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Abstract 
INTRODUCTION: Reservoir characterisation and geomechanical modelling benefit significantly from diverse machine 
learning techniques, addressing complexities inherent in subsurface information. Accurate lithology identification is 
pivotal, furnishing crucial insights into subsurface geological formations. Lithology is pivotal in appraising hydrocarbon 
accumulation potential and optimising drilling strategies. 
OBJECTIVES: This study employs multiple machine learning models to discern lithology from the well-log data of the 
Volve Field. 
METHODS: The well log data of the Volve field comprises of 10,220 data points with diverse features influencing the 
target variable, lithology. The dataset encompasses four primary lithologies—sandstone, limestone, marl, and claystone—
constituting a complex subsurface stratum. Lithology identification is framed as a classification problem, and four distinct 
ML algorithms are deployed to train and assess the models, partitioning the dataset into a 7:3 ratio for training and testing, 
respectively. 
RESULTS: The resulting confusion matrix indicates a close alignment between predicted and true labels. While all 
algorithms exhibit favourable performance, the decision tree algorithm demonstrates the highest efficacy, yielding an 
exceptional overall accuracy of 0.98. 
CONCLUSION: Notably, this model's training spans diverse wells within the same basin, showcasing its capability to 
predict lithology within intricate strata. Additionally, its robustness positions it as a potential tool for identifying other 
properties of rock formations. 
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1. Introduction

In the oil and gas industry, the accurate determination of 
lithology through well-log data stands as a critical 
process. Lithology data serves pivotal roles in formation 
evaluation, reservoir characterization, and estimating 
hydrocarbon reserves. Traditionally, expert geologists 
manually performed lithology identification, a process 
that was both labour-intensive and subject to subjective 

interpretations. However, a notable shift has occurred 
toward automated lithology detection by leveraging 
machine learning algorithms with well-log data. 

Within the oil and gas sector, the anticipation of lithology 
from drilling and well-log data holds paramount 
importance as it facilitates the recognition of potential 
hydrocarbon-rich formations. Consequently, extensive 
research endeavours have been directed toward the 
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development of precise and efficient lithology prediction 
tools. 

Mustafa et al. (2019) conducted a comprehensive analysis 
comparing various machine learning algorithms for 
lithology prediction using well logs. Their study aimed to 
evaluate the efficacy of artificial neural networks (ANNs), 
decision trees, and support vector machines (SVMs) in 
this domain. The findings indicated that ANNs 
outperformed other algorithms, boasting a remarkable 
91.4% accuracy in lithology prediction based on well-log 
data [1]. 

Javaherian and Riahi (2020), in their study, discuss the 
various approaches used to forecast lithology from well-
log data. They offer a summary that includes both 
conventional statistical techniques and modern machine 
learning techniques including random forests, support 
vector machines, and artificial neural networks (ANNs). 
Their study highlights the improved precision that may be 
attained in lithology prediction through the integration of 
several approaches [2].  

The results presented by Wang et al. (2019) regarding the 
efficacy of CNNs in lithology prediction serve as a 
catalyst for further exploration and refinement of machine 
learning applications in geophysics. By achieving a high 
success rate in predicting lithology, this approach not only 
offers substantial practical value but also opens avenues 
for continued research aimed at refining and expanding its 
applicability across diverse geological settings. The 
implications of this study reverberate across the 
geoscience community, fostering a new era of data-driven 
approaches for lithology prediction [3].  

A thorough case study centred on the Niobrara Formation 
was published by Yousefzadeh et al. (2019), showcasing 
the effectiveness of decision trees and artificial neural 
networks (ANNs) in lithology estimation utilising well-
log data. By integrating these two methods in an 
innovative manner, the authors were able to achieve an 
incredible 90.7% lithology prediction accuracy [4]. 
Building upon the foundation laid by Yousefzadeh et al. 
(2019), Smith et al. (2020) delved into the broader 
landscape of machine learning applications in subsurface 
characterization. Their work highlights the continual 
advancements in the field, emphasizing the need for 
robust techniques in lithology prediction to enhance 
reservoir evaluation. The integration of machine learning 
algorithms, as demonstrated in the Niobrara Formation 
case study, represents a promising avenue for improving 
accuracy and reliability [14]. 

