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Abstract 

INTRODUCTION: The Internet of Things (IoT) has transformed daily life by interconnecting digital devices via integrated 
sensors, software, and connectivity. Although IoT devices excel at real-time data collection and decision-making, their 
performance on complex tasks is hindered by limited power, resources, and time. To address this, IoT is often combined 
with cloud computing (CC) to meet time-sensitive demands. However, the distance between IoT devices and cloud servers 
can result in latency issues. 
OBJECTIVES: To mitigate latency challenges, Mobile Edge Computing (MEC) is integrated with IoT. MEC offers cloud-
like services through servers located near network edges and IoT devices, enhancing device responsiveness by reducing 
transmission and processing latency. This study aims to develop a solution to optimize task offloading in IoT-MEC 
environments, addressing challenges like latency, uneven workloads, and network congestion. 
METHODS: This research introduces the Game Theory-Based Task Latency (GTBTL-IoT) algorithm, a two-way task 
offloading approach employing Game Matching Theory and Data Partitioning Theory. Initially, the algorithm matches IoT 
devices with the nearest MEC server using game-matching theory. Subsequently, it splits the entire task into two halves and 
allocates them to both local and MEC servers for parallel computation, optimizing resource usage and workload balance. 
RESULTS: GTBTL-IoT outperforms existing algorithms, such as the Delay-Aware Online Workload Allocation (DAOWA) 
Algorithm, Fuzzy Algorithm (FA), and Dynamic Task Scheduling (DTS), by an average of 143.75 ms with a 5.5 s system 
deadline. Additionally, it significantly reduces task transmission, computation latency, and overall job offloading time by 
59%. Evaluated in an ENIGMA-based simulation environment, GTBTL-IoT demonstrates its ability to compute requests in 
real-time with optimal resource usage, ensuring efficient and balanced task execution in the IoT-MEC paradigm. 
CONCLUSION: The Game Theory-Based Task Latency (GTBTL-IoT) algorithm presents a novel approach to optimize 
task offloading in IoT-MEC environments. By leveraging Game Matching Theory and Data Partitioning Theory, GTBTL-
IoT effectively reduces latency, balances workloads, and optimizes resource usage. The algorithm's superior performance 
compared to existing methods underscores its potential to enhance the responsiveness and efficiency of IoT devices in real-
world applications, ensuring seamless task execution in IoT-MEC systems. 
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1. Introduction

Mobile devices are becoming more powerful and can now 
run more complex applications, but their limited resources 

and battery life can make it difficult to meet the growing 
demand for computing power and provide real-time 
experiences. Overcoming these limitations is essential for 
achieving digital intelligence in various industries [1]. 
Current network topologies cannot handle the amount of 
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data generated by IoT devices, so the cloud is a better 
option for processing this data quickly and efficiently. 
Clouds can provide unlimited resources and computing 
services, but this comes at a cost: more energy is consumed 
because the data has to be transmitted to distant servers [2]. 
Mobile edge computing solutions improve compute 
capabilities for time- and computation-intensive IoT 
applications by addressing issues like location 
unawareness, mobility support, low latency, and rapid 
reaction times [3]. Shifting remote processing to close edge 
servers can improve computation speed, decision-making, 
latency reduction, and resource efficiency, despite adding 
computational burden since the distance between an edge 
server and the device plays an important role in remote 
computation for calculating the total task transmission and 
computation latency [4]. MEC servers are recommended 
for limited local resources, but this prolongs processing 
latency and delays. Task offloading in MEC computing is 
challenging due to factors like latency, energy 
consumption, workload distribution, and longer 
transmission durations, which impact model performance 
and resource allocation (RA) [5]. 

Nonetheless, Edge Computing (EC) has enhanced cloud 
capabilities near network edges, while optimal RA is still a 
crucial challenge for efficient decision-making and 
processing. The proposed resource allocation mechanism 
in IoT enhances Quality of Service (QoS) by reducing 
energy usage and utilizing all available resources within 
the fog network [6]. However, the deployment of EC in 
sparsely inhabited areas is another major challenge. To 
overcome this challenge, a satellite-based Internet of 
Things (SAT-IoT) was developed using deep 
reinforcement learning to optimally distribute resources 
[7]. It is essential to eliminate as much delay as possible to 
deliver time-critical responses. Thus, to minimize delays in 
IoT applications like healthcare, a combination of task 
offloading (TO) and task scheduling (TS) combined with 
effective resource allocation is proposed to reduce overall 
task generation costs [8]. Also, deploying edge servers 
cooperatively, where tasks are divided among MEC 
servers, can reduce task computation latency, which is 
more efficient than static offloading techniques [9]. 
Another significant problem in EC is identifying the most 
appropriate resource for job computation. A three-tier TO 
technique has been developed to optimize the allocation of 
cells as computing resources in EC to ensure efficient cell 
formation, selection, and offloading for real-time answers 
[10]. In an IoT-MEC environment, both the devices and 
MEC servers are resource- and power-constrained; 
therefore, there is always a scarcity of resources. Resource 
management and allocation in an optimal manner are thus 
critical requirements [11]. 

The carbon emissions produced during task computation 
(TC) operations are another significant difficulty for the 
MEC computing environment. The alternate direction 
method of multipliers (ADMM) technology reduces task 
traffic congestion in the MEC computing environment by 
reducing carbon emissions from TC, TO, and RA 

operations [12]. The inverse relationship between energy 
usage and latency suggests that evenly distributing 
workload among servers can reduce total energy and 
optimize latency [13–15]. Proactive caching and optimal 
work allocation among MEC servers is another suggested 
method to reduce TC latency using clustering and matching 
game theory, but challenges include task division, 
scheduling, and assignment in multi-server environments 
[16–17]. Long-term evolution (LTE) is one of several 
technologies that are utilized for task transfer in remote 
locations. However, OpenAirInterfaces with network 
slicing can be used instead of LTE for improved user 
quality of experience (QoE) in remote location task transfer 
[18]. The MEC platform can utilize location-based services 
for computational offloading to decrease latency for mobile 
users [19]. If emphasis is given to the caliber of network 
connectivity and resource usage, the overall TC time may 
be reduced by a substantial amount. This may be done by 
using sparse code multiple access (SCMA), a method that 
enhances network performance and throughput [20]. 
Unmanned aerial vehicles (UAVs) can create a perfect 
MEC environment with minimal latency, efficient energy 
usage, and high QoE based on key factors and RA 
approaches [21–24]. Optimal RA approaches are also 
required when data is aggregated at MEC servers and is 
required to be processed in a real-time manner. The use of 
smart grids in this case proves to be a better option [25]. 

Pre-allocation of resources can also be done before 
transmitting the data for remote computation. This 
significantly reduces the total uplink transmission latency. 
When resolved using a distributed antenna system (DAS), 
fewer resources with optimal utilization were achieved in a 
5G environment [26–27]. With resource utilization, it is 
very necessary to optimize energy utilization and traffic 
congestion on the server. This has been achieved using an 
active queue management-based green cloud model 
(AGCM) under stringent deadline constraints [28–29]. 
Many 6G transmission techniques are being used 
nowadays with enhanced data transmission rates in Tb/s 
and ultra-latent responses, especially for collecting 
seismological and geophysical data [30–31]. Using 
multiple-offloading strategies with data portioning can also 
significantly reduce total TC time and latency overhead 
with balanced workloads and cell selection [32–33]. 
Another promising solution for a real-time IoT 
environment is IoT-Grids (IoT-G), with broad optimal 
spectrum resources for TC and scheduling purposes. These 
activities can also be done using a multi-server 
environment where tasks can be redirected for workload 
balancing [34–35]. 

