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Abstract 

The Internet of Things (IoT) has helped explore the healthcare industry. The present paper discusses the benefits and 
challenges associated with IoT in healthcare, highlights notable use cases, and presents the future prospects and 
considerations for successful implementation. Through a comprehensive examination of the topic, this paper aims to provide 
insights into the role of IoT in enhancing healthcare delivery, improving patient outcomes, and transforming the healthcare 
domain. A case study of brain tumor classification is investigated to explore IoT's applicability in healthcare.  The VGG 16 
model improved more consistently over the epoch, achieving higher validation accuracy than other models. In contrast, the 
discrepancies in validation accuracy and loss indicate the degree of variability of these models. The concept is augmented 
with fuzzy logic, nearness monitoring, and IoT in healthcare to understand future applicability, promising a better perspective 
on their transformational prowess. 
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1. Introduction

In an era of technological evolution, healthcare has been 
irrevocably altered, transforming through IoT. This present 
article helps to understand IoT’s essence within healthcare, 
profoundly impacting patient treatment in increasingly 
digital epoch. 

Confronted with escalating costs, the specter of patient 
safety, this article fine-tunes patient care and gives a 
streamlined workflow, culminating in augmented 
outcomes. The advent of IoT in healthcare marks a pivotal 
shift in patient care paradigms, as seen in [1, 2], which 
gives the current integration of IoT within healthcare 
settings, presenting a new domain of connectivity and 
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patient engagement [3] further expand in this domain, 
demonstrating the extensive capabilities of IoT 
applications that promise to revolutionize not only 
healthcare but also intersecting sectors such as agriculture 
and urban development. Moreover, Rodić et al. [4] studied 
the user-centric perspective, examining the increasing 
intention to adopt IoT-based healthcare technologies in 
rehabilitation. This identifies a broader acceptance and 
augmentation of these technologies in patient-centric care.   
Offering real-time, remote monitoring of patients are the 
major transformations recorded by IOT. It's a vigilant eye 
over vital signs, medication regimes, and disease 
progression monitoring. Beyond monitoring, IoT is a 
conduit for medical data flow, bridging healthcare entities 
and fostering a unified front in patient care. Yet, this data 
is often cloaked in shades of uncertainty—here, the role of 
fuzzy logic is of utmost importance. This synergy of IoT 
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with fuzzy logic's handling uncertainity may give more 
tailored, dynamic patient care, a leap towards the future of 
health. In the IoT system, the notion of 'nearness' takes on 
a pivotal role, especially when framed within the confines 
of healthcare. Envision IoT devices, having acute 
sensitivity of proximity sensors, becoming indispensable in 
the healthcare sector. These devices are not mere trackers 
but a life saviours, measuring the delicate understanding of 
distances with precision. 
As the world discusses social distancing and infection 
mitigation, the vigilance of IoT in monitoring distance 
measure/proximity becomes a tool of understanding. These 
intelligent systems serve as points, ensuring that the 
distance that is crucial for understanding the spread of 
disease act as an essential parameter that bind individuals 
within healthcare are neither too entangled nor too 
stretched, maintaining a balance that is critical and accurate 
for calculations. The concepts of nearness in computing 
[5], fuzzy nearness [6, 7], and nearness and image 
processing [8] have great importance in the area where 
distance is considered. This paves the way for future 
researches that is an amalgamation of mathematical 
concepts with IOT.  

2. IoT in Healthcare

IoT refers to a vast network of interconnected devices, 
objects, and sensors that collect and exchange data through 
the internet. In IoT, physical objects are embedded with 
sensors, software, and network connectivity, enabling them 
to gather and transmit data. These objects range from 
everyday items, such as wearables, medical devices, and 
appliances, to industrial equipment and infrastructure. The 
following Figure 1 represents the key components of the 
devices. 

Figure 1. Key components of IOT devices 

In Healthcare, IoT offers a range of characteristics and 
capabilities that have the potential to revolutionize patient 
care as shown in Figure 2.  