In a comparative analysis, Johnson and Brown (2021) 
evaluated various machine learning models for lithology 
prediction, including those applied by Yousefzadeh et al. 
(2019). Their study not only reaffirmed the effectiveness 
of the combined ANN and decision tree approach but also 
shed light on the nuances of different algorithms. This 

comparative perspective contributes valuable insights to 
the ongoing discourse on selecting optimal methodologies 
for lithology prediction [15]. 

Addressing the evolving landscape of machine learning 
applications, Chen et al. (2022) focused on enhancing 
lithology prediction through ensemble learning 
techniques. Their work builds upon the foundation set by 
Yousefzadeh et al. (2019) and explores the potential of 
combining multiple models to achieve even greater 
accuracy. This progression underscores the dynamic 
nature of the field and the continual pursuit of innovative 
methodologies [16]. 

The framework for lithology identification proposed by 
Yang, et al. (2021) makes use of machine learning 
methods. The performance of different methods, such as 
support vector machines (SVM), random forests (RF), and 
deep neural networks (DNN), is compared by the authors. 
The outcomes show how well the DNN model performs, 
achieving excellent accuracy in lithology detection [6]. 
A deep learning-based method for lithology identification 
is presented by Xu et al.(2022) the authors identified 
lithologies and extracted features from well-log data using 
convolutional neural networks (CNN) and recurrent 
neural networks (RNN). The suggested model provides 
more accurate lithology identification than conventional 
machine learning techniques, according to experimental 
data [7]. 
The authors, Pan et al. (2022), in their study examine the 
use of machine learning methods for lithology 
categorization in reservoirs. They use well-log data to 
assess the lithology identification capabilities of SVM, 
decision trees, and artificial neural networks (ANN). The 
findings show that ANN demonstrates the potential for 
reservoir characterisation and distinguishes lithologies 
with the best degree of accuracy [8]. 

Zheng, Zhang, and Li (2023) introduced a pioneering 
machine-learning framework tailored for lithology 
identification in complex reservoirs. This research marks 
a significant stride by proposing an innovative approach 
that combines deep belief networks (DBN) and transfer 
learning. The fusion of these techniques aims to enhance 
the precision of lithology detection while accommodating 
intricate correlations within well-log data. Experimental 
data substantiates the efficacy of this approach, 
showcasing high accuracy and robustness in classifying 
lithologies within complex reservoirs [9]. 

A hybrid machine learning strategy is suggested by Zheng 
et al. (2022) in their study for lithology classification in 
complicated reservoirs. To increase the accuracy of 
lithology identification, the authors mix supervised 
learning methods like support vector machines (SVM) 
with unsupervised learning approaches like self-
organizing maps (SOM) and K-means clustering. The 
outcomes show how well the hybrid strategy handles 
intricate lithological variables [10]. The authors Wang et 
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al. (2022) in their paper suggests a well-log data-based 
attention-based recurrent neural network (RNN) for 
lithology detection. The model may concentrate on 
pertinent characteristics and capture the dependencies 
between various log readings thanks to the attention 
method. The suggested model outperforms conventional 
machine learning methods in lithology classification 
tasks, according to experimental results [11]. 

In the study conducted by Li, and Wang (2021) the 
authors suggest a hybrid machine-learning approach for 
lithology detection based on well-log data. To increase the 
precision of lithology classification, the method combines 
a self-adaptive differential evolution algorithm with a 
radial basis function neural network (RBFNN). According 
to experimental findings, the hybrid approach outperforms 
individual machine learning techniques [12]. The study by 
He, et al. (2021) employs a deep-learning approach to 
identify the lithology of shale reservoirs. Convolutional 
neural networks (CNN) and long short-term memory 
networks (LSTM) are used, according to the authors, to 
extract features from good log data and identify temporal 
relationships. The outcomes show how well the suggested 
approach works for precisely identifying lithologies in 
shale reservoirs [13]. 

This study employs various classification algorithms to 
discern lithology from well-log data extracted from the 
Volve field. The field's intricate stratigraphy reveals 
diverse lithologies within the formation, underscoring the 
crucial need for adept ML algorithms capable of 
addressing this complexity. The model underwent training 
using data from multiple wells within the same basin, 
successfully predicting lithology within a complex 
stratum. Moreover, its adaptability suggests its potential 
as a robust model not only for lithology identification but 
also for discerning other properties within rock 
formations.  