Moreover, Mobile Edge Computing (MEC) architecture 
integrates with ultra-dense networks (UDNs) for 5G, 
employing a DQN-AC algorithm to optimize computation 
offloading and resource allocation [36]. Queuing time also 
adds up to the total latency in task computation in MEC; 
therefore, employing differential-difference equations to 
model IoT-based MEC systems and utilizing M/M/1 queue 
theory to compute performance can significantly reduce the 
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queuing latency [37]. A multi-task offloading scheme 
utilizing a hierarchical spatial-temporal monitoring module 
and fine-grained resource scheduling can be used for task 
awareness, abnormality inference, and offloading 
efficiency [38]. Addressing service dependencies through 
joint consideration of task scheduling and resource 
allocation utilizing a layered scheme and detailed 
algorithms minimizes latency and energy consumption 
[39]. Incorporating relay selection and adaptive bandwidth 
allocation, which minimize computation time by utilizing 
evolutionary algorithms, can resolve joint multi-task partial 
offloading issues in MEC servers [40]. 

In addressing the crucial challenge of minimizing task 
computation latency and making optimal task offloading 
decisions for improved resource utilization and heightened 
responsiveness, this paper employs two synergistic 
theories. The first, Game Matching Theory, is harnessed to 
determine the nearest Mobile Edge Computing (MEC) 
server, thereby reducing overall task transmission and 
computation time. The second theory, Data Partitioning 
Theory, is applied to optimize resource utilization through 
parallel task computation in both local and remote regions, 
resulting in enhanced responsiveness with minimal latency 
overhead. With the combination of the above two theories, 
an optimal task computation and offloading algorithm has 
been proposed namely the Game Theory-Based Task 
Latency (GTBTL-IoT) algorithm. The proposed task 
offloading and computation algorithm surpass comparable 
algorithms in efficiency, significantly reducing total task 
computation overhead and ensuring timely processing of 
tasks in critical scenarios.  

2. System Model Development 

An IoT-MEC task offloading solution has been proposed 
to address latency issues using IoT and MEC. It assigns 
workloads to local and remote locations for parallel 
computing due to IoT devices' limited storage and 
calculation capabilities. The structure of the proposed IoT-
MEC model is shown in Figure 1. 

 

 

Figure 1. Proposed System Model (GTBTL-IoT) 

The proposed system paradigm generates various tasks 
randomly in the IoT zone, each with varying data size and 
computational power. Due to this variability in the nature 
of tasks as well as computing devices, each task as well as 
the device and server should be modeled based on its 
unique ID, computation facilities and requirements, and the 
amount of memory required and utilized through task 
modeling, device modeling, and server modeling. 

2.1. Task Modeling 

IoT devices perform various tasks like sensor analysis, 
streaming, and document uploading, each acting as a 
standalone operation or part of a larger procedure. In 
general, any generated task may be categorized as a vector 
of five possible attributes, namely Task ID (∧𝐼𝐼𝐼𝐼), Task 
Size (𝑑𝑑∧), Computational Intensity i.e., number of CPU 
Cycles in bits (𝑐𝑐∧), Task Deadline (∧𝑡𝑡𝑡𝑡) and Task 
Workload (𝑊𝑊𝑊𝑊∧). It may be modeled as ∧ 
(∧𝐼𝐼𝐼𝐼,𝑑𝑑∧, 𝑐𝑐∧,∧𝑡𝑡𝑡𝑡 ,𝑊𝑊𝑊𝑊∧). According to the proposed model, a 
task ∧ is computed within a time which is the sum of time 
to compute at the local region �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 �, time to compute at 
the remote region �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗 �, and total time to transmit a task 
at a remote region (𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∧𝑡𝑡).   𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗  and 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡∧𝑡𝑡 is 0 in 
the case of complete local task computation (TC). 
The device must allocate work units for both local and 
remote computing before the deadline to offload work 
when local computing is insufficient. The device makes the 
internal choice to offload or divide tasks, which may be 
calculated as given in equation (1). 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = ʌ𝑇𝑇𝐼𝐼 − 𝑡𝑡 
𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 = ʌ𝑇𝑇𝐼𝐼 − �𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜/2� (1) 
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where,  𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 is the total time to offload the task and 𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 is 
the time to break the task into smaller components. The 
task component is assigned to the MEC server using the 
available bandwidth 𝐵𝐵𝑊𝑊𝑖𝑖  after being split into two halves. 
Next, 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 may be calculated as given in the equation 
(2). 

𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 =
𝑑𝑑ʌ𝑟𝑟𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡𝑟𝑟

𝐵𝐵𝑊𝑊𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)
 (2) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 is signal-to-interference plus noise ratio and 
can be calculated as given in the equation (3). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑗𝑗
𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗

∑ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑗𝑗𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗 + 𝜕𝜕𝑖𝑖∈𝑁𝑁,𝑗𝑗∈𝑈𝑈
 (3) 

where, 𝐵𝐵𝑊𝑊𝑖𝑖 is the bandwidth allocated to the local device, 
𝑑𝑑ʌ𝑟𝑟𝑟𝑟𝑐𝑐𝑜𝑜𝑡𝑡𝑟𝑟 is the size of data for the task sub-component, 
𝐶𝐶ℎ𝑙𝑙𝑖𝑖𝑗𝑗 is the channel gain between device i and server j 
where 𝑖𝑖 ∈ 𝑆𝑆 and 𝑗𝑗 ∈ 𝑈𝑈 and N, U are the total numbers of 
IoT devices and MEC servers present in a specified 
deployment area. Next, 𝜕𝜕 is the Gaussian white noise 
factor. Equations (2) and (3) are used to calculate the total 
transmission time of the task as well as the signal-to-
interference ratio. The SINR is calculated since there are 
millions of IoT devices connected to a single server. 
Therefore, there is a high chance of packet loss and channel 
fading. Therefore, the transmission time will be calculated 
using the beamforming theory which calculates SINR as a 
crucial component.  

IoT devices connected to a single MEC server require noise 
computation to prevent data transmission impacts. Parallel 
remote and local computing uses parametric comparisons 
and assessments for task offloading, with random split 
points as P. The following equations (4), (5), and (6) 
calculate the task splitting procedure for parallel 
computation. Firstly, the whole task data size is divided 
into 𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 as the total number of task components is 
given in equation (4). 

𝑡𝑡𝑝𝑝𝑡𝑡𝑐𝑐𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 = 𝑑𝑑ʌ⁄10 (4) 

Next, the point at which these components should be split 
for local and remote execution is calculated by split point 
P, whose value depends on the job, device, and server state, 
using the pivot point setting formula given in equation (5). 

𝑃𝑃 =
npackets

ʌ𝑻𝑻𝑻𝑻� ∗ 2 (5) 

Using Equations (4) and (5), the total task is split into two 
halves. Next, the total computation time 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗  in which the 
task will get computed remotely can be represented as 
given in equation (6). 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗 = 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑠𝑠𝑐𝑐𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑡𝑡𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ʌ𝑡𝑡 (6) 

Similarly, if the task gets computed locally without any 
offloading, then it may be computed as follows:  

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =
(𝑑𝑑ʌ ∗ 𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇)

𝐶𝐶𝑡𝑡𝑝𝑝i
 (7) 

where, 𝐶𝐶𝑡𝑡𝑝𝑝i is the computational capability of device i. If 
the task-splitting process is carried out then the total 
computation time can be calculated as: 

𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 = �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗 �. ( 𝛼𝛼𝑖𝑖𝑗𝑗) (8) 

Here 𝛼𝛼𝑖𝑖𝑗𝑗 will be 0 if no remote computation takes place. In 
that case 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  respectively. The task, when it gets 
processed over a specific resource, will impose some 
workload on it. Therefore, the total workload imposed 
(WLʌ) by the task may be calculated as given in equation 
(9). 

