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Abstract 

INTRODUCTION: This paper addresses ship detection in satellite imagery through a deep learning approach, vital for maritime 
applications. Traditional methods face challenges with large datasets, motivating the adoption of deep learning techniques. 

OBJECTIVES: The primary objective is to present an algorithmic methodology for U-Net model training, focusing on 
achieving accuracy, efficiency, and robust ship detection. Overcoming manual limitations and enhancing real-time monitoring 
capabilities are key objectives. 

METHOD: The methodology involves dataset collection from Copernicus Open Hub, employing run-length encoding for 
efficient preprocessing, and utilizing a U-Net model trained on Sentinel-2 images. Data manipulation includes run-length 
encoding, masking, and balanced dataset preprocessing. 

RESULT: Results demonstrate the proposed deep learning model's effectiveness in handling diverse datasets, ensuring accuracy 
through U-Net architecture, and addressing imbalances. The algorithmic process showcases proficiency in ship detection. 

CONCLUSION: In conclusion, this paper contributes a comprehensive methodology for ship detection, significantly advancing 
accuracy, efficiency, and robustness in maritime applications. The U-Net-based model successfully automates ship detection, 
promising real-time monitoring enhancements and improved maritime security. 
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1. Introduction

In the recently revolutionized years, there has been a 
growing interest in using satellite imagery for a lot of 
detection activities. Ship detection is one of the crucial tasks 
that lies under this category and is used for various maritime 
applications. These applications include vessel traffic 
management, environmental monitoring, and maritime 

security. This ship detection field has wide coverage and 
high resolution and can capture information in different 
spectral brands. However, these real-time detection 
applications include large quantitative input and are hindered 
by the impracticality of manual analysis of vast amounts of 
satellite imagery. This results in a lot of time consumption 
and demands extensive human effort, limiting real-time 
applications. To address this challenge, deep learning 
techniques have been implemented in satellite imagery for 
ship detection. 
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1.1 Deep Learning Approach 

Deep learning is a specialized sub-field of machine learning 
that leverages artificial neural networks consisting of various 
interconnected multiple layers to generate and derive 
meaningful patterns and features. Deep learning has 
undeniably shown remarkable success in various computer 
vision tasks, demonstrating its potential in object detection, 
classification, and segmentation. Researchers have made 
significant progress utilizing deep-learning techniques for 
developing automated ship detection systems. As these 
systems use deep learning techniques, therefore, can process 
the vast amount of Sentinel imagery data in real-time. By 
leveraging deep learning algorithms, we can effectively 
analyze satellite images and accurately detect the ship. These 
algorithms allow the ship detection system to perform the 
detection based on large labeled datasets. It makes it feasible 
for applications that require quick response timing. The 
development of a model using a deep learning algorithm 
which offers the benefits of increasing efficiency and 
response time and reducing human error. The proposed deep 
learning approach will involve the training of the U-Net 
model. The dataset consists of  Sentinel-2 images to train the 
data. The data collection was collected from the Copernicus 
Open Hub and Google Earth Engine data catalog. The open 
and free policy of these sites made it easy to extract the most 
optimal data.The collected data is obtained in an encoded 
format. To make the data comfortable, the data is pre-
processed using pre-processing techniques. The data is 
masked and reconstructed through the lossless compression 
or run-length encoding process to reduce the complexity of 
the data. Finally, the data is divided into the train and 
validation datasets. The masked dataset is compressed but in 
an imbalanced form that is formatted and balanced by under-
sampling the data, which is finally sent as input for the deep 
learning model. This paper proposes the algorithmic-based 
methodology presentation for the training and evaluation of 
the deep learning model (U-Net), which contributes to the 
advancement of ship detection techniques in terms of 
accuracy, efficiency, and robustness. 

2. Background and Motivation 

Ship detection in satellite imagery is a crucial task with 
implications for maritime security, traffic management, and 
environmental monitoring. Traditional techniques reliant on 
manual inputs face limitations in adapting to diverse 
conditions. This motivates researchers to explore advanced 
methods, particularly leveraging deep learning techniques 
such as Convolutional Neural Networks (CNNs), which have 
revolutionized object detection. CNNs enable automatic 
learning of relevant features from raw data, enhancing ship 
detection accuracy and efficiency. The shift from traditional 
manual methods to deep learning models addresses 
challenges, offering opportunities to automate processes and 
achieve real-time monitoring. This motivation stems from 
the desire to overcome obstacles, improve accuracy, and 
streamline ship detection, impacting various applications in 
the field. 

