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Abstract 
Wireless networks are ubiquitous nowadays and hence provide a promising approach for indoor localization. Many 
algorithms have been proposed for exploiting wireless signals for localization purposes. Among the methods, ANN-
based methods have attracted particular attention due to their robustness in complex signal environments. However, 
their accuracy is still degraded by multi-path effects, signal fluctuations, and so on.  Accordingly, this study com-
mences by examining the effects of fluctuations in the received signal strength indicator (RSSI) measurement on the 
accuracy of an ANN-based localization algorithm. This study list some strategies and illustrate by simulation exper-
iment. Based on the investigation results, a systematic methodology is proposed for improving the localization per-
formance by increasing the number of APs. The feasibility of the proposed method is demonstrated by means of nu-
merical simulations. 
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1. Introduction

Location-based service (LBS) technology has
entered the mainstream as the location accuracy of the 
global positioning system (GPS) has improved to within 
10 m. However, GPS signals have only a limited ability to 
penetrate building exteriors, and hence GPS-based 
localization methods perform poorly in indoor 
environments. Nonetheless, indoor localization is 
important for many applications, ranging from healthcare, 
to asset management, augmented reality, retail 
management, sales promotions, and so forth. As a result, 
enhanced localization services are urgently required. 

Wi-Fi, Bluetooth, Infrared/Laser, Radio Frequency 
Identification (RFID), ZigBee and Ultra-wideband 
(UWB) have all attracted significant attention as enabling 
technologies for indoor localization [1]. Among these 
techniques, Wi-Fi is regarded as a particularly promising 
solution due to the proliferation of wireless networks in 
both outdoor and indoor environments nowadays and the 
Wi-Fi capability implemented as standard on most 
handheld and portable devices (e.g., smartphones, tablets, 
watches, and so on). In typical Wi-Fi localization 
services, the position of the user (mobile device) is 
determined by applying a mathematical model (typically, 
triangulation) to the received signal strength indication 
(RSSI) measurement obtained from multiple access points 
(APs). However, in more recent years, the feasibility for 
implementing indoor localization based on fingerprinting 
technology and artificial neural networks (ANNs) (or 
some other form of neural network) has attracted growing 
attention. The training procedure performed in ANNs 
improves the robustness of the localization performance 
toward environmental effects compared to simple 
triangulation-based schemes. It has been shown that 
ANNs enable a localization error of as little as 2 m in 
ideal scenarios.[2] As a result, they vastly outperform 
conventional GPS methods.However, their accuracy is 
still adversely affected by RSSI signal fluctuations. While 
several studies have shown that this problem can be 
mitigated by adopting the channel state information (CSI) 
to build the fingerprint rather than the RSSI [3], further 
improvements in the ANN localization accuracy are still 
required to implement finer LBS solutions.  

Accordingly, this research commences by examin-
ing the effects of RSSI signal fluctuations on the perfor-
mance of an ANN-based localization scheme given the 
simple case of a single AP and a straight-line transmission 
path. A systematic methodology is then proposed for 
improving the localization performance by adding addi-
tional APs to the sensing field. The feasibility of the pro-
posed approach is demonstrated by means of numerical 
simulations. Notably, the results provide a useful refer-
ence for improving not only the performance of ANN-

based localization methods, but also that of conventional 
triangulation schemes. 

2. Related Work
Many radio propagation models are available for

distance prediction in wireless communications. These 
models are generally based on the signal-strength decay, 
and comprise the free space propagation model, the two-
ray ground model, and the log-distance model [4] The 
models perform well in outdoor, uncluttered environ-
ments, and are thus widely deployed in traditional wire-
less sensor networks (WSNs).However, the authors in [2] 
showed that the RSSI signal fluctuations produced in 
general indoor environments by scattering and other phys-
ical effects severely degrade the accuracy of the distance 
estimates in WSNs. Unfortunately, it is most common 
problem in every wireless indoor location system re-
search. Various studies have suggested exploiting the 
channel state information (CSI) rather than the RSSI to 
construct the fingerprint [5]. Generally speaking, the CSI 
provides a more robust estimation ability than the RSSI 
[3]. However, the CSI has the form of a high-dimensional 
vector, and hence some form of data preprocessing, e.g., 
data compression, is required before it can be used for 
estimation purposes. As a result, the complexities of the 
localization algorithm and associated hardware are inevi-
tably increased. Additionally, the extremely environment 
sensitive of CSI is still a problem. Moreover, the mini-
mum average localization error is still around 2.4 m even 
for simple straight-line observations [5]. Consequently, 
further improvements in the localization preformation of 
indoor distance estimation schemes are still required. 

