoming these 
obstacles. The user may keep tabs on the condition of the 
fuel cell in real-time with the help of these methods by 
sensing the parameters that reflect the fuel cell's state at a 
predetermined rate. Using visualization and data-driven 
methodologies, the user can obtain pertinent information 
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regarding the fuel cell's condition. With this data in hand, 
one can judge the longevity and dependability of fuel cells 
[17,18,19]. 
        Although it is difficult to carry out, the alleged over 
50% or 51.5% attack is a security concern for Bitcoin. As 
Bitcoin mining becomes more challenging, miners join 
pools to coordinate their computational power [20,21]. The 
network of Bitcoin gets threatened when a collection grows 
so strong that it can control more than half of the mining 
power. A gang might alter transactions by mining "invalid" 
blocks or double-spending if it were to acquire this much 
power. Because most miners use ASICS mining rigs, they 
can only operate through pools [22,23]. The energy in some 
collections is so great that it might get abused. For instance, 
Bitmain Tech.'s Chinese mining pool Antpool, is 
controlled by around 27% of the computing power. The 
combined force would be perilously close to 50% if 
colluded with another collection. Users of Bitcoin would 
be worried about reaching that magic number [24,25]. 
Genuine miners will, however, always recognise the need 
to exercise caution. Therefore, 51 per cent of attacks are 
unlikely to occur. Most of Bitcoin's security issues and 
vulnerabilities are connected to its use, not the blockchain 
network. Therefore, most of them can be fixed to prevent 
further cryptocurrency-related problems. These issues and 
how they may affect investments should be known to all 
Bitcoin investors [26,27]. 
    The first and most crucial stage in determining whether 
or not fuel cells are reliable and long-lasting is to evaluate 
their performance. The fuel cell's voltage-current (VeI) 
curve is often used in these evaluations [6,7]. The VeI 
curve may be derived by experimentation [8, 9], physical 
modelling [10, 11], or data analysis [12, 13]. By altering 
the operational conditions—for example, by switching 
between loads [7,28,]—the experimental methods can 
acquire the voltage at various current points. These 
methods provide the VeI curve immediately, albeit at the 
expense of expensive testing. Parameters for the fuel cell's 
electrochemical characteristics a derived from the physical 
environment, and biological modelling approaches 
describe these features using tools like the Nernst equation 
[10,29] and other equations [14,30]. While physical models 
improve the understanding of the fuel cell's physics, they 
often simplify the underlying complex processes to 
streamline model derivation at the expense of accuracy. In 
contrast to these two methods, data-driven methods, 
including support vector machines [12,31,32,33] and 
neural networks [13,34,35,36], train the curve directly from 
fuel cell operational data. Unmeasured operating points 
may be estimated and predicted using data-driven methods 
[15,37,38], but this requires substantial operational data 
[39,40].  

2. Proposed Methodology 

The circumstances under which fuel cell stacks operate 
are controlled by test bench software. A partial rundown of 
the operating circumstances comprises the following: stack 