WLʌ = 𝑑𝑑ʌ ∗ 𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇 ∗ �
𝑑𝑑ʌ
𝑡𝑡
� (9) 

The workload is measured in WLU and has a significant 
impact on the processing time of the task in the IoT region. 
The workload is the single independent factor that decides 
the total number of CPU cycles that are to be utilized for 
TC and, hence, how many tasks can be executed in a single 
instance of time. 

2.2. Device Modeling 

IoT devices generate computing jobs by representing U IoT 
nodes, each with potential properties like Workload (WL𝑖𝑖), 
total allotted bandwidth (𝐵𝐵𝐵𝐵i), Device ID (i𝑆𝑆𝐼𝐼), and 
computational capability (𝐶𝐶𝑡𝑡𝑝𝑝i). Each device is 
individually recognized by ID, determining its state in the 
IoT-MEC ecosystem, where device capacity is determined 
by processor speed, memory health, queue size, and 
network usage. Server workload is important for offloading 
activities to prevent resource depletion and wasteful use 
and can be calculated as given in equation (10). 

WL𝑖𝑖 = � WLʌ𝑛𝑛
ʌ𝑛𝑛∈ʌ

 (10) 

Each device has a threshold capacity for processing 
offloaded tasks and workloads. 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖  represents the 
maximum permissible workload, and the mathematical 
formulation given in equation (11) determines the available 
processing capacity for arriving loads. 

𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 = 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚𝑖𝑖 − WL𝑖𝑖 (11) 

where, 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖  is the remaining workload capacity left for 
the device. If the incoming tasks do not fit with 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 , 
then it may cause workload overflow and thus it is rejected 
and sent back for waiting until the current time instant is 
complete. 

2.3. Sever Modeling 

This section covers the modeling of j edge servers, using j 
(j𝑆𝑆𝐼𝐼, 𝐶𝐶𝑡𝑡𝑝𝑝j, 𝐵𝐵𝐵𝐵j, WL𝑗𝑗). Here j𝑆𝑆𝐼𝐼 represents the unique ID of 
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the server, 𝐶𝐶𝑡𝑡𝑝𝑝j is the computational capability of the 
server measured as the total number of CPU cycles it 
affords, 𝐵𝐵𝐵𝐵j is the total allocated bandwidth and WL𝑗𝑗 is the 
total workload imposed upon the server. The recommended 
model consists of U IoT nodes and portable N MEC 
servers, with dynamic devices that can be remote or near 
the server. The chosen region has the geographical 
distribution of N MEC servers, allowing the server's 
workload to include the total number of devices managed 
and tasks created. Therefore, 𝑊𝑊𝑊𝑊𝑗𝑗 may be calculated as 
follows: 

WL𝑗𝑗 = � WL𝑖𝑖
𝑖𝑖∈𝑁𝑁

 (12) 

To process tasks on a server, it's vital to determine the 
available workload to avoid issues like request overload or 
resource exhaustion, which could disrupt real-time job 
computation. Thus, to calculate the remaining workload 
capacity, equation (13) can be used: 

𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐
𝑗𝑗 = 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗 − WL𝑗𝑗 (13) 

The same is done in the case of the server where if the 
incoming task exceeds 𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑐𝑐

𝑗𝑗 , it is rejected and sent back 
for waiting until the current time instant is complete. 

3. Task Offloading Strategies 

This section discusses various offloading strategies for task 
offloading, focusing on optimizing resources, minimizing 
latency, and enhancing response times, as described in the 
subsections. 

3.1. Distance-Based Task Offloading  

Multiple MEC servers are located at different locations. 
Therefore, it is necessary to know the distance between the 
device and these servers. Also, IoT devices are dynamic 
and always moving. Because of this, the distance value is 
variable at every instance of time. Let x and y represent the 
coordinates of each device and server. The distance 
between each pair can be calculated using equation (14). 

𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡 = �(𝑗𝑗𝑚𝑚1 − 𝑖𝑖𝑚𝑚1)2 + �𝑗𝑗𝑦𝑦1 − 𝑖𝑖𝑦𝑦1�
2, 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

< 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚 
(14) 

where (𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑦𝑦1) and (𝑗𝑗𝑚𝑚1, 𝑗𝑗𝑦𝑦1) are the co-ordinate of server 
j and device i and 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚 is the maximum acceptable 
distance between the associated pair i-j. Minimal uplink 
transmission delay is achieved by implementing 
restrictions on device connections to the closest server, 
reducing task offloading time, and ensuring efficient 
computing. It is therefore important to check the minimum 
distance association between i-j. This can be accomplished 
using equations (15) and (16). 

𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐴𝐴: 𝑇𝑇𝑖𝑖𝑡𝑡��(𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡) < 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗𝑁𝑁𝑢𝑢𝑗𝑗𝑈𝑈,

 (15) 

𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐵𝐵 = �𝛼𝛼𝑖𝑖𝑗𝑗𝜖𝜖{0,1}
𝑗𝑗𝑗𝑗𝑁𝑁

 (16) 

The minimum distance is selected based on the availability 
of an array of MEC servers. These servers are first 
discovered, and the nearest server is selected before the 
final task is offloaded. The nearest-distance resource 
discovery algorithm proposes the discovery and selection 
of the nearest computing resource to minimize total 
transmission and computation latency and provide real-
time responses. This approach has been used for task 
offloading to cut down the total transmission delay and 
resource allocation within the given system deadline. 

Algorithm 1: Nearest Distance Resource 
Discovery Algorithm 
INPUT: Set of IoT Nodes i 𝜖𝜖 U, Set of MEC Servers 
j 𝜖𝜖 N. 
              𝑖𝑖 = {𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, … . . , 𝑖𝑖𝑛𝑛 , } and 𝑗𝑗 = {𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, … . . , 𝑗𝑗𝑛𝑛, } 
OUTPUT: Association pair i-j with shortest distance 
START 
Discover j*// possible i-j pairs 
For ith device make a distance-based set of server j* 
discovered for association as 𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

𝑗𝑗 = {𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … . . ,𝑑𝑑𝑛𝑛 , } 
For k=0 to n-1 
          Search for 𝑇𝑇𝑖𝑖𝑡𝑡�𝑡𝑡𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡

𝑗𝑗 �  using eq 15.  
Calculate SINR by eq 3 
Verify 𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐴𝐴 𝑡𝑡𝑡𝑡𝑑𝑑 𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡 𝐵𝐵 by eq 15 and 16 
IF Yes THEN 
     Set 𝛼𝛼𝑖𝑖𝑗𝑗 = 1 
      Proceed To Algorithm 2 
ELSE 
      GOTO Step 1 
STOP 

As discussed in the Resource Discovery Algorithm, 
initially all the available MEC servers will be discovered, 
and the nearest server will be assigned for TO and TC 
operations. With the help of the algorithm, TC is achieved 
with optimal latency in a time-critical manner. 