2.2 Research Background 

Ship detection in satellite imagery is a very crucial and 
important task with multifaceted implications across various 
areas such as maritime security, maritime traffic 
management, and environmental monitoring. Traditional 
ship detection techniques typically rely on manual inputs, 
which limit their ability to adapt to large, diverse, and 
environmental conditions. These challenges let the 
researchers explore advanced techniques that can effectively 
address the existing constraints and improve the accuracy 
and efficiency of ship detection systems. 
 

2.3 Motivation 
 
In the developing era in the field of detection, recognition, 
and classification, with the help of deep learning techniques, 
particularly through (CNNs), have revolutionized computer 
vision tasks and have shown tremendous change and 
advancement in the field of object detection. Similarly, in the 
field of Ship Detection, CNNs can automatically learn the 
pertinent features from the raw data and make them suitable 
for detecting the ship in the present satellite imagery. By 
using the power of deep learning, the researchers can 
increase the accuracy and the robustness of the deep learning 
model, which reduces manual effort and saves a lot of time. 
The model’s background mainly works on using  traditional 
and manual methods to locate and detect the ship, which  
was a huge challenge for the scientists. The motivation for 
researchers in this area is to overcome these challenges and 
give them an opportunity to enhance ship detection accuracy, 
automate the process, and enable real-time monitoring. The 
impact of this extends to developing and increasing the 
efficiency of various applications in the domain. 

3. Literature Review 

Various Contributions have been made to ship detection over 
the years by researchers incorporating different techniques 
and models. Some of their prestigious work has been 
discussed. 
We have noticed a significant optimization and improvement 
in the field of Ship detection throughout the reviewed works, 
The key advancements that have been noticed include: 
 

● Evolution of new algorithms, such as adaptive 
CFAR methods, dual-polarization analysis, and 
fusion techniques using polarimetric features. 

● Utilization of convolutional neural networks 
(CNNs) for Ship detection and localization. 

 
● Improvement in accuracy, robustness, and error 

using multiple algorithms and adopting a 
combination of various Deep Learning models  
together providing a comparison among the best-fit 
models for their research. 

● Exploring the potential of SAR and PolSAR data 
for accurate and promising results. 
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Vachon et al. 1997, the author contributed to developing ship 
detection techniques using RADARSAT SAR data using 
microwave pulses.The final design is the result of an iterative 
procedure, balancing performance characteristics among 
subsystems to achieve the optimal design [1]  
Chong and Zhu. 2003 concluded a survey on ship and wake 
detection using SAR imagery highlighting the key 
challenges and approach.Different methods for the 
improvement of the original image are applied as a 
preprocessing technique for the Radon transformation [2] 
Xi et al. 2016 This paper introduced a PolSAR Ship detection 
model by combining polarimetric similarity and the third 
eigenvalue of the coherency matrix.To improve the detection 
performance of ship targets, this paper mainly develops the 
ship detection method based on the contrast enhancement 
utilizing the polarimetric scattering difference [6] 
"Sea-Land Segmentation With Res-UNet And Fully 
Connected CRF" by Z. Chu et al. (2019): In this research 
paper, the authors have proposed a segmentation method that 
fuses the Res-UNet model with Conditional Random Fields 
(CRF) for semantic segmentation of Sea-Land which is a key 
step for ship detection. It leverages the results of the previous 
models based on the Res-UNet Model. Then it  
employs the CRF method to refine and improve the accuracy 
of ship segmentation results, enabling precise ship 
identification and delineation [14] 
"Comparison of CNN and SVM for Ship Detection in 
Satellite Imagery" by A. Kurniawardhani et al. (2020): 
Published in 2020, this paper puts forward the approach of 
selecting the better-suited models, in this paper the author 
has compared the Support vector machine(SVM) algorithm 
to Convolution Neural Network (CNN) based deep learning 
algorithm which concludes that CNN outperforms SVM in 
ship detection with an average training accuracy of 99.12% 
[18]  
"Ship Detection in Sentinel 2 Multispectral Images with 
Self-Supervised Learning." by A. Ciocarlan et al. (2021):  
The author proposes a deep learning-based ship detection 
approach that enforces a self-supervised learning model 
designed for Sentinel-2 multispectral imagery. The model 
incorporates spectral information in the satellite images to 
attain better results [19] 
"Ship Detection and Segmentation using Unet" by S. Karki 
et al. (2021): Introduces us to a ship detection method that 
uses the U-Net architecture. The U-Net model is utilized for 
ship region segmentation and classification, allowing for 
accurate identification of ships in the images [22] 