current, intake gas temperatures, pressures, stoichiometry 
and humidity, for cathode and anode; cooling inlet 
temperatures and pressures; and either the flowing rate or 
the temperature of the cooling outflow [14]. Operating 
conditions and stack history affect the stack voltage, which 
determines the electrical power output of the fuel cell. 
             Fuel cell stacks, like other electrochemical 
systems, experience power loss with time, resulting in a 
low stack voltage at a constant loading. The fuel cell ageing 
behaviour is inclined by several degradation processes, 
which may be classified as either reversible or irreversible 
[15]. 
Ghosh et al.'s 2023 study on machine learning for [16] 
water quality analysis, 'Water Quality Assessment Through 
Predictive Machine Learning', explores predictive 
analytics for water parameters. In 2023, Rahat and Ghosh's 
'Unraveling the Heterogeneity [17] of Lower-Grade 
Gliomas' discusses the use of deep learning in brain MR 
image analysis for medical insights. The 2023 work [18] 
by Ghosh, Rahat, and their team, 'Potato Leaf Disease 
Recognition and Prediction using Convolutional Neural 
Networks', demonstrates the use of neural networks in 
detecting potato leaf diseases. Mandava, Vinta, Ghosh, and 
Rahat's 2023 research, 'An All-Inclusive Machine Learning 
and Deep [19] Learning Method for Forecasting 
Cardiovascular Disease in Bangladeshi Population', 
integrates [20] AI for health forecasting. The study 
'Identification and Categorization of Yellow Rust Infection 
in Wheat through Deep Learning Techniques' by Mandava 
et al. in 2023, applies deep learning to wheat disease 
detection. Khasim, Rahat, Ghosh, and others' 2023 article, 
'Using Deep [`21] Learning and Machine Learning: Real-
Time Discernment and Diagnostics of Rice-Leaf Diseases 
in Bangladesh', explores AI in rice-leaf disease diagnosis. 
In 2023, Khasim, Ghosh, Rahat [22] and colleagues' 
'Deciphering Microorganisms through Intelligent Image 
Recognition' discusses machine learning for 
microorganism identification. Mohanty, Ghosh, Rahat, and 
Reddy's 2023 study, 'Advanced [23] Deep Learning 
Models for Corn Leaf Disease Classification', focuses on 
deep learning for classifying corn leaf diseases. Alenezi 
and team's 2021 research [24]'Block-Greedy and CNN 
Based Underwater Image Dehazing for Novel Depth 
Estimation and Optimal Ambient Light' investigates CNN 
methods for underwater image enhancement. 
 
         Special procedures, such as turning off the fuel cells 
and then turning them back later, may cause voltage loss 
produced by reversible degradation processes. The severity 
of the degradation processes is affected by the fuel cell 
operating strategy besides the quality of the reactant.  
        The power output of a stack is affected not only by the 
stack's age but also by the operational dynamics. After a 
load point change, fuel cells settle into a constant voltage 
level after a short period. Based on the primary load fact, 
this nonlinear ramp grows or decreases in steepness. 
       Oscillations in managing the operating conditions lead 
to changes in the stack voltage since the stack voltage 
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depends on the operational circumstances specified by the 
test bench. 
           Lifetime observing of a power cell load requires 2 
prime considerations due to the power cell's operational 
and degrading procedures. 
                In the first step ensuring proper functioning is 
monitoring the test bench's predetermined operating 
conditions. Simple machine learning approaches, such as 
clustering, may be utilized since the operational 
circumstances of every particular load signal do not vary in 
the lifespan of the heap. Second, it should monitor the fuel 
cell's output. Because of the fuel cell's ageing behaviour, 
more advanced ML approaches that account for fuel cell 
ageing must be applied. 

2.1. Fuel cell Monitoring system:  

A standard load cycle is used throughout the length of a 
fuel cell durability test. As a result, several test iterations 
are performed at each stress point in the load cycle The test 
bench must maintain consistency in every parameter with 
their historical value at the same point. This is because the 
working conditions at every load remain constant.  If the 
variables set by the test benches show a statistically 
significant difference from their corresponding historical 
values at any load point, it is considered anomalous and is 
flagged. A probabilistic approach to cluster and analyse the 
load spots is necessary for implementing this kind of 
monitoring. 
 

        Data points in a multidimensional space may be 
grouped using clustering algorithms based on their 
similarities. Here, the groups picked by the clustering 
technique stand in for the separate load points in the load 
set, and the space dimensions are associated with the 
parameters that define the weight cycle Distributed 
clustering systems like the Gaussian mixture method [16] 
not only assign new information points to pre-existing 
clusters but determines the possibility that these points 
belong to those clusters. Putting a 3 on this likelihood could 
help us find data points that don't fit into any current cluster 
with a 98% certainty level, which are known as outliers. 