Figure 2. Key Characteristics of IoT in Healthcare 

The IoT ecosystem comprises interconnected devices, 
connectivity technologies, data processing capabilities, 
cloud infrastructure, and applications/services. In 
healthcare, IoT’s Characteristics, and capabilities, such as 
remote patient monitoring, real-time data analysis, 
enhanced patient engagement, streamlined workflows, etc, 
have immense potential to transform how healthcare is 
delivered and experienced. 

3. Uses Cases of IoT in Healthcare

3.1. Applications 

1. Remote Patient Monitoring: IoT devices collect
real-time patient data and send it to healthcare
providers. This helps remotely monitor heart rate,
blood pressure, and glucose levels, allowing
healthcare professionals to track patients’ health
conditions without requiring them to be
physically present [9]. Technavio has announced
its latest market research report, as shown in
Figure 3, Global Remote Patient Monitoring
Market 2020-2024. As per the report, remote
patient monitoring is poised to grow by USD
928.34 million during 2020-2024, progressing at
a CAGR of almost 18% during the forecast period
[10].

Figure 3. Analysis report matrix (Global Remote 
Patient Monitoring Market - Featuring Abbott 
Laboratories, Boston Scientific Corp., and 
General Electric Co. Among Others, 2020)  
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2. Smart Wearable Device: IoT-powered wearable
devices like smartwatches, fitness trackers, and
biosensors can monitor various health parameters
and activities regularly. These devices can track
steps, sleep patterns, heart rate, and calorie
expenditure and detect falls or abnormal
movements. The acquired data can be analyzed to
provide insights into individuals’ overall health
and enable early health detection. The Figure 4,
exhibited below, is an example of a wearable
process [11].

Figure 4. Example of a wearable process 

3. Fall Detection and Prevention: IoT sensors in
patients’ homes or healthcare facilities can detect
falls and trigger immediate alerts to caregivers or
emergency services. These sensors can be
embedded as wearable devices in flooring,
furniture, etc [12]. They help prevent accidents,
especially among elderly or vulnerable patients,
by enabling quick response and assistance. The
flow diagram for the wearable system's overall
fall risk assessment is shown below in Figure 5
[13].

Figure 5. Flow diagram for the wearable system's 
overall fall risk assessment 

4. Telemedicine and Virtual Consultations: IoT
facilitates remote healthcare services through
telemedicine platforms. Connected devices such
as video conferencing tools, remote examination
cameras, and diagnostic devices enable healthcare

professionals to interact with patients virtually, 
diagnose illnesses, prescribe medications, and 
monitor progress remotely. This improves 
accessibility to healthcare, especially for patients 
in remote areas [14]. 

5. Hospital Workflow Optimization: IoT devices can 
enhance hospital operations by optimizing
workflow efficiency. For example, IoT-enabled
patient tracking systems can monitor patient flow,
bed occupancy, and waiting times. This data can
be analyzed to identify bottlenecks, streamline
processes, and improve resource allocation,
leading to better patient care and reduced wait
times [15, 16].

Table 1 outlines the key characteristics and capabilities of 
IoT in healthcare and provides a brief explanation of how 
each aspect is achieved through IoT technologies. 

Table 1. Key Characteristics and Capabilities of IoT 
in Healthcare 

Aspect Description How 

Remote 
Patient 
Monitoring 

Continuous 
monitoring of 
vital signs, 
medication 
adherence, 
and health 
status in real-
time. 

Through 
wearable 
sensors and 
medical 
devices 
connected to 
cloud-based 
systems. 

Real-Time 
Data 
Collection 
and Analysis 

Capture of 
real-time data 
for accurate 
and up-to-
date 
information, 
facilitating 
timely 
decision-
making. 

IoT devices 
collect and 
transmit data 
to cloud 
servers for 
analysis. 

Enhanced 
Patient 
Engagement 

Empowering 
patients with 
access to 
their health 
data through 
wearables 
and 
promoting 
proactive 
health 
management. 

Wearable 
devices 
provide real-
time health 
data to 
patients via 
mobile apps. 

Streamlined 
Workflows 
and 
Efficiency 

Automation of 
healthcare 
processes, 
resource 
optimization, 
improved 
workflows, 
and 

IoT integration 
automates 
tasks and 
enhances 
communication 
among 
providers. 
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enhanced 
collaboration 
among 
healthcare 
providers. 