3.2. Device-Based Task Offloading 

Task offloading splits tasks locally, remotely, at edge 
servers, or in the cloud, adjusting resource requirements 
and affecting execution times significantly. The 
requirements of task execution include the same model of 
the task, i.e. ʌ(ʌ𝐼𝐼𝐼𝐼,𝑑𝑑ʌ, 𝑐𝑐ʌ, ʌ𝑇𝑇𝐼𝐼, ʌ𝑃𝑃𝑟𝑟 ,𝑊𝑊𝑊𝑊ʌ). As discussed in 
sub-section 3.1. If the device where the task is initially 
generated matches the requirements, then it may get 
executed locally without offloading. Otherwise, it has to be 
offloaded to either an edge server or a remote server for 
execution. Table 1 summarizes variables and comparisons 
for task requirement-based offloading in one-to-one 
parametric comparisons, aiding decision-making. 
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Table 1. Parametric Comparison for Resource 
Assignment 

Considered 
Parameters 

Split 
Decision 

Offloading 
Type Remarks 

𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠  Yes Partial Offload to 

Server 
𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅  Yes Partial Offload to 
Cloud 

WLʌ > 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚
𝑖𝑖  Yes Partial Offload to 

Server 
WLʌ > 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗  Yes Partial Offload to 
Cloud 

𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖  Yes Partial Offload to 

Server 
𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

𝑗𝑗  Yes Partial Offload to 
Cloud 

Now, each device i has limited memory and storage 
capacity to process the tasks and give computed results. Let 
M𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 be the total free memory available unused and M𝑚𝑚𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐 
be total memory allocated for the computation of some 
task; currently allocated memory will be calculated by 
dividing the total memory given by the used memory. 
Thus, total memory M𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 maybe given as M𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑠𝑠 =
 M𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟 + M𝑚𝑚𝑠𝑠𝑠𝑠𝑜𝑜𝑐𝑐. First of all, the status of computing 
resources, that is, the devices and servers, will be updated 
for that instant of time. Secondly, their status will be 
mapped to task computation requirements as described in 
Table 1, and a final TO decision will be made. If the task 
computation requirements are not accomplished either by 
the device or by the server, the task will be finally rejected 
for that instant of time, as described in Algorithm 2. The 
rejected tasks will be checked for recomputation for a 
different time window after some wait time. 

Algorithm 2: Task Execution Decision Algorithm 
INPUT: Set of tasks ʌ𝑖𝑖=[ʌ1, ʌ2, ʌ3, … . . , ʌ𝑛𝑛]  n 𝜖𝜖 ʌ. 
OUTPUT: Assignment of each unit of task ʌ to a local 
device or edge server or cloud for computation and 
delivery of computed results 
START 
Let TS(t)= ʌ𝑖𝑖(t) 
WHILE TS(t) ≠ NULL DO 
Check task status by ʌ(ʌ𝐼𝐼𝐼𝐼,𝑑𝑑ʌ, 𝑐𝑐ʌ, ʌ𝑇𝑇𝐼𝐼, ʌ𝑃𝑃𝑟𝑟 , WLʌ) . 
Check device status by i(i𝐼𝐼𝐼𝐼,𝐶𝐶𝑡𝑡𝑝𝑝i,𝐵𝐵𝐵𝐵i, E𝑖𝑖 , WL𝑖𝑖) 
Check server status by j�j𝐼𝐼𝐼𝐼,𝐶𝐶𝑡𝑡𝑝𝑝j,𝐵𝐵𝐵𝐵j, E𝑗𝑗 , WL𝑗𝑗� 
 FOR k=1 to n-1 
CHK 1: IF 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 < ʌ𝑇𝑇𝐼𝐼 AND WLʌ < 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 AND 𝑑𝑑ʌ < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠  
      Initially ʌ𝑖𝑖 to be allocated to i for local processing 
CHK 2: IF 𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 > ʌ𝑇𝑇𝐼𝐼 AND WLʌ > 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 AND  𝑑𝑑ʌ > 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠  
     IF WLʌ < 𝑊𝑊𝑊𝑊𝑐𝑐𝑚𝑚𝑚𝑚

𝑗𝑗  AND ʌ𝑠𝑠𝑖𝑖𝑠𝑠𝑟𝑟 < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅  

Initially ʌ𝑖𝑖(𝑡𝑡) to be allocated to server j for remote     
processing at server  
                                  ELSE 
                                      CHK 3: Reject Task       
Computation 
      ENDIF 
ENDIF 
ENDFOR 
                ENDWHILE 
Proceed To Algorithm 3 
STOP 

The proposed Task Execution Decision Algorithm maps 
the current status of both the device and server with that of 
the task computation requirements before the final TO 
decision. This will help to elevate the system’s 
performance by optimally assigning computing resources 
to the tasks and computing them in a real-time manner for 
the proposed MEC-IoT model. Next, the task will be split 
into two subcomponents:  one will be computed locally, 
and the other will be a computer in a remote region in 
parallel. This remote region is the same to which the device 
has been connected using Algorithm 1. On this server, the 
split task component will be finally offloaded for remote 
computation. 

3.3. Split-Based Task Offloading 

The goal of carrying out Task Splitting is to minimize the 
total task computation latency with optimal RA. For this 
purpose, two sets have been designed namely ʌ=
{ʌ1𝑠𝑠 , ʌ2𝑠𝑠 , … . . , ʌ𝑛𝑛𝑠𝑠 }, R𝑦𝑦 = {ʌ1𝑅𝑅 , ʌ2𝑅𝑅 , … . . , ʌ𝑛𝑛𝑅𝑅}, and containing 
those subunits of tasks ʌ assigned for local and remote-
based computation. The size of the total task may be 
represented as L𝑚𝑚 + R𝑚𝑚 in the case of the server association. 
It may be formulated as given in equation (17). 

ʌ𝑠𝑠𝑖𝑖𝑠𝑠𝑟𝑟 = (L𝑚𝑚 + R𝑚𝑚). ( 𝛼𝛼𝑖𝑖𝑗𝑗) (17) 

It is a crucial requirement to optimize offloading decisions 
by assigning the best resources for each task subunit's 
execution and delivery, minimizing energy and latency 
limitations. This is accomplished by Algorithm 3 after 
successful task splitting using Algorithm 2. 

Algorithm 3: Resource Assignment Decision 
Algorithm (Final Task Offloading     Decision) 
INPUT: Set of local processing subunit L𝑚𝑚 =
{ʌ1𝑠𝑠 , ʌ2𝑠𝑠 , … . . , ʌ𝑛𝑛𝑠𝑠 }, Set of remote processing subunits R𝑦𝑦 
= {ʌ1𝑅𝑅 , ʌ2𝑅𝑅 , … . . , ʌ𝑛𝑛𝑅𝑅} and Set of Cloud processing 
subunits DC𝑠𝑠 = {ʌ1𝐶𝐶 , ʌ2𝐶𝐶 , … . . , ʌ𝑛𝑛𝐶𝐶} 
OUTPUT: Optimal task-splitting and resource 
allocation for Task Offloading. 
START 
GOTO CHK1 
             Allocate task subunits to L𝑚𝑚 until P 
GOTO CHK2 
IF WLʌ < 𝐶𝐶𝑡𝑡𝑝𝑝𝑗𝑗 AND 𝑑𝑑ʌ < 𝑀𝑀𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠  AND ʌ𝑇𝑇𝐼𝐼 < 𝑇𝑇𝑡𝑡ℎ
𝑗𝑗  

      Offload to Edge server j 
𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟𝑙𝑙𝑡𝑡𝑡𝑡 = L𝑚𝑚 ∪ R𝑦𝑦 

ELSE 
                     GOTO CHK3 
         Reject 
 
STOP 

Algorithm 3 uses local computing mode and never 
broadcasts tasks to distant regions, gathering all calculated 
task components for decision-making. If an offloading 
strategy is used, results are transmitted back to the device, 
combining components for further decision-making. It 
should be noted that the proposed GTBTL-IoT algorithm 
only discusses uplink transmission delay. No discussion is 
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done on the back propagation of results to the requesting 
IoT device. 
 