2. Proposed Methodology

Log data, which is collected during the drilling process, 
can be used to estimate lithology by analysing the 
responses of different types of rock to various logging 
tools. Some common logging tools used for lithology 
determination include gamma ray, resistivity, neutron 
porosity, and density logs.  
The methodology starts with the collection of well log 
data and the mud log data of the well 15/9-F-1A. Data 
conditioning is then performed on the logging data, also 
the mud log data is stored in .las files and contains 
different codes for different lithology. EDA is then 
performed to identify the underlying nature of the data 
and to know the potential issues with the data related to 
data cleaning. Afterwards, suitable machine learning 
models are selected for the dataset and are applied on the 
training and test dataset. Finally, the selected models are 

tested using the score metrics. The methodology process 
is shown in Figure 1. 

Figure 1. Methodology Process for the Identification of 
Lithology from Well Log Data using Machine Learning  

Selection of Machine Learning Model 

Support Vector Classifier 
Support Vector Classification (SVC) is a powerful 
algorithm used for classification tasks. It operates by 
identifying a hyperplane in the input data that effectively 
separates different classes. The key focus of SVC is to 
maximize the margin between this hyperplane and the 
closest data points from each class. This approach 
enhances the classifier's robustness against outliers and 
noise within the data. When the data cannot be linearly 
separated, SVC employs kernel functions to transform the 
input data into a higher-dimensional feature space. This 
transformation enables SVC to identify a non-linear 
decision boundary that effectively divides the classes in 
this new feature space. It's this capability that makes SVC 
versatile and effective for handling complex, non-linear 
classification problems.  
The advantages of SVC which makes it suitable for our 
study includes: 
1. Non-linearity Handling: SVC can handle complex,

non-linear relationships between well log data
attributes and lithology types. It's capable of
identifying intricate patterns that might not be
linearly separable, crucial for accurately delineating
lithology variations.

2. Robustness to Noise: SVC's margin-maximizing
strategy makes it inherently robust against noise and
outliers in the well log data. This feature helps in
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maintaining the accuracy of lithology identification 
even in the presence of imperfect or noisy data. 

3. High-Dimensional Data Handling: Well log data
often consists of a high number of dimensions
(attributes). SVC, particularly when used with kernel
functions, can effectively handle and process high-
dimensional data to uncover complex relationships
between attributes and lithology.

4. Generalization Performance: SVC tends to have
good generalization performance, meaning it can
effectively generalize from the training data to new,
unseen well log data. This is crucial for accurate
lithology identification in different geological
formations or areas.

5. Controlled Overfitting: By optimizing the margin
between classes, SVC helps in preventing overfitting,
which is vital in lithology identification where
generalization to new data is essential.

6. Flexibility with Kernels: The ability to apply
various kernel functions (e.g., polynomial, radial
basis function) allows SVC to adapt and capture
diverse and complex relationships within the well log
data, enhancing its capacity to discern different
lithology patterns.

7. Suitability for Small Datasets: SVC can perform
well even with smaller well log datasets, making it
applicable in scenarios where data availability might
be limited.

8. Interpretability of Support Vectors: Identification
of support vectors (data points close to the decision
boundary) in SVC provides insight into the key
features contributing to lithology identification,
aiding geologists in understanding lithology
boundaries.

Random Forest Classifier 
The Random Forest classifier is an ensemble learning 
technique that combines multiple decision trees to create a 
robust and accurate model. It utilizes the bagging method, 
specifically bootstrap aggregating, to construct numerous 
decision trees. In this process, each tree is trained using a 
random subset of both features and data samples from the 
available dataset. The integration of predictions from all 
the trees allows the Random Forest to produce a final 
prediction. In classification tasks, this prediction is based 
on the consensus or majority vote among the individual 
trees. Mathematically, let's denote the Random Forest 
algorithm for classification as follows: 
Given decision trees in the forest indexed by 
i , each decision tree  is built using a 
randomly selected subset of features  from the total  
features available. The Random Forest prediction  for a 
new input  with  features is obtained by aggregating 
predictions from all individual trees: 
For classification, the mode (most frequent class) of the 
predictions across all trees is given by Eq. 1. 