3. Preliminaries

In the RSSI-based localization scheme proposed in
[6], the robustness of the distance estimates to signal 
intensity fluctuations was improved by using a base sta-
tion (BS) as a reference point to detect the RSSI of three 
other anchor APs. In particular, the BS received the RSSI 
values from any of the three anchors and these signals 
were used to compute a dynamic distance coefficient to 
support the localization process. The authors in [7] pro-
posed an RSSI real-time correction method based on the 
particle swarm optimization – back propagation neural 
network (PSO-BPNN) RSSI-distance model presented in 
[8].In the proposed approach, a terminal was established 
to collect the RSSIs of the surrounding APs and the RSSI 
measurements were then adjusted intelligently in real-
time using RSSI fluctuation data stored on a local server. 
However, BPNNs fail to properly converge when present-
ed with nonlinear separable input data [9, 10]. Conse-
quently, only a limited improvement in the distance esti-
mation is obtained. 
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3.1 RSSI Observations 

The authors in [2] examined the typical signal fluc-
tuations observed in RSSI samples collected in indoor 
environments. The results showed that small variations in 
the RSSI signal occurred in samples collected at the same 
distance from the AP, while large variations occurred in 
samples collected at different distances. It was hence 
inferred that the RSSI strength does not decay uniformly 
with increasing distance. To further investigate this phe-
nomenon, the present study commenced by investigating 
the RSSI decay at eight observation points arranged uni-
formly along a straight indoor corridor with a spacing of 5 
m between them (see Figure 1(a)).  To investigate RSSI 
decay in shorter distance, we also gathered data at eight 
observation shown in Figure1(b). For each observation 

point, 10 RSSI samples were collected at 1-s intervals 
over a 10-s period. 

Figure 2 shows the average value of the RSSI ob-
tained at each of the eight observation points in Figure 
1(a). Figure 3 shows the variation of the 10 RSSI meas-
urements collected at at each of the eight observation 
points in Figure 2. In general, the results presented in the 
two figures show that the RSSI varies almost randomly. 
For example, the RSSI values collected at the same dis-
tance from the AP fluctuate arbitrarily (see Fig. 3), while 
the RSSI value at a distance of 30 m from the AP is great-
er than that at 25 m (see Fig. 2), while that collected at 10 
m is slightly higher than that collected at 5 m. In other 
words, the variation of the RSSI strength with the sensing 
distance differs markedly from that predicted in the ideal 
logarithmic decrement model [11][12]. 

Figure 1(b). AP location field plan 

Figure 1(a). AP location field plan 

Improving Indoor Localization Based on Artificial Neural Network Technology

EAI Endorsed Transactions on 
Internet of Things 

10 2018 | Volume 4 | Issue 16 | e53



Figure 2. Average RSSI decay over distance of 35 m from 
AP in Figure 1(a) 

Figure 3. RSSI variation over 10 samples collected at 
each observation point in Figure 1(a)  

3.2 RSSI Signal Fluctuations 

Given the uncluttered environment considered in 
Figure 1, the RSSI variations shown in Figures 2 and 3 
can be attributed most likely to the multi-path effect [5]. 
In practice, the non-linear variation of the RSSI strength 
with an increasing sensing distance, and the fluctuations 
of the RSSI measurement at the same collection point, 
pose significant challenges in implementing RSSI-based 
localization schemes. For example, referring to Figure 2, 
an average RSSI value of -46.2 dB may map to a sensing 
distance of 30 m, but may also conceivably map to a dis-
tance of 15 m. Thus, even if a robust ANN scheme is 
employed for distance estimation purposes, the training 
model may still fail to converge if the RSSI distribution is 
not taken into account. Furthermore, for sensing distances 
of 25 ~ 35 m, the detected RSSI values vary widely (and 
non-linearly) in the range of -46.2 dB ~ -57.2 dB.  Conse-
quently, even a well-fitting model may fail to accurately 
predict the sensing distance from the AP. In general, the 
results confirm that a single input feature (i.e., a single 
RSSI measurement) is insufficient to perform straight line 
distance location estimation in even simple, uncluttered 
environments.  

3.3 RSSI Decay Simulators 

To facilitate the present investigations, a sample 
generator was constructed to simulate the RSSI decay 
behavior based on the actual RSSI measurements ob-
tained in the sensing field. Figure 4 shows five sets of 
RSSI-distance data collected in the sensor field shown in 
Figure 1(b) on five different dates, respectively. In gen-
eral, the results suggest that two different RSSI simulators 
are required to properly model the variations of the RSSI 
strength at different distances from the AP and at the 
same distance from the AP, respectively. For simplicity, 
in constructing the first model, the complexity of the 
environmental effects on the RSSI strength was modeled 
using a Gaussian random distribution with a mean and 
variance determined in accordance with the measurements 
obtained in the real environment. Figures 5~7 show 5, 50 
and 100 sets of simulated RSSI data obtained at distances 
of 5 ~ 35 m from the single APin Fig 1 (a). 