4. Performance Evaluation 

GTBTL-IoT's efficacy is confirmed in terms of optimal 
task computation latency and balanced task offloading 
decision. The suggested approach is validated by 
comparing it to similar proposed algorithms such as 
dynamic task scheduling (DTS) [41], Fuzzy Algorithm 
(FA) [42], and Delay-Aware Online Workload Allocation 
(DAOWA) algorithm [43]. The DTS [41] algorithm tends 
to reduce overall latency and energy usage in the fog zone 
while maintaining optimal RA. FA [42] reduces task 
service time by taking into account variables such as CPU 
utilization and resource needs while DAOWA [43] intends 
to lower the long-term average task service latency. 
ENIGMA [44] is used to simulate an Edge Environment to 
assess the performance of GTBTL-IoT. It is a scalable 
simulator for the fog, edge, and cloud computing 
paradigms. 
Dataset. A dynamic and intelligent task offloading-based 
strategy dataset [45] was used to simulate the proposed 
GTBTL-IoT method. This database contains information 
on latency, resource usage, user activity, and network 
parameters and is used as input by GTBTL-IoT for the sake 
of measuring its performance and its efficacy over other 
algorithms.  
Simulation Setup. For simulation, 150 used nodes are 
distributed over an area of 1000 X 1000 m. The capacity of 
each use node 𝐶𝐶𝑡𝑡𝑝𝑝𝑖𝑖 as well as the server 𝐶𝐶𝑡𝑡𝑝𝑝𝑗𝑗 is randomly 
selected from Table II. The simulator parameter settings for 
the proposed model have been summarized in Table 2. 

Table 2. Simulator Settings 
 

Simulation Parameter Setting Value 
Simulation duration 150-250 secs 
Device Status Updating 10 sec 
Server Status Updating 10 sec 
IoT to Edge Delay 200 ms 
IoT to Edge Jitter 50 ms 
Edge To Cloud Delay 350 ms 
Edge To Cloud Jitter 100 ms 
SNR 100 dB 
Subchannel Bandwidth 200 kHz 
Packet Size 100-1000 bytes 
Deployment Area Radius 1000 m 
Max. Association Delay 15 ms 
Fading Rayleigh Flat 

Fading 
Path Loss Exponent 4 
Power Spectral Density of Noise -174 dBm/Hz 
Data Size of Task [0.1-1] MBits 
No. of Required CPU Cycles [0.1-1] GHz 
Computational Capacity of Device [0.7-1] GHz 
Computational Capacity of Server 20 GHz 
Max. Transmission Power 300 mW 
No. of Iterations 5 
No. of IoT Devices 100-1000 
No. Of Edge Servers 5 

Max. Acceptable Latency [1.0-5.5] secs 
 
Data Preprocessing and Visualization. Preprocessing the 
data is essential before executing the code through the 
database. Prior to the final implementation, this 
preprocessing stage is crucial for guaranteeing the accuracy 
of classifiers and removing any inconsistent or 
untrustworthy data. In order to prepare the data for testing 
and training, preprocessing steps include data 
normalization and scaling. The dataset is first split into 
training and testing sets. To be more precise, 90% of the 
data is used to train the suggested model, while the 
remaining 10% is set aside for testing. The task offloading 
approach is made more understandable by the analysis 
done in [45]. Plot axis and Pyplot have been used to show 
the findings using the suggested model. The model's results 
may be properly presented and interpreted with the help of 
these visualization approaches. 
In the modeled environment, it has been assumed that there are 
three computing regions: IoT, edge, and cloud. Every IoT node 
is heterogeneous in terms of resource capacity and application 
execution. The value of simulation parameters within a specific 
range is determined by the minimum and maximum values of 
the dataset collected, which is again tuned through the 
pseudocode random number generator as shown in Figure. 2. 

 
 

Figure 2. Workflow diagram of GTBTL-IoT 
 
As illustrated in Figure 2, the TC method involves 
randomly creating tasks on IoT devices, verifying 
connectivity with the closest server, reviewing task 
requirements, and updating device and server status. If task 
specifications match available computational resources, 
work is offloaded locally, or task splitting occurs for distant 
processing. The task's sub-components will be gathered, 
and a real-time choice will be made if Algorithm 2 is 
successfully applied; otherwise, the procedure ends. 
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4.1 Complexity Analysis of GTBTL-IoT 

The suggested Task Offloading and TC Latency 
minimizing algorithm's complexity depends on the 
following factors: (a) the number of resources needed for 
TC, (b) the system deadline, (c) location awareness, and d) 
the amount of workload being updated. Since the number 
of tasks continues to grow exponentially from the initial 
generation stage as the method approaches its queue size 
threshold with fixed time constraints, the complexity of 
tasks created is 𝑂𝑂(2^𝑡𝑡). Since it is a linear activity, updating 
the device and server in terms of their remaining computational 
resources and location awareness has O(n) complexity. The 
greatest iterative tolerance for Algorithm 1 is based on 𝜑𝜑1 with 
complexity 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙2𝑍𝑍), where Z is an n-digit complex integer 
with a 𝑙𝑙𝑙𝑙𝑙𝑙10(𝜑𝜑1−1) digit. Algorithms 2 and 3 are based on linear 
feasibility with maximum iterative 𝜑𝜑2and complexity 
𝑂𝑂 �𝑙𝑙𝑙𝑙𝑙𝑙2

𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑚𝑚
𝜑𝜑2

�, where m is the number of inequality 
constraints and n is the number of optimization variables. The 
total complexity is 𝑂𝑂 �(2^𝑡𝑡) × (𝑙𝑙𝑙𝑙𝑙𝑙2𝑍𝑍) ×

�𝑙𝑙𝑙𝑙𝑙𝑙2
𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚−𝑊𝑊𝑊𝑊𝑟𝑟𝑟𝑟𝑚𝑚

𝜑𝜑2
�� what moves with polynomial time. 

 

5. Results and Discussion 

The results of the proposed GTBTL-IoT algorithm and its 
usefulness in lowering overall task computation latency 
and optimizing workload allocation between local devices 
and MEC servers are shown in this section. It also 
illustrates how the algorithm is capable of making an 
optimal task-offloading decision to maximize time and 
resources. 

5.1 Simulation Period Analysis 

The simulation time of each approach has been 
investigated in this section. Within the simulation time, 
tasks are received, their status is updated, the locations of 
servers and devices are updated, server workloads are 
computed, tasks are split and offloaded, and the results are 
evaluated. The task generation rate influences the duration 
of the simulation. Table 3 shows the results of the 
simulation after four iterations namely #I1, #I2, #I3, and 
#I4 respectively.  

 

Table 3. Simulation Period Analysis 

 

Duration (in Secs) 250 
Warm-Up Period (in Secs) 90 
Number of Active Nodes 150 

 #I1 #I2 #I3 #I4 Average 
DTS 12 14 15 16 14.52 
FA 10 12 13 14 12.25 

DAOWA 9 11 12 13 11 
GTBTL-IoT 8 9.5 9.8 10 9.32 

The simulation time was set to 250 seconds, with a warm-
up period of 90 seconds. Table 3 and Figure 4 show that 
the DTS method occupied the majority of the simulation 
time, 14.52 seconds on average. FA and DAOWA took 
12.25 and 11 seconds, respectively. The suggested 
GTBTL-IoT method, on the other hand, outperformed the 
other three by requiring just 9.32 seconds on average for 
simulation over all four iterations, demonstrating its 
efficiency in terms of time and resource utilization. 
 

 
 
Figure 3. Simulated Performance Vs Number of 
Active Nodes 

5.2 Latency Evaluation 

The packet sizes of the incoming tasks vary from 100 to 
1000 bytes. As a result, the task computation latency of 
these variable-sized tasks varies. The total latency is 
determined by a variety of factors, including the time it 
takes to record the available resources, the deployment area 
for task computing, the waiting or queue time, task 
transmission time (if transferred for remote computation), 
server queue time, and other critical variables. Table 4 
summarizes the results of the latency evaluation after 
simulating for four iterations respectively. 