 
           This may be made easier if the test bench software's 
data logs included a separate indication for each load point. 
Separating the data by marker allows us to examine each 
load point separately. The results at each load point are then 
used to inform a probabilistic categorization obtained by 
fixing a multivariate usual distribution. A new data point is 
considered abnormal if it falls beyond the 3-gap of the 
multivariate usual spreading of the associated load point. 

2.2. Fuel cell performance:  

A digital depiction with all the info about the original 
thing that can replicate its behaviour [17], is used to track 
how well the stack performs. To estimate the power cell's 
typical cell voltage under specified circumstances, the DT 

is used here. As shown in Fig. 1, the average cell voltage 
may be predicted by feeding the operating circumstances 
on the test bench which is determined for the actual power 
cell into the digital twin method. After that, decide whether 
the power cell's performance was normal by comparison 
with the expected and measured voltages. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Predicted operational with predicted 
classification. 

The digital twin model may be constructed in many ways, 
including physically, via data, or as a combination of the 
two (a "grey box"). Due to the many parameters and age-
related impacts that impact fuel cell efficiency, an 
information-driven model method is used for the DT. The 
fuel cell's complicated behaviour necessitates using neural 
networks in the DT model. For the predictions, first use a 
"vanilla" feed-forward neural net, and then build upon this 
foundation with a "memory" neural network. 

               The fuel cell durability test runs for 3,500 hours, 
yielding 13.1 million information points used to train both 
models The power cell load series (14) was used to produce 
the load series utilized for the durable test. This test 
simulates 4 4-city driving series, followed by a time limit 
for driving on a motorway. 31 load points are repeated for 
3100 hours using FC-DLC, and a polarisation curve is 
recorded every third cycle. After a workweek of weight 
cycling, the power cell is turned off for one hour to restore 
the reversible cell voltage deterioration. 12.9 million 
information points are used for training after excluding 
information gathered during the startup and shutdown 
phases of the load cycle. 
          The information set is at 5 different load point. 
Therefore, for the last 29s at each load point, the average 
cell voltage across the stack has been calculated. The 
ageing behaviour of the fuel cell stack may be better 
understood after going through this process. As shown in 
Fig. 2, the mass suffers power loss since the average cell 
voltage declines with time for a fixed load. Following a 
reversible ageing process, the plot displays a weekly 
sawtooth-like profile due to a one-hour regeneration phase. 
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       Although there are over 12.2 million records in the 
database, each was recorded by cycling through the same 
31-point load cycle approximately 450 times. The power 
cell's irreversible and reversible degrading properties are 
the primary drivers of variation across these 31 load stages. 
As a result, there are only 31 unique observations from 
which to learn how different factors affect fuel cell 
performance. In addition, all operational variables are 
related to the current dragged from the power cell 
according to the manufacturer's operation strategy. 
Consequently, the model cannot provide insight into the 
effect of a single operating parameter since all operational 
parameters of every 31 load points are interrelated. 
However, the sum of unique information points increases 
due to ramps in the load change and fluctuations in the test 
bench control. The whole data set is utilised without any 
data aggregation or sampling during the training of the 
models. As shown in Fig. 2, the entire dataset is broken 
down into manageable chunks that are then divided 75:25 
between training and validation data sets. While data points 
for both the warranty and training background are drawn 
from the same distribution, statistical independence is 
ensured using batching. The last step is to train the 
networks on the training data set and check their 
development by making predictions on the validation 
information set. 
     Several adjust hyperparameters in the DT neural 
networks are used to improve accuracy. Some regulate the 
network structure, such as the total number of layers or 
neurons in each layer. The optimisation method's learning 
rate and parameters also impact model training. For the net 
training junction and forecast precision, hyperparameter 
selection is critical. As a result, optimising the network's 
hyperparameters is essential for hyperparameter 
optimisation, the KI-Lab.EE [18] is employed. The ZSW 
created this AutoML suite at the Centre for Hydrogen 
Energy and Solar Research. The PGPE-algorithm [19]-
based hyperparameter tuning approach it uses intelligently 
probes the hyperparameter space of the neural network's 
hyperparameters. 
         The whole dataset is used during training, the trained 
networks are assessed using two test datasets subjected to 
the exact load measurements. On the same test bench, 
however, obtain a first information set with 4,200 hrs of 
operation, and this generation of the better stack shows a 
distinct cell voltage level and ageing behaviour. The next 
dataset, consisting of 4,400 operational hours, was 
acquired on separate test benches using the same 
generation of fuel cell stack as the training dataset. The 
dynamic behaviour of the two test benches is distinct 
because of the varied methods they were constructed. 
Furthermore, all sensors have slightly different 
calibrations. 
As seen in Fig. 2, employ transmission learning [20] to 
modify the pre-trained method using the first 2000 hrs of 
the test information sets. This procedure proves the 
reliability of the model and its ability to make accurate 
predictions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Data sets are shifted in 75:25 into training 
and validation datasets. 