4. Problem Statement 

The detection of ships using satellite imagery faces 
significant challenges that impede the development of 
accurate and robust algorithms. One critical obstacle is the 
presence of occlusions, where ships are partially obscured by 
landmasses, adverse weather conditions, or other maritime 
objects, leading to difficulties in achieving precise 
identifications. The diversity in ship sizes further 
complicates the task, requiring the development of models 
capable of consistently recognizing both small vessels and 
large maritime structures. The complex backgrounds often 
found in satellite imagery, such as coastlines and buildings, 

introduce noise and create a fertile ground for false positives 
and negatives during ship detection. Cloud cover obstructs 
visibility in satellite images, impacting the reliability of ship 
detection algorithms, and necessitating the development of 
techniques to handle obscured regions. Atmospheric 
conditions, including haze and fog, pose additional 
challenges, affecting image quality and thereby challenging 
the accuracy of ship detection models. Noise introduced by 
satellite sensors presents another hurdle, requiring strategies 
for noise reduction to ensure the clarity and precision of 
imagery. Accurate labeling of ships in densely populated 
maritime areas adds complexities, potentially introducing 
inaccuracies in model training and performance. 
Generalizing ship detection models across diverse 
geographic regions proves challenging, as models trained on 
specific datasets may struggle to adapt to different 
environmental characteristics and ship types. Furthermore, 
anomalies within satellite imagery, such as artifacts or 
distortions, impact the reliability and generalization 
capabilities of ship detection models. Finally, the need for 
real-time ship detection in dynamic maritime environments 
imposes constraints on algorithm efficiency and speed, 
emphasizing the necessity for rapid and accurate detection 
methods to meet operational requirements. Addressing these 
challenges is crucial for advancing the field of ship detection 
using satellite imagery, with implications for maritime 
surveillance, safety, and environmental monitoring. 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



A. Niranjan et al.  

4 

  
 

Fig. 1.  Problem faced by the traditional method for 
detection and localization of ship and the need for Deep 

Learning approach 

5. Study Definition and Dataset 

This research paper utilizes the Google Earth Engine Data 
Catalog and Copernicus Open Hub Sentinel-2 Dataset for 
ship detection, relying on high-resolution, hyperspectral 
images captured by Sentinel-2 satellites. The dataset, 
sourced from Copernicus Open Hub and Google Earth 
Engine, contains labeled images with dimensions of 
768x768x3 pixels, showcasing diverse scenes including 
coastlines, buildings, plateaus, and ships. Split into training 
and validation sets, the dataset encompasses instances of one 
or more ships, or none, each labeled with EncodedPixel 
information. 

5.1 Study Definition 
 
Satellite images are digital images of the Earth’s surface 
captured by satellites that are orbiting the Earth. These 
images can provide very important information about the 
Earth’s surface, weather patterns, land properties, 
atmosphere, and different environmental changes. Satellites 
are equipped with different types of cameras and sensors that 
help to transmit electromagnetic waves to create images. 
Images captured by the satellite are used for various purposes 
like weather forecasting, disaster management, environment 
monitoring, remote sensing, etc. 
 

5.2 Sentinel-2 Dataset 
 
This research paper focuses on the use of the Google Earth 
Engine Data Catalog and Copernicus Copernicus Open Hub 
Sentinel-2  Data for ship detection. Both are the main source 
for dataset collection for the image file. Sentinel-2 is a wide-
range band in a specific range of wavelengths within the 
electromagnetic spectrum captured and recorded by sensors 
or different instruments.  
It is a high-resolution, hyperspectral imaging mission that 
supports the Copernicus land monitoring program. It is a part 
of the European Union’s Copernicus earth observation 
program that aims to provide accurate and up-to-date 
information about the planet. Its assets contain 12 UINT16 
spectral bands that represent rescale pixel values by 1000; 
this rescaling is commonly done to convert the values from 
the original reflectance range (0-1) to a more convenient 
range for analysis and visualization.  
Sentinel-2 L2 assets have the following format: 
COPERNICUS/S2_SR/20151128T002653_20151128T102
149_T56MNN. Here the first numeric part represents the 
sensing date and time, the second numeric part represents the 
product generation date and time, and the final 6-character 
string is a unique granule identifier indicating its UTM grid 
reference. Dense clouds and foggy weather on the sentinel-2 
images can be removed using the following extension 
COPERNICUS/S2_CLOUD_PROBABILITY. 
 