 (1) 

Here,  represents the prediction of the i-th decision 
tree on inputs x. 
The essence of the Random Forest lies in the combination 
of multiple decision trees, each trained on different 
subsets of the data, leading to improved generalization 
and robustness in making predictions. The Random Forest 
classifier holds several advantages when it comes to 
identifying lithology using well log data, which makes it 
well suited for our study: 
1. Robustness: Random Forests handle high-

dimensional data (well log data often includes
numerous features) effectively without overfitting,
making them robust for lithology identification.

2. Feature Importance: It provides insights into the
importance of different well log features in predicting
lithology, aiding geologists and analysts in
understanding the key factors influencing lithology
determination.

3. Handles Non-linear Relationships: Well log data
might exhibit complex, non-linear relationships
between lithology and various log measurements.
Random Forests can capture such intricate
associations, enhancing accuracy in lithology
classification.

4. Resistant to Overfitting: Its ensemble nature, using
multiple trees with random subsets of data, mitigates
overfitting issues common in single decision tree
models, ensuring more reliable lithology predictions.

5. Tolerant to Missing Data: Random Forests can
handle missing values in the well log data without
requiring imputation techniques, which is beneficial
as well log datasets often contain missing or
incomplete information.

6. Outlier Robustness: They are relatively robust to
outliers in the well log data, reducing the impact of
irregular readings or noise that might be present.

7. Efficient with Large Datasets: Random Forests can
efficiently handle large volumes of well log data,
scaling well without compromising performance.

8. Ensemble Learning: By aggregating predictions
from multiple trees, it typically produces more
accurate and stable results compared to individual
decision trees, enhancing the reliability of lithology
identification.

AdaBoost 
AdaBoost is an ensemble learning method that combines 
multiple weak classifiers to create a robust, high-
performing model. Each weak classifier focuses on a 
subset of the data, and their outputs are combined through 
a weighted average to form the final strong classifier. The 
algorithm sequentially trains weak learners, assigning 
higher weights to misclassified instances, thereby 
emphasizing their importance in subsequent iterations. By 
iteratively adjusting weights, AdaBoost focuses on 
difficult-to-classify data points, improving overall 
accuracy. AdaBoost is selected as an efficient ML 
algorithm for our study by considering the following 
advantages: 
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1. Improved Accuracy: AdaBoost excels in enhancing
classification accuracy by combining multiple weak
classifiers. This is particularly beneficial in accurately
identifying lithology patterns from well log data,
where subtle features may be crucial.

2. Handling Complex Relationships: Well log data
often involves intricate relationships between
different lithological formations. AdaBoost's ability
to sequentially train weak learners and focus on
misclassified instances helps capture complex
patterns in the data.

3. Feature Importance: AdaBoost provides insights
into feature importance during the training process.
This can be valuable for understanding which well
log features contribute significantly to lithology
identification, aiding geologists and domain experts
in their analysis.

4. Less Prone to Overfitting: AdaBoost's emphasis on
misclassified instances in each iteration helps prevent
overfitting, a common concern when dealing with
geological data. This ensures that the model
generalizes well to new well-log datasets.

5. Adaptability to Various Weak Classifiers:
AdaBoost can be used with different weak classifiers
such as decision trees, support vector machines, or
neural networks. This adaptability allows for
flexibility in choosing the base classifier that best
suits the characteristics of the well-log data.

6. Handling Imbalanced Data: In lithology
identification, datasets may be imbalanced, with
certain lithological formations being less prevalent.
AdaBoost can handle imbalanced data effectively by
assigning higher weights to misclassified instances,
thereby addressing the challenge of minority class
identification.

7. Sequential Learning: The sequential nature of
AdaBoost's training process allows for incremental
learning. This is advantageous for well log data,
where the geological formations may exhibit
evolving patterns along the depth of the well.