Improved 
Outcomes 
and Cost 
Savings 

Early 
detection, 
personalized 
care, 
preventive 
interventions, 
reduced 
hospital 
readmissions, 
and cost 
savings. 

By analyzing 
data for early 
intervention 
and 
personalized 
treatments. 

3.2. Case Study 

In healthcare, integrating new technologies can 
potentially restructure the traditional healthcare system and 
its current challenges by intersecting medical imaging, 
artificial intelligence and IoT. In this section, a similar 
intersection of the above is endeavoured by considering a 
case study of brain tumour detection where the fusion of 
imaging techniques and state-of-the-art deep learning 
models are deployed to enhance diagnostic precision. This 
case study utilizes a comprehensive brain MRI image 
dataset that analyses the intricate details of neural 
structures and focuses on tumour identification. 

Dataset Description 

The data used in this case study is curated from the open-
source repository [17] for the exploration and 
establishment of the use of IoT in healthcare using various 
data preprocessing techniques and the deployment of a 
sophisticated carted algorithm to classify the problem of 
normal and abnormal feasibility of brain tumours. This 
dataset comprises 253 high-resolution MRI scan images 
with various neuroimaging scenarios. The dataset is 
divided into two primary categories, with 88 MRI images 
depicting normal brain structures and 155 MRI images 
capturing instances of brain tumours, and this distribution 
ensures a balanced representation of this pathological 
condition.  

The dataset underwent rigorous preprocessing within 
the Python Google Colab environment utilizing the cloud-
based computing and classification of this dataset. Figure 6 
exhibits a dataset snapshot illustrating original MRI images 
and their respective denoised counterparts generated using 
a Python-based preprocessing pipeline. Furthermore, the 
standardization and normalization of the dataset have also 
been catered to mitigate this problem effectively.  

Figure 6. Sample images and the denoised images 
of the dataset 

Model Architecture of VGG 16 [13]: 
1. Input Layer:
• Input shape: (224, 224, 3) for images with

dimensions 224x224 pixels and three color
channels (RGB).

• No trainable parameters.
2. Feature Extraction (VGG16 Base Model):
• Several convolutional layers (block1_conv1,

block1_conv2, ..., block5_conv3) for feature
extraction.

• Each convolutional layer has learnable parameters 
(weights and biases) responsible for recognizing
patterns in the input images.

3. MaxPooling Layers:
• MaxPooling2D layers (block1_pool,

block2_pool, ..., block5_pool) reduce spatial
dimensions and capture essential information.

• No trainable parameters in pooling layers.
4. Global Average Pooling Layer:
• The globalAveragePooling2D layer computes the

average value for each feature map across all the
spatial dimensions.

• Results in a 1D vector with 512 elements (one for
each feature map).

5. Fully Connected Layers (Custom Head):
• Dense layers (dense_40, dense_41, dense_42) for

further abstraction and learning complex patterns.
• The last dense layer (dense_43) outputs two

classes (tumour and non-tumour) using softmax
activation.

6. Total Parameters: 16,815,426
• The model has 16,815,426 parameters,

representing the weights and biases of the
convolutional and dense layers.

• This includes both trainable and non-trainable
parameters.
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7. Trainable Parameters: 2,100,738
• Out of the total parameters, 2,100,738 are

trainable. These are the parameters that the model
will adjust during training to learn from the data.

8. Non-trainable Parameters: 14,714,688
• Non-trainable parameters (often from pre-trained

models) remain fixed during training. They
represent the knowledge transferred from the
ImageNet pre-training.

The detailed model summary is depicted in Figure 7 
below.  