5.3 Dataset 
 
The dataset is extracted from the Copernicus Open Hub 
database and Google Earth Engine data catalog which is an 
open-source data collection area for satellite imagery. The 
dataset consists of images of one ship, more than one ship, 
or no ship in each image. The dimension of each image 
is 768* 768* 3. The dataset is divided into two parts that are 
for training and validation. The dataset consists of  
different coastlines, buildings, plateaus, and ships. The 
dataset is labeled with EncodedPixel. 
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Fig. 2. The Flow Diagram explains how to detect the ship 
with the satellite images. This includes step-by-step 

methods to localize the ship by using U-Net Deep Learning 
techniques 

 

6. Methodology 

The methodology of this paper explains the start-to-end 
procedure for developing the Deep Learning model and the 
data regulating process. 
 

6.1 Data Overview 

Data extraction is a pivotal step in this research, conducted 
from the openly accessible Copernicus Open Hub database 
and the Google Earth Engine data catalog. Both repositories 
serve as rich sources for satellite imagery, aligning with the 
principles of open-source data sharing. Dataset encompasses 
a diverse array of images, featuring instances with localized 
ships, images showcasing single or multiple ships, and those 
devoid of any ship presence.To facilitate a structured dataset, 
ship labels are assigned using the concept of EncodedPixels. 
This involves assigning ship-segmented IDs and providing a 
detailed output of ship locations within each image. Notably, 
for images without any ship presence, a NaN (Not a Number) 
ID is allocated. This supervised labeling process allows for a 
better understanding of ship distribution patterns within the 
dataset. The utilization of Copernicus Open Hub (Open 
source) and Google Earth Engine aligns with the ethos of 
open-source data, fostering collaboration and accessibility in 
the realm of satellite imagery.  

 

Fig. 3. These sets of images are the data overview of the 
previously derived satellite images from Copernicus Open 
Hub.Data consist of images with one ship, more than one 

ship or no ship 

6.2 Data Manipulation 
 
Data manipulation was required as IDs were repeated for 
many labels (EncodedPixels) because they are  segmented 
from a single image. For further computation, we need to 
make data comfortable to use.  

6.2.1 Run Length Encoding (RLE) & Decoding 
 
Run-length encoding (lossless compression) allows the 
original data to be perfectly reconstructed in the form of 
compressed data. The procedure involves running through 
the data and counting how many times each point is repeated 
without any breaks. RLE compresses the data points, and the 
conversion is restored as the original data frame input. RLE 
works on the principle of lossless compression, where the 
data is compressed from a large input with multiple values 
for each special data value to a concise and compressed 
output for that given data value. With reference to the given 
(Fig. 4.), we can analyze the multiple data frequencies to be 
converted into the compressed form using RLE operation. 
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Fig. 4. The procedure involves running through the image 
and counting different times each point is repeated without 

any breaks in the data set 

6.2.2 Data Masking 
 
The converted dataset consists of a datatype (EncodedPixels) 
which explicitly shows the segmented location of the ship. 
Mask Query is used to filter out all the image IDs in the 
respected encoded pixels for a particular label of the image 
or the image ID for that specific column and obtain all RLE 
Masks for the given image. These masks are converted and 
split into strings of masked lists. Further, all the starting, 
ending, and lengths are stored in an array. Using these points, 
a formula is generated for creating an array for taking the 
valuable pixel values as 1 (only the ship will be represented) 
and remaining as 0 (the background except the ship is termed 
as negligible). Re-shaping of an array is also necessary for 
combining the ship masks and generating the final mask. The 
equation for constructing the masking array is: 

𝐸𝐸 = 𝑆𝑆 + 𝐿𝐿 − 1                                           (1) 

𝐸𝐸 : Pixels located at the ends 

𝑆𝑆 : Pixels located a the start 

𝐿𝐿 : Length where a ship can exist in the original image   

     

 Fig.  5. Mask-generated image from the RLE Data.Re-shaping of an array 
is also necessary for combining the ship masks and generating the final mask 
that is inverted in nature. 

 

6.2.3 Subplot Generation & Transposition 
 

The Original image and the mask created from the RLE 
data for each ship are visualized and plotted as the output. 
The image generated after the RLE operation is in the 
lateral inverse of their actual orientation. The output for the 
image must be transposed to be in its original position for 
better extraction for further pre-processing.  