FF-NN:  
              In a feed-forward neural network, each layer is 
made up of many individual process elements termed 
neurons, which together generate a stream of activations 
with a real-valued output. Activation yk of the kth neuron 
is defined as: 

𝑦𝑦 = 𝜎𝜎�𝑤𝑤𝑤𝑤 + 𝑏𝑏 

           Each neuron in the first layer, the input layer, is fed 
a value from the model's input vector. The activations are 
propagated through the network through weighted 
connections between the neurons of each successive layer 
until they reach the output layer, where the system 
forecasting is displayed [21]. The term "training" is used to 
describe the process of optimising the weights and biases 
of a neural network's connections. 
                 To do this, the training prediction fault is 
propagated back through the net, and the heaviness is 
adjusted based on the error gradient [22]. Finding the ideal 
set of weights for a neural network, which might include 
millions of nodes, is a computationally intensive operation 
often run on a graphics processing unit (GPU). 
            KI-Lab.EE automatically selects 20 inputs for this 
application. The most important operational parameters are 
stack current, anode and cathode in- and out gas 
temperature, pressure, humidity and stochiometry, coolant 
in- and out temperature, coolant flowing rate and running 
duration. Feature engineering enhances the data set since 
FF-NNs cannot integrate past occurrences. The network 
can represent fuel cell history by encoding shutdown, OCV 
events, and the final load point with artificial 
characteristics. Network output is stacking average cell 
voltage. 

A cutoff value is needed to categorize the discrepancy 
between the forecasted and actual normal cell voltage as 
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pathological. Models that produce normally distributed 
predictions can use the root-mean-squared error (RMSE) 
on the transfer-learning dataset as a measure of prediction 
confidence. That is why the model's prediction is the same 
as the expected value of the normal spreading under 
Gaussian conditions, and RMSE on the transfer learning 
dataset is the same as the distribution's standard deviation. 
Measurements are considered out of the ordinary if they 
deviate from predictions by more than 3. 

 The recurrent units of a recurrent neural network (RNN) 
include internal feedback loops that allow the network to 
recall past events. During training, the network learns 
which events are most important to store, making it a 
highly adaptable model. However, during the exercise, it is 
necessary to consider the current forecasting error and all 
previous forecasts. This process, known as back-
propagation over time [23], involves repeatedly 
multiplying the erroneous gradients by the network's 
weights until the slopes either explode or disappear, 
rendering the RNN untrainable. 

        Gates that exclusively affect the BP error in long 
short-term memory neural nets solve this problem. LSTM 
cells have 4- gates with trained masses and a unit state C, 
unlike artificial neurons. 