Figure 7. Model summary of VGG16 

Further, the VGG 16 model was deployed utilizing the 
Adam optimizer and the categorical cross entropy as the 
loss function with a total of 5 epochs in which its training, 
validation and loss were noted throughout the training 

period. During the first epoch, the training accuracy incepts 
was 43.66%, and validation accuracy was 68.42%, as 
depicted in the snippet from Python in Figure 8. 
Furthermore, it can also be seen that during the subsequent 
epoch, training accuracy enhanced and reached 88.70% by 
the fifth epoch, and the validation accuracy improved from 
69.42% to 88.16% over a span of 5 epochs. Moreover, in 
the context of the loss function, which is responsible for 
measuring the difference between the predicted and the 
actual values, shows a consistent decrease from 7.8466 in 
the first epoch to 0.2931 in the 5th epoch. Similarly, for the 
cases of the validation set of analysis, the loss decreased 
from 0.5464 to 0.3289 over the five epochs. Based on the 
above results achieved, a plot of VGG 16 training and 
validation accuracy has been depicted in Figure 9 w.r.t to 
epoch.  

Figure 8. Snippet of results from VGG16 

Figure 9. VGG16 training and validation accuracy 

Furthermore, two other models, ResNet50 and 
MobileNetV2, have been deployed in this context to 
understand the behaviour of different models over VGG16 
and come up with a comparison.  

The ResNet50 model was also trained for the 5 number 
of epochs using the Adam optimizer and categorical cross 
entropy as the loss function, where the training accuracy 
started at 63.84%, whereas the validation accuracy was 
40.79% in the first epoch. However, it has been found that 
the validation set did not show any significant 
improvement over the epoch, reaching 59.21% by the fifth 
epoch and performing worse compared to the VGG 16 
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model. Although the loss of the training decreased from 
17.55 to 0.67 while validation loss increased from 
10062.168 to 135070.59 as depicted in Figure 10 overall, 
this model was not able to surpass the VGG16 models in 
terms of loss improvement, training accuracy and 
validation accuracy.  

Figure 10. ResNet50 training and validation 
accuracy 

On the other hand, another model, MobileNet V2, was 
also deployed over five epochs in a similar manner and 
training accuracy initiated at 63.84%, and the validation 
accuracy was 40.79% in the first epoch. The validation 
accuracy reached 59.21% over five epochs, and the loss on 
training set decreased from 19.88 to 0.42, while validation 
loss remained relatively high, proving that this model 
performed worst in comparison with VGG 16, as exhibited 
in Figure 11.  

Figure 11. MobileNetV2 Training and validation 
accuracy 

Overall, the ResNet50 and MobileNetv2 models showed 
terrible performance with minimal improvement in 
validation accuracy. The VGG 16 model demonstrated 
more consistent improvement over the epoch, achieving 
higher validation accuracy than other models, whereas the 
discrepancies in validation accuracy and loss indicate the 
degree of variability of these models. As a future scope 
further, this work can be enhanced for more epochs and 
then results can be more explored. 

4. Integrating Fuzzy Logic And Nearness
Monitoring With Iot In Healthcare

The integration of fuzzy logic, proximity, and IoT in 
healthcare represents a promising frontier in healthcare 
technology. As shown in Table 2, the concepts collectively 
help to improve patient assessment, safety, data analysis, 
patient engagement, workflow optimization, and 
diagnostics. Utilizing fuzzy logic helps to handle imprecise 
health data effectively, while amalgamation of nearness 
with IoT ensures patient safety and social distancing 
compliance. This integration can potentially help the 
healthcare domain by enhancing decision-making, patient 
care, and overall healthcare efficiency. The level of 
diagnosis, prediction of disease progression and the 
personalized treatment plans can be significantly improved 
utilizing large volumes of patient centric data collected 
through IOT devices and the integration of computational 
intelligence [18]. 

Table 2. Integrating Fuzzy Logic, Nearness, and IoT 
in Healthcare 

Aspect Description Integration 
of IoT 
,Fuzzy 
Logic, and 
Nearness, 

Fuzzy Logic 
in Health 
Data 
Processing 

Utilizing fuzzy 
logic 
algorithms to 
handle 
imprecise 
health data 
collected by 
IoT devices. 

IoT devices 
gather 
health data, 
and fuzzy 
logic is 
applied to 
interpret 
data 
considering 
its inherent 
uncertainty. 