 

Fig. 6. Transposed image after masking from RLE 
Data.After transposition, inverted images need to be 

transposed. 

 
6.3 Data Pre-processing 
 
RLE data is successfully manipulated into the masked 
outputs hence the data is split into the Train and the 
validation data. The bool function will distribute the 
EncodedPixels, NaN value would be termed as 0 and the 
remaining image IDs as 1 just to extract the unique image 
IDs in the masked data frame. The train validation split is a 
stratified split that preserves the proportions of examples in 
each class as observed in the original data frame. The ratio 
of the train validation split is [25:17].  

 

 
 

Fig. 7. Pie Chart showing the amount of data split for 
training and testing. The train and validation split are in ratio 

of [25:17] 
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Fig. 8. Effect of statistical undersampling technique on 
images 

The train data extracted in the split is still unbalanced and is 
processed into the balanced data using means of 
Undersampling by grouping the random ship counts together 
and creating a data frame for grouped ship counts. 

6.4 Algorithm Used

    TABLE. 1.  Ship Detection Algorithm 

The algorithm for ship detection using satellite imagery 
begins by collecting a dataset from the Copernicus Open 
Hub. For each image in the dataset, a run-length encoding 
(RLE) is applied to compress consecutive elements with the 
same value. The encoded ship information is then utilized to 
create a ship mask, highlighting ship locations in the image. 
Visualization of the original images alongside their 
respective ship masks is facilitated through subplot creation. 

Subsequently, image transposition is performed for each 
image and mask pair, possibly involving flipping or rotating 
to augment the dataset. The dataset is split into training and 
testing sets, and in cases of imbalance, random 
undersampling is applied to the training set. Model  
parameters are defined, and an augmented training set is 
generated through image mask generation. A U-Net model is 
trained using the augmented images and masks. Finally, the 
trained model is employed to detect ships in the testing set, 
and the results are displayed in such a way that it will create 
a yellow-bounding box around the ship in the image 
providing a comprehensive approach to ship detection in 
satellite imagery through a deep learning framework. Deep 
learning, specifically leveraging the U-Net architecture, is 
chosen for ship detection in satellite imagery due to its 
inherent strengths in handling large datasets and automating 
feature extraction. 

6.5 Architecture of the model 

To achieve the development process, the established  model 
of Convolutional Neural Network (CNN), namely U-Net, 
was chosen for image segmentation. This predefined model 
does pixel-wise binary classification by assigning 1 to the 
pixel with a mask and 0 to the pixel with no mask.  
The U-Net is a deep learning model used in image 
segmentation to extract relevant information from an image. 
U-Net stands out for its specialization in image
segmentation, making it particularly well-suited for tasks
requiring detailed delineation of object boundaries, such as
ship detection in satellite imagery. The U-Net model's
superior accuracy and segmentation capabilities position it
as a robust choice for maritime applications.The U-Net
architecture consists of an encoder and decoder Neural
Network with a skip connection that helps preserve spatial
information and improve the gradient flow during training.
Skip connection helps capture an image's local and global
information. U-Net has  a Convolutional layer consisting of
a different filter matrix that is rotated on the image to extract
the relevant information. The activation function used is
Sigmoid and then rectified linear unit (ReLU) due to its
computational simplicity, faster convergence, and ability to
avoid vanishing gradient problems.The decoder section
employs Upsampling layers to restore image resolution, and
Concatenation merges detailed encoder features with the
decoder's high-level features.

𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥  (sigmoid function)        (2) 

𝒇𝒇(𝒙𝒙) =  𝒎𝒎𝒎𝒎𝒙𝒙(𝟎𝟎,𝒙𝒙) (ReLU function)      
(3) 

The pooling layer helps to reduce the irrelevant parameter of 
the feature matrix and computation in the network. The 
pooling layer often uses the max pooling operation to 
perform the downsampling process.Max Pooling is 
strategically utilized to maintain crucial information related 
to ship presence while gradually reducing the resolution of 
the feature map. This process is integral in the overall 