Decision Tree  
Decision trees are like a roadmap guiding decisions in 
machine learning, versatile in their ability to tackle 
classification and regression tasks. The process starts with 
the root node, symbolizing the entire dataset. This node 
splits into branches based on features, creating internal 
nodes that represent these features. As the tree grows, it 
divides the data into smaller subgroups, ultimately 
culminating in leaf nodes that contain the final decision or 
outcome.  
Here's a simplified mathematical representation of a 
decision tree classifier: Let  be the input feature vector, 
and be the output class label. The decision tree can be 
represented as a set of rules, RiRi, where each rule 
corresponds to a path from the root to a leaf node. Each 
rule involves a feature, , a threshold value, , and a 
class label, . 

: if   ≤ then  =
Here, 

• represents the value of feature in the input
vector .

• is the threshold value for feature .
• is the predicted class label if the condition is

satisfied.
The decision tree predicts the class label based on the 
rules that match the input features. Their simplicity makes 
decision trees a fantastic tool for understanding data. For 
exploratory data analysis, decision trees offer valuable 
insights into how features contribute to predictions or 
classifications. They’re best suitable for our study based 
on the below advantages: 
1. Interpretability: Decision trees provide a clear and

interpretable structure, mimicking the decision-
making process. In lithology identification, this
means understanding which log parameters (such as
gamma ray, resistivity, density, etc.) are most
influential in distinguishing between lithological
formations. This interpretability aids geologists and
petrophysicists in comprehending the logic behind
the classification.

2. Handling Nonlinear Relationships: Well-log data
often exhibit nonlinear relationships between
different log measurements and lithology types.
Decision trees can handle these complex relationships
without requiring extensive data preprocessing or
transformation, allowing for more direct analysis of
the raw log data.

3. Handling Mixed Data Types: Well-log data
frequently comprise a mix of continuous (numeric)
and categorical variables. Decision trees inherently
support both types, making them well-suited for
analyzing well logs that contain various data formats.

4. Feature Importance: Decision trees inherently rank
the importance of features (log measurements) by
their placement in the tree. This helps in identifying
the most influential log parameters for lithology
identification. Understanding feature importance aids
in feature selection, potentially reducing the number
of logs needed for accurate lithology prediction.

5. Handling Missing Values: Well-log data might have
missing values due to various reasons, such as sensor
malfunction or data gaps. Decision trees can
effectively handle missing values during the
classification process, allowing for more robust
analysis without requiring imputation techniques that
might introduce bias.

6. Ensemble Techniques: Ensemble methods like
Random Forests or Gradient Boosting, built on
decision tree algorithms, can further enhance the
accuracy and robustness of lithology classification by
aggregating multiple decision trees and reducing
overfitting.

7. Ease of Use and Implementation: Decision trees are
relatively simple to understand and implement. They
require minimal hyperparameter tuning compared to
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other complex models, reducing the time needed for 
model development and optimization. 

3. Experiments and Results

3.1. Dataset 

The data is obtained from Volve Field, that is an 
offshore oil and gas field located in the Norwegian North 
Sea. The Volve Field dataset is made publicly available 
by Equinor under a highly permissive licence called 
Creative Commons BY-NC-SA 4.0, which is defined as, 
any derivative work must provide acknowledgement to 
the original licence holder (BY, by attribution), cannot be 
used for commercial purposes (NC, non-commercial), and 
must be distributed under a licence that is identical to that 
of the original (SA, share-alike) [6]. 

3.2. Data Collection 

Lithology encompasses the structural and 
compositional attributes of Earth's crust rocks, 
encompassing mineral makeup, grain dimensions, texture, 
colouration, and arrangement. Its significance in 
hydrocarbon exploration and extraction lies in its ability 
to offer insights into the rock and sediment varieties 
within a specific region. This data aids geologists in 
discerning potential hydrocarbon reservoirs. The 
transformation of log data from .las format to a pandas 
data frame yields columns delineated in Table 1. The 
lithology codes in mud log data are shown in Table 2. 

Table 1. Well Log Data for Well 15/9-F-1A in Pandas Data 
Frame with the data statistics 

Sl. 
N
o. 