=  𝜎𝜎(𝑤𝑤. 𝑤𝑤 + 𝑏𝑏 + 𝑤𝑤ℎ + 𝑏𝑏) 

3. Discussion and Result  

3.1. Operational condition: 

3.1.1. Cool power shortage:  
After approximately 120 operational hours, a secondary 
testing apparatus linked to the identical cooling conduit 
was initiated while acquiring the initial dataset. 
The circumstance above resulted in a deficit of cooling 
capacity, which ultimately gave rise to an elevation in 
temperature within the cooling circuit of the test bench 
during instances of high load that exceeded the coolant 
temperature as specified by the load cycle. Despite the 
observed variation in the operating conditions, which 
resulted in a three-mV shift in the cell voltage level, the 
digital twin model remains incapable of detecting this 
deviation due to its integration of the heightened coolant 
inlet temperature in its prognostication. 
The circumvention of this issue is achieved by excluding 
the cooling inlet temperature coming from the inputs of the 
DT. Nonetheless, this approach is limited to the input 
operating parameters in the decision tree. It necessitates 
significant computational resources, as a distinct decision 
tree must be trained for each excluded operating parameter. 
Furthermore, the alarm module of the test bench software 
failed to produce an alarm despite the marginal rise in 
cooling inlet degrees, which persisted within the power 
cell's operational thresholds. 

Assessed utilising the remaining data after being trained 
using the first 120 hours of operation. Figure 3 shows the 
three distinct load points, the cooling intake degree, and the 
associated system parameters. The four data and the second 
test bench in the process were correctly flagged as unusual 
by the trained model. 

 

 
Figure 3: Intake of coolant temperature with 

different point loads (30,35,36). 

The electronic coat is overcoming to solve the 
overheating issue:  
Overheating concerns with the test bench's electronic load, 
which feeds the fuel cell's power output into the local 
electrical grid, plagued a durability test on a different test 
bench. To prevent further heating, the electronic load 
decreased the power output, reducing the current flowing 
out of the stack. Once again, this occurrence went 
undetected by the test bench software. 
      So trained another model using the first 1200 hours and 
then checked how it did on the rest of the data. Yo, check 
out Fig. 4 The model nailed it and found all the data points 
where the stack acted weird compared to its usual behavior. 
The current stage received excellent current management 
of the electronic load, resulting in a hardly perceptible 3 -
3-interval of 0.3 A. This narrow 3-interval enables 
sensitive anomaly identification but may also incorrectly 
label nominal data items as abnormal. Figure 4 shows this 
behaviour at load points 34 and 36, with a maximum 
deviation of 0.5 A. This deviation may be considered 
normal by a testing engineer, but it is flagged as unusual by 
the model. 
  The problem is fixed by raising the categorization cutoff 
to 4. However, the problem can be avoided by having a 
testing engineer manually set a lower acceptable limit for 
the model's computed 3-interval based on the engineer's 
prior knowledge. 
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Figure 4: Load behavior at 34 and 36 with the 0.5A 

deviation correction 

4. Conclusion:  

 Clustering techniques for monitoring operational 
conditions are stable over extended periods and can detect 
any abnormalities in the test instances However, the 
controller for a functioning condition parameter is more 
accurate than the satisfactory deviation., false positive 
classifications result from the monitoring concept. This 
level of control ensures that the threshold for making a 
classification is lower than the allowable variation. It is 
possible to artificially raise the classification threshold by 
providing a more significant value for the permissible 
deviation of every operation variable. Having each load 
point independently monitored for its properties increases 
test reliability, even with the manually given values. 
       The digital twin LSTM-NN model employed for 
monitoring fuel cell performance is the only method to 
identify the accelerated deterioration rate in the test 
scenarios. The FF-NN's inability to accurately forecast the 
occurrence of events means that it cannot be used to detect 
influences of less than a few millivolts. This is because the 
LSTM-NN can factor in past circumstances while making 
forecasts. The digital twin can't use raw data to monitor the 
fuel cell because of how the model's detection threshold is 
defined. Each load point's measured and anticipated values 
must be averaged for an accurate categorization free of 
false positives. 
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