Algorithm: Deep Learning Approach for Ship Detection Using 
Satellite  Imagery 
1 Copernicus open hub ← CollectDataset() 
2 for each image in Dataset 
3  EncodedShips ← RunLengthEncoding(image) 
4  ShipMask ← ShipImageMasking(image, EncodedShips) 
5 CreateSubplots(Dataset, ShipMasks) 
6 for each image, mask in Dataset 
7 TransposedImage, Masks ← ImageTransposition(image, mask) 
8  TrainingSet, TestingSet ← TrainTestSplit(Dataset) 
9 if Dataset is imbalanced 
10  TrainingSet ← RandomUndersampling(TrainingSet) 
11  ModelParameters ← DefineModelParameters()  
12  AugmentedImages, Masks ← ImageMaskGeneration(TrainingSet) 
13  UNetModel ← TrainUNetModel(AugmentedImages, Masks) 
14  for each image in TestingSet 
15        ShipDetectionResult ← ShipDetection(UNetModel, image) 
16  DisplayResults(ShipDetectionResults) 
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functioning of U-Net, as it contributes to the model strength 
to discern significant patterns and features in satellite 
imagery, leading to accurate ship detection results. 

𝑓𝑓(𝑚𝑚)= [𝑓𝑓1
(𝑚𝑚)… 𝑓𝑓𝑘𝑘

(𝑚𝑚)… 𝑓𝑓𝐾𝐾
(𝑚𝑚)] 𝑇𝑇 , 𝑓𝑓𝐾𝐾

(𝑚𝑚) = 𝑚𝑚𝑚𝑚𝑥𝑥𝑥𝑥𝑥𝑥𝑋𝑋𝐾𝐾(𝑥𝑥)       (4) 

Training the selected model using a preprocessed dataset, 
typically using a training and validation set. The training of 
the model uses a backpropagation algorithm. After every  
epoch, The gradient of the loss function with respect to the 
weight function is calculated to measure the error caused by 
the learning parameter due to a different weight initialization 
method. The calculated error is then backpropagated in the 
network to adjust the value of the learning parameter that 
will train the model. 

Fig. 9. This image showcases the U-Net architecture with its 
different layer along with ship images in 3-D 

6.6 Model Summary 

The ship detection model processes 768x768-pixel, three-
channel satellite images, incorporating Gaussian Noise for 
variability and Batch Normalization for stable training. Key 
features are extracted by Convolutional layers (Conv2d_76 
to Conv2d_85), while Max Pooling reduces spatial 
dimensions, streamlining computations. Upsampling layers 
restore image resolution, and Concatenation merges detailed 
and high-level features, fostering a holistic understanding of 
satellite imagery. The output, (192, 192, 32), indicates ship 
presence. With 491,149 parameters (491,143 trainable), 
Batch Normalization and Concatenation optimize the model 
for accurate ship detection in complex satellite data, 
showcasing its efficacy in maritime applications. 

    TABLE. 2. Model Summary of U-Net 

Layers Output Shape Para
meter 

Connected to 

RGB_Input (None,768,768, 3) 0 [] 

Gaussian_Noise_
4 

(None, 768,768,3) 0 [‘RGB_Input[0][0]'] 

Batch_Normaliza
tion_4 

(None, 768,768,3) 12 
['gaussian_noise_4[0]0]'
] 

Conv2d_76 (None, 768,768,3) 224 ['batch_normalization_4[0
][0]'] 

Conv2d_77 (None, 768,768,3) 584 
['conv2d_76[0][0]'] 

Max_Pooling2d_
16  

(None, 384,384,8) 0 
['conv2d_77[0][0]'] 

Conv2d_78 (None, 384,384,8) 1168 ['max_pooling2d_16[0][0]'
] 

Conv2d_79 (None, 384,384,8) 2320 ['conv2d_78[0][0]'] 

Max_Pooling2d_
17  

(None,192,192,16) 0 ['conv2d_79[0][0]'] 

Conv2d_80 (None,192,192,32) 4640 ['max_pooling2d_17[0][0]'
] 

Conv2d_81 (None,192,192,32) 9248 ['conv2d_80[0][0]'] 

Max_Pooling2d_
18  (None,96,96,32) 

0 ['conv2d_81[0][0]'] 

Conv2d_82 (None,96,96,64) 18496 ['max_pooling2d_18[0][0]'
] 

Conv2d_83 (None,96,96,64) 36928 [‘conv2d_82[0][0]'] 

Max_Pooling2d_
19 

(None,48,48,64) 0 ['conv2d_83[0][0]'] 

Conv2d_84 (None,48,48,128) 73856 [‘max_pooling2d_19[0][0]
'] 

Conv2d_85 (None,48,48,128) 14758
4 

['conv2d_84[0][0]'] 