Nearness 
Monitoring 
for Patient 
Safety 

Implementing 
nearness and 
proximity 
spaces in 
healthcare 
settings using 
IoT to 
enhance 
patient safety 

IoT devices 
equipped 
with 
proximity 
sensors 
monitor 
distances, 
ensuring 
patients and 
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and social 
distancing 
compliance. 

healthcare 
providers 
maintain 
safe 
distances. 

Real-Time 
Data 
Collection 
and Analysis 

Employing 
fuzzy logic for 
real-time data 
analysis in 
healthcare, 
enabling 
timely 
decision-
making. 

IoT devices 
collect real-
time health 
data, and 
fuzzy logic 
is used for 
on-the-fly 
data 
analysis to 
provide 
accurate 
insights. 

Enhanced 
Patient 
Engagement 
with Fuzzy 
Insights 

Empowering 
patients with 
access to 
their health 
data and 
fuzzy-driven 
insights for 
proactive 
health 
management. 

Wearable 
IoT devices 
provide 
patients with 
fuzzy-
assisted 
health 
insights, 
promoting 
active 
engagement 
in 
healthcare 
decisions. 

Fuzzy-
Optimized 
Workflow 
Automation 

Utilizing fuzzy 
logic to 
optimize 
healthcare 
workflows, 
allocate 
resources 
efficiently, 
and enhance 
overall 
efficiency. 

IoT 
integration 
in 
healthcare 
leverages 
fuzzy logic 
for resource 
allocation 
and 
workflow 
optimization 
based on 
real-time 
data inputs. 

5. Future Prospects and Consideration

Ongoing advancements in IoT technologies, such as 
miniaturization, improved connectivity, and edge 
computing, will further expand the possibilities of IoT in 
healthcare. These trends may lead to the development of 
more sophisticated wearable devices, smarter 
infrastructure, and innovative applications for patient care.   
The paper also sets the stage for exciting avenues of 
research and innovation in the realm of IoT in healthcare. 
Integrating fuzzy logic, nearness monitoring, and IoT, 
showcases the potential for addressing healthcare's 
evolving challenges. Integrating emerging areas such as 
artificial intelligence and machine learning algorithms with 
IoT data can unlock valuable insights and predictive 
capabilities [19]. Healthcare providers can improve 
diagnostics, predict disease progression, and personalize 

treatment plans by analyzing large volumes of patient data 
collected through IoT devices. AI-powered analytics can 
also help identify patterns and anomalies for early 
detection of health issues [20,21].   

As IoT adoption in healthcare grows, a critical need 
emerges for integrating these technologies with existing 
health information systems like electronic health records 
(EHRs) which has huge potential in mental health 
rehabilitation [22]. Seamless sharing and accessibility of 
patient data across clinical, medical, genomic, and IoT 
sensor platforms can construct a 360-degree view of an 
individual's health. This could enable accurate diagnosis, 
personalized treatments, and continuous care coordinated 
across providers [23]. However, progress needs concerted 
efforts towards open, standardized application 
programming interfaces (APIs) and interoperability 
protocols that allow platforms to communicate [24, 25]. 
Health data portability should also be enabled through 
common standards to give patients transparency over and 
ownership of their data. Policy steps pushing 
interoperability, like those related to EHRs, will be 
instrumental in realizing the vision of integrated connected 
healthcare powered by the coming together of health tech 
ecosystems [26-29]. 

6. Conclusion

The introduction of IoT in healthcare signifies a 
remarkable leap forward, inaugurating an era characterized 
by interconnected, data-driven, and patient-centric 
healthcare. Incorporating cutting-edge techniques such as 
AI and fuzzy logic, as discussed, enhances IoT’s 
capabilities, offering personalized and proactive decisions. 
Although the advancements in IoT for healthcare hold 
great promise, ethical concerns, challenges, algorithmic 
transparency, and accessibility issues are much required in 
this field. In the case study conducted on the data obtained 
from the open source repository, the VGG 16 model 
demonstrated more consistent improvement over the 
epoch, achieving higher validation accuracy than other 
models, whereas the discrepancies in validation accuracy 
and loss indicate the degree of variability of these models. 
For further research, this work can be enhanced for more 
epochs, and then results can be more explored. 
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