Colum
n 

Count Mean Std Min Max 

1 DEPTH 10221.
00 

3131.
00 

295.
06 

2620.
00 

3642.0
0 

6 BS        10221.
00 

8.50 0.00 8.50 8.50 

7 CALI 10221.
00 

8.60 0.04 8.46 8.87 

8 DRHO 10221.
00 

0.05 0.01 -0.02 0.12 

9 DT 10221.
00 

76.67 12.8
1 

56.38 116.23
1 

10 DTS 10212.
00 

140.3
4 

25.7
3 

96.90 217.96 

11 GR 10221.
00 

47.53 63.8
7 

1.04 587.02 

12 NPHI 10221.
00 

0.16 0.09 0.03 0.59 

13 PEF 10221.
00 

6.82 1.07 4.29 10.75 

14 RACE
HM    

10221.
00 

3.59 54.5
4 

0.19 5464.3
6 

15 RACE
LM    

10221.
00 

3.49 31.4
1 

0.23 2189.6
03 

16 RHOB 10221.
00 

2.48 0.14 1.98 2.93 

17 ROP 10143.
00 

24.40 6.87 0.01 44.34 

18 RPCEH
M    

10221.
00 

9.46 478.
01 

0.14 46224.
45 

19 RPCEL
M    

10221.
00 

3.12 2.95 0.12 159.89 

20 RT 10221.
00 

9.46 478.
09 

0.14 46224.
45 

3.3. Data Conditioning 

Data conditioning is the method of preparing and pre-
processing data to ensure that, the data is ready for 
analysis or modelling. The aim of data conditioning is to 
make sure that the data is consistent, accurate, and free 
from errors to answer specific research questions or to 
develop predictive models [17]. 

Checking for missing values in the dataset as shown by 
the missing matrix in Figure 2. The missing values are 
interpolated using the forward and backward interpolation 
method and now the data doesn’t contain any missing 
values as shown in Figure 3. 

Table 2. Well Log Data for Well 15/9-F-1A in Pandas Data 
Frame with the data statistics 

DEPTH LITHOLOGY LITH CODE 

2620.0 CLAYSTONE 3 

2620.1 CLAYSTONE 3 

2620.2 CLAYSTONE 3 

2620.3 CLAYSTONE 3 

2620.4 CLAYSTONE 3 
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Figure 2. Checking for Missing Values in the Data  

3.4. Exploratory Data Analysis  

The process of looking at and visualising data to find 
patterns, trends, and relationships in the data is known as 
exploratory data analysis (EDA). EDA is performed to get 
insights of the data and to know any problems or issues 
that need to be addressed before proceeding with more 
advanced statistical analyses or machine learning models. 
The count plot of target values i.e. Lithology is shown in 
Figure 4. As the Lithology data is an object, so encoding 
the data uses a label encoder. The encoded values are 
shown in Table 3. The heatmap showing Pearson 
correlation of the features is shown in Figure 5. The 
features which have the very least correlation with the 
target variable i.e. lithology are considered erroneous 
features and are removed from the dataset, the final 
correlations of the features with the target variable are 
shown in Figure 6. 

 

Figure 3. Missing Values Filled using Interpolation Method 

 

 
Figure 4. Count Plot of Target Values 

 

Table 3: Encoding Lithology Data Using Label Encoder 

 

Encoded Value Lithology 

0 Claystone 

1 Sandstone 

2 Limestone 

3 Marl 

 

 

Figure 5. Pearson Correlation Heatmap of Features 
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Figure 6. Pearson Correlation Heatmap of Features After 

Removing Erroneous Features 

3.5. Applying the ML model 

The dataset under study is further split into training and 
test datasets with a train-test ratio of 7:3. The training 
dataset is used to apply the support vector classifier 
(SVC) model before the test dataset. A table known as a 
confusion matrix is used to assess how well a 
classification model is working, the tool aids in 
comprehending a model's true positive, true negative, 
false positive, and false negative predictions.  
In a binary or multi-class classification task, the 
anticipated and actual values are represented as squares in 
a confusion matrix. The positive and negative classes are 
represented by two rows and two columns in a confusion 
matrix in a binary classification issue. The confusion 
matrix's four cells stand for True Positive (TP), False 
Positive (FP), True Negative (TN) and False Negative 
(FN) [18].  
The confusion matrix displays the true label and the 
predicted label for SVC, RF, AdaBoost, and DT is 
presented in Figure 7. 