Up_Sampling2
d_16 

(None,96,96,128) 0 ['conv2d_85[0][0]'] 

Concatenate_16 
(None,96,96,192) 0 ['up_sampling2d_16[0][0]'

] 
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Total params: 491,149 

Trainable params: 491,143 

Non-trainable params: 6 

7. Result and Discussion

The U-Net model employed in this research paper for ship 
detection using satellite imagery has demonstrated notable 
accuracy, efficiency, and robustness. As we delve into a 
comparative analysis with other prominent object detection 
models such as RCNN, Masked RCNN, and YOLO, it 
becomes evident that the U-Net model exhibits distinct 
advantages in the context of ship detection. 
U-Net, specifically designed for image segmentation tasks,
showcases a unique architecture with encoder and decoder
components connected by skip connections. This design
allows U-Net to effectively capture both local and global
features, preserving spatial information crucial for accurate
segmentation. In contrast, RCNN (Region-based
Convolutional Neural Network) relies on region proposals
and lacks the direct pixel-wise segmentation capabilities
inherent in U-Net.
Masked RCNN, an extension of RCNN, introduces a mask
branch for segmentation, making it more adept at instance
segmentation tasks. However, the computational complexity
of the mask branch can be higher than that of U-Net, which
may impact real-time performance, especially in resource-
constrained scenarios.
YOLO (You Only Look Once), known for its real-time
object detection capabilities, divides the image into a grid
and predicts bounding boxes and class probabilities directly.
While YOLO is efficient, it may face challenges in precisely
delineating complex object boundaries, potentially affecting
segmentation accuracy.
In the context of ship detection, U-Net's pixel-wise
segmentation approach proves advantageous. The U-Net
model, as demonstrated in the presented research, achieves a
training accuracy of 99.45% and a validation accuracy of
99.50%, indicating its proficiency in capturing intricate
details in satellite imagery. The loss values for training
(0.0118) and validation (0.0182) further affirm the model's
precision in predicting ship segmentation masks.In
summary, while RCNN, Masked RCNN, and YOLO excel
in object detection, U-Net stands out for its specialization in
image segmentation, making it particularly well-suited for
tasks requiring detailed delineation of object boundaries,
such as ship detection in satellite imagery. The U-Net
model's superior accuracy and segmentation capabilities
position it as a robust choice for maritime applications.

7.1 Result

7.1.1Accuracy

Fig.10. Proposed U-Net Model performance for the training 
and the validation accuracy. 
Training Accuracy = 99.45%. 
Validation Accuracy = 99.50% 

7.1.2 Loss 

Fig. 11. Proposed U-Net Model performance for the training 
and the validation loss: 
Training Loss = 0.0118 

Validation Loss = 0.0182 

7.2 Discussion 

7.2.1 Accuracy Analysis 

Accuracy is the measure that quantifies the model’s 
performance ability to classify pixels into their respective 
classes. The higher accuracy indicates that the model 
captures the underlying patterns and features from the data. 
With reference to our model results (Fig. 10.), the training 
accuracy of 99.45% depicts that the model is correctly 
classified for 99.45% of pixels in the training dataset. 
Similarly, the validation accuracy of 99.50% indicates that 
the model accurately detects 99.50% of the pixels in the 
validation dataset. Mathematically, the number of correctly  
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classified pixels in the training set (N_correct_training) and 
validation set (N_correct_validation) can be calculated as 
follows:  

 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 _𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝐴𝐴𝐴𝐴 × 
 Total number of pixels in training set  

 (5) 

 𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 _𝑣𝑣𝑡𝑡𝑣𝑣𝑡𝑡𝑣𝑣𝑡𝑡𝐶𝐶𝑡𝑡𝐶𝐶𝑡𝑡 = 𝑉𝑉𝑚𝑚𝑉𝑉𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉𝑇𝑇𝑉𝑉𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑚𝑚𝐴𝐴𝐴𝐴  × 
    Total number of pixels in validation set 

    (6) 

7.2.2 Loss Analysis 

Loss function is a mathematical function that is used to 
calculate the difference between target segmentation mask 
and predicted segmentation mask. In this project, the training 
loss is 0.0118 and the validation loss is 0.0182 showing that 
the U-Net model had achieved high precision in predicting 
the segmentation mask of ships. In ship detection using 
satellite imagery, cross-entropy loss is a critical measure that 
evaluates the disparity between the predicted and actual 
distributions of ship and background classes. It is particularly 
useful in handling imbalanced datasets, penalizing 
misclassifications more for the minority class (ships). 
Operating on a logarithmic scale, the loss ensures efficient 
optimization of decision boundaries between ship and 
background, enhancing the model's ability to discern details 
accurately. By facilitating parameter optimization during 
training, cross-entropy loss contributes to the overall 
accuracy, efficiency, and robustness of the U-Net model in 
ship detection tasks. 