 

Table 4. Latency Analysis 

 
Duration (in Secs) 250 

Warm-Up Period (in Secs) 90 
Number of Active Nodes 150 

 #I1 #I2 #I3 #I4 Average 
DTS 148 150 165 180 160.75 
FA 143 145 160 175 155.75 

DAOWA 137 140 156 170 150.75 
GTBTL-IoT 129 132 150 164 143.75 
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The goal is to develop a task-computing approach that will 
undoubtedly lower total work computation time. Based on 
Table 4 and Figure 5, it can be stated that GTBTL-IoT 
outperforms DTS, FA, and DAOWA in terms of 
minimizing total job computation delay. The overall 
latency induced by the request from the IoT node until the 
final results were delivered was simulated for all four 
algorithms across four iterations. Finally, when GTBTL-
IoT caused the least latency overhead which is 143.75 
seconds, DTS, FA, and DAOWA required 160.75 seconds, 
155.75 seconds, and 150.75 seconds, respectively. Packet 
sizes of up to 1000 bytes were progressively and steadily 
raised to test performance. 

 
Figure 4. Latency Analysis Vs Packet Size 

5.3 Task Offloading Decision 

The choice to offload a task is dependent on the task 
requirements, memory requirements, and constraints such 
as workload overflow, device-server distance, allotted 
server and device memory, and maximum resource 
computing capabilities. Offloading a task as per the 
GTBTL-IoT algorithm, includes breaking it into two parts, 
calculating one locally and sending the other to the closest 
server available, and then computing both in parallel inside 
the same timeframe.  

 

 
 

Figure 5. Task Offloading Decision 

After Simulation, it was found that the GTBTL-IoT 
algorithm chose parallel computing for 54.2% of the 
incoming jobs, local computation for 24.6%, totally remote 
computation for 8.6%, and total cloud offloading for 12.6% 
of the workloads, as shown in Figure 6. The above 
comparison analysis demonstrates how effectively the 
proposed technique works. Also, an analysis of optimal 
task offloading decisions was carried out in the same way 
for DTS, FA, and DAOWA algorithms, whose results are 
illustrated in Figure 6. 

 

 
Figure 6. Task Offloading Efficiency 

From Figure 6, it can be seen that DTS offloads its 
maximum generated task to the remote server fully, FA 
uses both parallel as well as full remote offloading 
approaches while DAOWA offloads its task fully to the 
cloud, which is again a complex process. However, as 
compared to these three, GTBTL-IoT uses parallel 
offloading and task computation approach which proves to 
be optimal for time and resource utilization. 

5.4 Execution Time Analysis 

The task's execution once it is delegated to a resource is the 
subject of concern, but its interpretation in a real-time 
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situation results are useful if they are received in a timely 
way. The task generation variable is continuously provided 
different values at various points in time t' for its 
examination across various algorithms, as shown in Figure. 
8, to assess the effectiveness of the GTBTL-IoT algorithm. 
The task arrival rate in ms is given as rate = 0.1, 0.5, 1.0, 
1.5, 1.7, 2.0, 2.5, 3.0, 3.5, and 3.8. The average number of 
tasks created in the IoT region with regard to ‘t' is used to 
calculate the task execution time. This analysis is 
summarized using Table 5. 

 

Table 5. Execution Table Analysis 

 

Duration (in Secs) 250 
Warm-Up Period (in Secs) 90 
Number of Active Nodes 150 

 #I1 #I2 #I3 #I4 Average 
DTS 98 212 654 802 441.5 
FA 86 203 623 792 426 

DAOWA 82 198 601 779 415 
GTBTL-IoT 78 164 588 765 398.75 

 

 
Figure 7. Task Execution Efficiency Vs Incoming 
Tasks 
 
Based on Table 5 and Figure 7, it can be stated that 
GTBTL-IoT outperforms DTS, FA, and DAOWA in terms 
of task execution. The execution time can be determined 
based on available memory, wait times in queues, allotted 
resource blocks, and transmission times. After simulation 
for all four algorithms across four iterations, it was found 
that GTBTL-IoT took the least execution time that is 
398.75 milliseconds seconds, as compared to DTS, FA, and 
DAOWA which took 441.5 milliseconds, 426 
milliseconds, and 415 milliseconds, respectively. It should 
be remembered that 𝒕𝒕𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕ʌ𝒕𝒕 = 𝟎𝟎 in the case of local TC. 
Therefore, a smaller number for the local computation 
timeframe is received. The proposed algorithm works 
better than any previous TO or computing technique. 

5.5 Workload Distribution Analysis 

The Poisson Distribution approach has been used to 
analyze the load placed on various local and 
remote resources for an array of tasks that are growing 
exponentially. It would be easier to analyze the workload 
imposed and the job computation efficiency when the task 
is spread among the various available resource blocks in 
accordance with the particular approach used. The task 
distribution has a significant influence on the computation 
and timely delivery of the results. 

 
Figure 8. Workload Distribution 

It is observed that the DTS spreads its maximum 
workload evenly between cloud and local resources, 
whereas the FA prefers to divide its workload over local 
resources. DAOWA places a remote edge server under its 
maximum workload, which may result in data packet 
congestion and an uneven distribution of workload 
calculations. However, the proposed method minimizes TC 
delay by making the most use of both local and 
remote computing resources while moving the smallest 
possible tasks to the cloud. 
 

5.6 Resource Allocation 

The term "resource block allocation time" essentially refers 
to the period of time during which a resource block will be 
assigned to the execution of a certain job. RBAlloc time 
affects how quickly randomly generated jobs are 
completed by the system deadline. This is crucial for 
preserving a real-time environment for real-time responses. 
The summary of resource allocation time of DTS, FA, 
DAOWA, and GTBTL-IoT is shown in Table 6. 
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 Table 6. Resource Allocation time 

 
Duration (in Secs) 250 

Warm-Up Period (in Secs) 90 
Number of Active Nodes 150 

 #I1 #I2 #I3 #I4 Average 
DTS 14 26 34 50 31 
FA 12 21 30 45 27 

DAOWA 10 18 27 40 23.75 
GTBTL-IoT 8 15 23 36 20.5 

The packet size taken for simulation and resource 
allocation of DTS, FA, DAOWA, and GTBTL-IoT 
algorithms is plotted together and shown in Figure 9.  

 
Figure 9. Resource Allocation Vs Packet Size 

 

Based on Table 6 and Figure 9, it can be concluded that 
GTBTL-IoT has the shortest RBAlloc time when compared 
to the DTS, FA, and DAOWA Task Offloading 
Algorithms. For a 10-unit task queue size, GTBTL-IoT 
required 20.5 seconds on average of four iterations. DTS, 
FA, and DAOWA took 31, 27, and 23.75 seconds, 
respectively. As a result, it can be said that the suggested 
method performed better than the other three. 

6. Conclusion 

The study suggests that a partial TO strategy is more 
effective than sending the task to a remote server, and that 
distance significantly reduces offloading overhead and TC 
latency. Allocating tasks to local and remote regions in 
parallel for computing reduces task processing delays and 
improves system performance by enhancing responses. 
The simulation findings show that the GTBTL-IoT 
algorithm was effective in reducing the overall TC latency 
at 143.75 ms as compared to DTS at 160.75 ms, FA at 
155.75 ms, and DAOWA at 150.75 ms. In the future, this 
work may be extended to enhance real-time responses in 
IoT environments with better decision-making using deep 
learning (DL) techniques. The DL models may be used to 

classify and prioritize the tasks for better resource 
utilization and their computation with a time-critical 
approach. 