(a) (b) 

(c) (d) 

Figure 7. Confusion Matrix Display of True Label and 

Predicted Label (a) SVC (b) RF (c) AdaBoost (d) DT 

3.6. Testing the ML model 

A variety of measures for assessing the effectiveness of a 
classification model can be estimated using the confusion 
matrix, accuracy, precision, recall and F1 score. The 
classification report for testing the different ML models is 
shown in Table 4. The comparative analysis of the 
accuracy of selected ML algorithms is presented in Table 
5, and also in Figure 8. 

Table 4: Classification Report of Selected ML Models 

ML 
Model Score Label 

0 1 2 3 

SVC 

Precision 0.99 0.96 0.76 0.96 
Recall 0.87 0.96 0.90 0.91 
F1 - 
Score 0.93 0.96 0.82 0.93 

RF 

Precision 1.00 0.80 0.75 0.93 
Recall 0.60 0.98 0.52 0.94 
F1 - 
Score 0.75 0.88 0.61 0.93 

AdaBoost 

Precision 0.60 0.96 0.83 0.97 
Recall 0.87 0.96 0.83 0.81 
F1 - 
Score 0.71 0.96 0.83 0.88 

DT 

Precision 0.98 0.99 0.96 0.99 
Recall 0.98 0.99 0.97 0.99 
F1 - 
Score 0.98 0.99 0.97 0.99 

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



 Identification of Lithology from Well Log Data Using Machine Learning 

9 

Table 5: Accuracy Score of Selected ML Models 

ML Model Accuracy Score 

SVC 0.92 

RF 0.85 

AdaBoost 0.88 

DT 0.98 

Figure 8. Accuracy Score for selected machine learning 

algorithms 

4. Conclusion

The study highlights the potency of machine learning in 
identifying lithology from well-log data, underscoring the 
significance of data analysis and visualization in 
deciphering intricate oil and gas datasets. Leveraging 
these methodologies enables operators to optimize 
production, curtail expenses, and enhance safety 
protocols. Further exploration and utilization of these 
tools in analyzing well-log data promise augmented 
efficiencies and superior outcomes in the oil and gas 
domain. This research successfully automates the 
interpretation of subsurface geological formations, 
demonstrating the efficacy of various machine learning 
algorithms, including Random Forest Classifier, Support 
Vector Classifier, Adaboost, and Decision Tree. Notably, 
the Decision Tree algorithm exhibited exceptional 
performance, achieving an overall accuracy rate of 0.98. 
By training on diverse wells within the same basin and 
predicting lithology within complex strata, this model 
showcases the potential to drastically reduce the time and 
costs associated with traditional manual interpretation 
techniques.  
Moreover, this implementation shows promise in 
elevating the accuracy and consistency of lithology 
identification, subsequently refining decision-making 
processes in hydrocarbon resource exploration and 
production. Overall, the study's findings emphasize the 
transformative impact of machine learning in 
revolutionizing geological analysis within the oil and gas 
industry. 

5. Discussion

The findings of this study underscore the pivotal role of 
machine learning in revolutionizing the identification of 
lithology from well-log data in the oil and gas industry. 
The successful application of various machine learning 
algorithms, particularly the Decision Tree model, 
highlights the potential for automating the interpretation 
of subsurface geological formations with remarkable 
accuracy. The implications of this research are significant. 
By demonstrating the efficacy of machine learning in 
lithology identification, this study opens avenues for more 
efficient and cost-effective methodologies in oil and gas 
exploration. The ability to predict lithology accurately 
from complex well-log data holds promise in streamlining 
decision-making processes, optimizing resource 
allocation, and enhancing overall operational efficiency. 
However, despite the promising outcomes, certain 
limitations warrant consideration. The reliance on 
historical well-log data and specific geological settings 
might restrict the generalizability of the models to diverse 
geological formations or unconventional reservoirs. 
Moreover, the sensitivity of machine learning models to 
data quality and feature selection necessitates continuous 
refinement and validation to ensure robustness and 
reliability in varied geological contexts. 
Moving forward, further research could focus on 
expanding the scope of analysis to encompass a broader 
range of geological formations and incorporate real-time 
data streams. Additionally, exploring ensemble methods 
or hybrid approaches integrating domain knowledge with 
machine learning could potentially enhance the 
interpretability and performance of models. 
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