Cross-Entropy Loss = -
1
𝑁𝑁
∑𝑁𝑁
𝑡𝑡=1 ∑𝐶𝐶

𝑗𝑗=1 𝐴𝐴𝑡𝑡𝑗𝑗𝑉𝑉𝑉𝑉𝑇𝑇�𝑝𝑝𝑡𝑡𝑗𝑗 �                
(7) 
where: 

● N is the total number of pixels in the dataset.
● C is the number of classes (segmentation classes).
● 𝒚𝒚𝒊𝒊𝒊𝒊 is the binary indicator (0 or 1) if pixel 𝑇𝑇 belongs

to class 𝑗𝑗in the ground truth.
● 𝒑𝒑𝒊𝒊𝒊𝒊is the predicted probability of pixel 𝑇𝑇 belongs to

class 𝑗𝑗 as output by the U-Net model..

7.2.3 Generalization & Overfitting 

The insignificant distinction between the preparation and 
approval exactness/shortfall values demonstrates that the 
proposed U-Net model sums up well to new, unremarkable  
information. Overfitting happens when a model performs 
well on the preparation information but ineffectively on  
inconspicuous information. In any case, our model's high 
approval exactness and low approval misfortune show that  
it really figured out how to sum up and didn't overfit the 
preparation information. 

8. Conclusion and Future Work

8.1 Conclusion 
As an aspect of Ship Detection, the focus of this paper was 
to collect, analyze, and manipulate the  Sentinel-2 images  
dataset further using the data-preprocessing techniques and 
develop a deep learning model to detect the ship in the used  
satellite imagery dataset. The U-Net model was tested to 
determine the accuracy of 99.50%, and the validation loss for 
the model is 0.0182, leveraging the U-Net’s ability to encode 
and decode structure.The model detection can be concluded 
by detecting the specific ships (unique-ids) on the images. 
The detected ships are marked with a bounding box that is 
being detected by the model. The bounding boxes are 
marked using specific unique mask IDs and depend on the 
model’s calculated accuracy. Furthermore, the model results 
show (Fig.12.) that the model is robust and powerful for the 
ship detection task using satellite images. Applying this deep 
learning approach can help in maritime surveillance and 
decision-making and is also used as an asset to provide 
security. 

Fig. 12. The image illustrates three different ships with 
marked boundaries 

8.2 Future Work 

In the upcoming phases of investigation, researchers will 
direct their attention toward advancing the classification and 
detection capabilities of ship recognition systems, 
particularly in challenging weather conditions. This 
endeavor becomes crucial when conventional visibility 
spectrum imagery is inaccessible, such as during nighttime, 
foggy scenarios, or under cloudy and rainy conditions. The 
overarching objective is to bolster the model's efficacy amid 
adverse weather, and this aspiration may materialize through 
the incorporation of a cutting-edge multi-modal data fusion 
technique. The envisioned trajectory involves synergizing 
various types of data into a unified model to amplify 
performance and surmount the hurdles presented by extreme 
weather conditions. As researchers traverse this path, they 
anticipate a paradigm shift in the methodology, foreseeing a 
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future where the model's architecture becomes a focal point 
of exploration. This could manifest in the generation of 
diverse sensor-integrated inputs, and the integration of 
sophisticated fine-tuning and transfer learning methods. 
Additionally, these technologies play a pivotal role in 
environmental monitoring, aiding in the identification and 
tracking of vessels for a prompt response to potential 
environmental hazards. The streamlined port management 
facilitated by advanced ship detection systems offers 
economic and operational benefits, reducing congestion and 
enhancing overall efficiency. Furthermore, the precision in 
ship detection supports customs and border control activities, 
enhancing national security efforts. The heightened accuracy 
of ship detection models is a boon for the insurance industry, 
enabling more reliable risk assessments and minimizing 
financial losses in maritime emergencies. Overall, the far-
reaching applications of ship detection technologies promise 
to transform various industries and address critical 
challenges in maritime operations. The future promises not 
just incremental advancements but a transformative leap in 
the realm of ship detection technologies. 
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