Data Availability. 
The data used for test setup and experimental analysis may 
be made available by the authors upon request. 

Conflicts of Interest. 
The authors declare that they have no conflicts of interest 
regarding the publication of the research work. 

Author Contributions. 
• Research Idea Formulation, Research Content 

Collection, Designing of Algorithms, Experimental 
Setup-Ms. Eram Fatima Siddiqui 

• Literature Survey, Result Interpretation, Research 
Writing, and Proofreading- Dr. Tasneem Ahmed. 

Acknowledgements. 
The authors are thankful to the Advanced Computing 
Research Laboratory, Department of Computer Application, 
Integral University, Lucknow for providing the necessary 
support to carry out the research work. The manuscript 
communication number issued by Integral University is 
IU/R&D/2023-MCN0002229. 

References 
[1]  C. Swain et al., “METO: Matching-Theory-Based Efficient 

task offloading in IoT-FOG interconnection networks,” 
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12705–
12715, Aug. 2021, doi: 10.1109/jiot.2020.3025631. 

[2]  M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem, 
“Joint cloudlet selection and latency minimization in FoG 
networks,” IEEE Transactions on Industrial Informatics, 
vol. 14, no. 9, pp. 4055–4063, Sep. 2018, doi: 
10.1109/tii.2018.2829751. 

[3]  J. Xue and Y. An, “Joint task offloading and resource 
allocation for Multi-Task Multi-Server NOMA-MEC 
networks,” IEEE Access, vol. 9, pp. 16152–16163, Jan. 
2021, doi: 10.1109/access.2021.3049883. 

[4]  A. Rafiq, P. Wang, M. Wei, S. H. Hong, and N. N. Josbert, 
“Optimizing Energy consumption and Latency based on 
computation offloading and cell association in MEC 
enabled Industrial IoT environment,” 2021 6th 
International Conference on Intelligent Computing and 
Signal Processing (ICSP), Apr. 2021, doi: 
10.1109/icsp51882.2021.9408693. 

[5]  S. Xia, X. Wen, Z. Yao, Y. Li, and G. Wang, “Dynamic 
Task Offloading and Resource Allocation for 
Heterogeneous MEC-enable IoT,” 2020 IEEE/CIC 
International Conference on Communications in China 
(ICCC), 2020, Aug. 2020, doi: 
10.1109/iccc49849.2020.9238863. 

[6]  S. K. T, “EFFICIENT RESOURCE ALLOCATION AND 
QOS ENHANCEMENTS OF IOT WITH FOG 
NETWORK,” Journal of ISMAC the Journal of IoT in 
Social, Mobile, Analytics, and Cloud, Sep. 2019, doi: 
10.36548/jismac.2019.2.003. 

[7]  G. Cui, X. Li, L. Xu, and W. Wang, “Latency and energy 
optimization for MEC enhanced SAT-IoT networks,” IEEE 

EAI Endorsed Transactions 
on Internet of Things | 

| Volume 11 | 2025 |



 
E. F. Siddiqui and T. Ahmed 

12 

Access, vol. 8, pp. 55915–55926, Jan. 2020, doi: 
10.1109/access.2020.2982356. 

[8]  H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, 
and C. Assi, “Dynamic task offloading and scheduling for 
Low-Latency IoT services in Multi-Access edge 
computing,” IEEE Journal on Selected Areas in 
Communications, vol. 37, no. 3, pp. 668–682, Mar. 2019, 
doi: 10.1109/jsac.2019.2894306. 

[9]  J. Liu and Q. Zhang, “Adaptive Task Partitioning at Local 
Device or Remote Edge Server for Offloading in MEC,” 
2020 IEEE Wireless Communications and Networking 
Conference (WCNC), May 2020, doi: 
10.1109/wcnc45663.2020.9120484. 

[10]  W. Almughalles, R. Chai, J. Lin, and A. Zubair, “Task 
Execution Latency Minimization-based Joint Computation 
Offloading and Cell Selection for MEC-Enabled HetNets,” 
2019 28th Wireless and Optical Communications 
Conference (WOCC), May 2019, doi: 
10.1109/wocc.2019.8770582. 

[11]  Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, 
“Matching theory for future wireless networks: 
fundamentals and applications,” IEEE Communications 
Magazine, vol. 53, no. 5, pp. 52–59, May 2015, doi: 
10.1109/mcom.2015.7105641. 

[12]  T. Cuong, N. H. Tran, C. Pham, Md. G. R. Alam, J. H. Son, 
and C. S. Hong, “A proximal algorithm for joint resource 
allocation and minimizing carbon footprint in geo-
distributed fog computing,” 2015 International Conference 
on Information Networking (ICOIN), Jan. 2015, doi: 
10.1109/icoin.2015.7057905. 

[13]  R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal 
workload allocation in FOG-Cloud computing towards 
balanced delay and power consumption,” IEEE Internet of 
Things Journal, p. 1, Jan. 2016, doi: 
10.1109/jiot.2016.2565516. 

[14]  D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint 
optimization of task scheduling and image placement in 
FOG Computing supported Software-Defined embedded 
system,” IEEE Transactions on Computers, vol. 65, no. 12, 
pp. 3702–3712, Dec. 2016, doi: 10.1109/tc.2016.2536019. 

[15]  H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, 
“Computing Resource Allocation in Three-Tier IoT FOG 
Networks: A joint optimization approach combining 
Stackelberg game and matching,” IEEE Internet of Things 
Journal, vol. 4, no. 5, pp. 1204–1215, Oct. 2017, doi: 
10.1109/jiot.2017.2688925. 

[16]  M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge 
computing in latency-constrained fog networks,” 2017 
European Conference on Networks and Communications 
(EuCNC), Jun. 2017, doi: 10.1109/eucnc.2017.7980678. 

[17]  T. Yang, R. Chai, and L. Zhang, “Latency Optimization-
based Joint Task Offloading and Scheduling for Multi-user 
MEC System,” 2020 29th Wireless and Optical 
Communications Conference (WOCC), May 2020, doi: 
10.1109/wocc48579.2020.9114942. 

[18]  N. Nikaein, X. Vasilakos, and A. Huang, “LL-MEC: 
Enabling Low Latency Edge Applications,” 2018 IEEE 7th 
International Conference on Cloud Networking (CloudNet), 
Oct. 2018, doi: 10.1109/cloudnet.2018.8549500. 

[19]  B. Brik, P. A. Frangoudis, and A. Ksentini, “Service-
Oriented MEC Applications Placement in a Federated Edge 
Cloud Architecture,” ICC 2020 - 2020 IEEE International 
Conference on Communications (ICC), Jun. 2020, doi: 
10.1109/icc40277.2020.9148814. 

[20]  A. Alnoman, S. Erkucuk, and A. Anpalagan, “Sparse code 
multiple Access-Based edge computing for IoT systems,” 

IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7152–
7161, Aug. 2019, doi: 10.1109/jiot.2019.2914570. 

[21]  R. Han, Y. Wen, L. Bai, J. Liu, and J. Choi, “Rate splitting 
on mobile edge computing for UAV-Aided IoT systems,” 
IEEE Transactions on Cognitive Communications and 
Networking, vol. 6, no. 4, pp. 1193–1203, Dec. 2020, doi: 
10.1109/tccn.2020.3012680. 

[22]  R. Gu, L. Yu, and J. Zhang, “MeFILL: A Multi-edged 
Framework for Intelligent and Low Latency Mobile IoT 
Services,” 2020 IEEE Wireless Communications and 
Networking Conference (WCNC), May 2020, doi: 
10.1109/wcnc45663.2020.9120786. 

[23]  I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. 
Ylianttila, “Cloud and edge computation offloading for 
latency limited services,” IEEE Access, vol. 9, pp. 55764–
55776, Jan. 2021, doi: 10.1109/access.2021.3071848. 

[24]  K. Chen, Y. Wang, Z. Fei, and X. Wang, “Power Limited 
Ultra-Reliable and Low-Latency Communication in UAV-
Enabled IoT Networks,” 2020 IEEE Wireless 
Communications and Networking Conference (WCNC), 
May 2020, doi: 10.1109/wcnc45663.2020.9120565. 

[25]  H. Yoshino, K. Ota, and T. Hiraguri, “Adaptive Control of 
Statistical Data Aggregation to Minimize Latency in IoT 
Gateway,” 2018 Global Information Infrastructure and 
Networking Symposium (GIIS), Oct. 2018, doi: 
10.1109/giis.2018.8635712. 

[26]  J.-P. Hong, J. Park, W. Shin, and S. Beak, “Distributed 
antenna system design for Ultra-Reliable Low-Latency 
Uplink communications,” 2019 International Conference 
on Electronics, Information, and Communication (ICEIC), 
Jan. 2019, doi: 10.23919/elinfocom.2019.8706492. 

[27]  M. Yang, S.-Y. Lim, S.-M. Oh, and J. G. Shin, “An Uplink 
Transmission Scheme for TSN Service in 5G Industrial 
IoT,” 2020 International Conference on Information and 
Communication Technology Convergence (ICTC), Oct. 
2020, doi: 10.1109/ictc49870.2020.9289303. 

[28]  A. H. Ismail, T. A. Soliman, G. M. Salama, N. A. El-
Bahnasawy, and H. F. A. Hamed, “Congestion-Aware and 
Energy-Efficient MEC Model with Low Latency for 5G,” 
2019 7th International Japan-Africa Conference on 
Electronics, Communications, and Computations, (JAC-
ECC), Dec. 2019, doi: 10.1109/jac-
ecc48896.2019.9051312. 

[29]  K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, 
“Mobile edge computing and networking for Green and 
Low-Latency Internet of Things,” IEEE Communications 
Magazine, vol. 56, no. 5, pp. 39–45, May 2018, doi: 
10.1109/mcom.2018.1700882. 

[30]  Z. Zhang et al., “6G Wireless Networks: vision, 
requirements, architecture, and key technologies,” IEEE 
Vehicular Technology Magazine, vol. 14, no. 3, pp. 28–41, 
Sep. 2019, doi: 10.1109/mvt.2019.2921208. 

[31]  N. Germenis, P. Fountas, and C. Koulamas, “Low Latency 
and Low Cost Smart Embedded Seismograph for Early 
Warning IoT Applications,” 2020 9th Mediterranean 
Conference on Embedded Computing (MECO), Jun. 2020, 
doi: 10.1109/meco49872.2020.9134088. 

[32]  G. Calice, A. Mtibaa, R. Beraldi, and H. Alnuweiri, 
“Mobile-to-mobile opportunistic task splitting and 
offloading,” 2015 IEEE 11th International Conference on 
Wireless and Mobile Computing, Networking and 
Communications (WiMob), Oct. 2015, doi: 
10.1109/wimob.2015.7348012. 

[33]  N. Kherraf, S. Sharafeddine, C. Assi, and A. Ghrayeb, 
“Latency and Reliability-Aware workload assignment in 
IoT networks with mobile edge clouds,” IEEE Transactions 

EAI Endorsed Transactions 
on Internet of Things | 

| Volume 11 | 2025 |



 GTBTL-IoT: An Approach of Curtailing Task Offloading Time for Improved Responsiveness in IoT-MEC Model 
 
 
 

13 

on Network and Service Management, vol. 16, no. 4, pp. 
1435–1449, Dec. 2019, doi: 10.1109/tnsm.2019.2946467. 

[34]  H. Hao, Y. Wang, Y. Shi, Z. Li, Y. Wu, and C. Li, “IoT-G: 
A Low-Latency and High-Reliability Private Power 
Wireless Communication Architecture for Smart Grid,” 
2019 IEEE International Conference on Communications, 
Control, and Computing Technologies for Smart Grids 
(SmartGridComm), Oct. 2019, doi: 
10.1109/smartgridcomm.2019.8909773. 

[35]  J. Park and Y. Lim, “Balancing Loads among MEC Servers 
by Task Redirection to Enhance the Resource Efficiency of 
MEC Systems,” Applied Sciences, vol. 11, no. 16, p. 7589, 
Aug. 2021, doi: 10.3390/app11167589.  

[36]  C. Duo, D. Jia, Q. Gao, B. Li, and Y. Li, “MEC 
Computation Offloading-Based Learning Strategy in Ultra-
Dense Networks,” Information, vol. 13, no. 6, p. 271, May 
2022, doi: 10.3390/info13060271.  

[37]  S. Bebortta and D. Senapati, “Toward Cost-Aware 
computation offloading in IoT-Based MEC systems,” 
National Academy Science Letters, vol. 46, no. 6, pp. 531–
534, May 2023, doi: 10.1007/s40009-023-01260-9.  

[38]  Z. Ai, W. Zhang, M. Li, P. Li, and L. Shi, “A smart 
collaborative framework for dynamic multi-task offloading 
in IIoT-MEC networks,” Peer-to-Peer Networking and 
Applications, vol. 16, no. 2, pp. 749–764, Jan. 2023, doi: 
10.1007/s12083-022-01441-1.  

[39]  J. Chen, Y. Leng, and J. Huang, “An intelligent approach 
of task offloading for dependent services in Mobile Edge 
Computing,” Journal of Cloud Computing, vol. 12, no. 1, 
Jul. 2023, doi: 10.1186/s13677-023-00477-9.  

[40]  H. H. Imtiaz and S. Tang, “Multi-Task Partial Offloading 
with Relay and Adaptive Bandwidth Allocation for the 
MEC-Assisted IoT,” Sensors, vol. 23, no. 1, p. 190, Dec. 
2022, doi: 10.3390/s23010190. 

[41]  F. Alenizi and O. F. Rana, “Minimising delay and energy 
in online dynamic fog systems,” arXiv (Cornell University), 
Dec. 2020, doi: 10.48550/arxiv.2012.12745. 

[42]  J. Almutairi and M. Aldossary, “A novel approach for IoT 
tasks offloading in edge-cloud environments,” Journal of 
Cloud Computing, vol. 10, no. 1, Apr. 2021, doi: 
10.1186/s13677-021-00243-9. 

[43]  L. Li, M. Guo, L. Ma, H. Mao, and Q. Guan, “Online 
workload allocation via FOG-FOG-Cloud cooperation to 
reduce IoT task service delay,” Sensors, vol. 19, no. 18, p. 
3830, Sep. 2019, doi: 10.3390/s19183830. 

[44]  E. Del-Pozo-Puñal, F. Garcia-Carballeira, and D. 
Camarmas-Alonso, “A scalable simulator for cloud, fog and 
edge computing platforms with mobility support,” Future 
Generation Computer Systems, vol. 144, pp. 117–130, Jul. 
2023, doi: 10.1016/j.future.2023.02.010. 

[45]  Zumnan, “GitHub - Zumnan/Dynamic-Intelligent-Edge-
Task-Offloading-in-MEC-Network,” GitHub. 
https://github.com/Zumnan/Dynamic-Intelligent-Edge-
Task-Offloading-in-MEC-Network/tree/main 

 

EAI Endorsed Transactions 
on Internet of Things | 

| Volume 11 | 2025 |


	The results of the proposed GTBTL-IoT algorithm and its usefulness in lowering overall task computation latency and optimizing workload allocation between local devices and MEC servers are shown in this section. It also illustrates how the algorithm i...