Figure 4. Experimental RSSI decay over distance of 20 m 
from AP in Figure 1(b) 

Figure 5. Fivesets of RSSI decay data over distance of 
35 mfrom AP in Figure 1(a)  
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Figure 6. Fifty sets of simulated RSSI decay data over 
distance of 35 m from AP in Figure 5 

Figure 7. 100 sets of simulated RSSI decay data over 
distance of 35 m from AP in Figure 5 

The second RSSI generator was used to simulate the 
fluctuations in the RSSIstrength at the same distance from 
the AP. Based on an inspection of the standard deviations 
of the RSSI signals measured experimentally at each of 
the observation locations shown in Fig. 1 (b), the RSSI 
generator was constructed using a Gaussian distribution 
random output with a variance value of 0.5 dB. Figure 8 
shows a typical RSSIdataset produced by the first sample 
generator. Figure 9 shows the 720 samples (i.e., 8 
sampling locations with 90 Gaussian random points per 
location)produced by the second generator. From a close 
inspection, the samples generated at distances of 10 m and 
15 m, respectively, have similar distributions, while those 
at 12.5 m and 17.5 m, respectively, also have similar 
distributions. In other words, despite prior training, the 
ANN may struggle to differentiate between samples 
obtained at 10 m and 15 m, respectively, or 12.5 m and 
17.5 m, respectively. 

Figure 8. Simulated RSSI decay over distance of 20 m 
from AP  

Figure 9. Simulated RSSI samples at each of 8 
observation points over distance of 20 m from AP 

3.4 Artificial Neural Network 

A multi-layer neural network [13, 14, 15, 16] was 
constructed to predict the sensing distance from the AP 
based on the measured RSSI value. The network con-
tained one hidden layers; each with 20 nodes and a tan-
gent hyperbolic activation function. The model was 
trained using part of the 720 samples shown in Figure 9 
based on a nonlinear polynomial fitting function, and was 
designed to output the sensing distance given an input 
value of the RSSI. The details of the neural network struc-
ture are shown in Table 1 below. 
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Table 1. Structure of adopted Multi-Layer Neural Network 

Layer (type) Output Shape Param 

dense_1 (Dense) (None, 20) 40 

dense_2 (Dense) (None, 20) 420 

dense_3 (Dense) (None, 8) 168 

Total params: 628 
Trainable params: 628 
Non-trainable params: 0 

The supervised learning process for the ANN com-
prised three steps, namely (1) data preprocessing, (2) 
training and (3) testing. In the data preprocessing step, the 
RSSI data produced by the second sample generator de-
scribed above was split into a training set and a testing set 
in the ratio of 80% : 20%. The samples in the testing set 
were manually labeled with the sensing distance and en-
coded into 8 classes accordingly using the one-hot encod-
ing method. The training process was conducted for a 
maximum of 1000 epochs with a termination criterion of 
an accuracy of 0.75 (75%). It was found that the training 
process failed to converge to the required accuracy level 
even after 1000 epochs. Nonetheless, the testing process 
was performed anyway under the consideration that the 
testing outcome might yield useful insights into possible 
improvement strategies.  Table 2 shows the confusion 
matrix for the testing results. It is seen that the test data 
associated with the fifth class (15 m) are incorrectly pre-
dicted as belonging to the third class (10 m), while the 
testing data associated with the sixth class (17.5 m) are 
similarly incorrectly predicted as belonging to the fourth 
class (12.5 m). 

Table 2. Confusion matrix for testing data 

In general, the training and testing results presented 
above indicate that the Multi-Layer Neural Network fails 
to properly converge when using a single RSSI input to 
predict the sensing distance if the RSSI measurements are 
subject to fluctuations. Notably, this situation occurs not 
only in the simple straight-line distance estimation prob-
lem considered here, but also in the two-dimensional 
estimation problem involving three APs. This kind of 
situation is common in indoor location system that pre-
dicting location flipping between several points losing the 
accuracy.[17] 

4.1 Enhanced Precision Strategy 
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Figure 10. AP1 and AP2 location field plan 

As shown in Table 2, the Multi-Level Neural Network 
fails to properly estimate the sensing distance from the 
AP if the RSSI signals contain fluctuations and environ-
mental factors cause the RSSI signal strength to decay 
non-linearly over the sensing distance. It can be further 
inferred that, under such conditions, a single feature space 
(i.e., a single RSSI input) is insufficient to estimate the 
straight line distance from the AP. Accordingly, this study 
proposes the use of an enhanced localization scheme 
based on two APs (AP1 and AP2) separated by a distance 
of 20 m and having the same RSSI distributions. Figure 
11 shows the simulated RSSI distributions of the two APs 
over a sensing distance of 20 m in figure 10 . Note that for 
simplicity, the two distributions are simply mirror images 
of one another. Figure 12 shows the detailed RSSI fluctu-
ations at each sampling point in the two cases. Finally, 
Figure 13 plots the RSSI measurements of AP2 (on the Y-
axis) against those of AP1 (on the X-axis). The plotted 
line of each point shows the propinquity of the two RSSI 
data distributions as the observation point moves between 
AP1 and AP2. In other words, Figure 13provides an in-
sight into the ability of the combined feature space to 
identify the sensing distance. In this particular case, the 
absence of any crossing-points in the plotted line implies 
that the feature space is sufficient to perform accurate 
sensing distance estimation.  

Figure 11. RSSI distributions of AP1 and AP2 

Figure 12. RSSI fluctuations at each observation point in 
Figure 10 

Figure 13. RSSI distribution of AP2 vs. that of AP1 

To verify this inference, we take 800 RSSI sample 
sets (100 sample sets in each 8 observation points) as 
showed in Figure 12.The two-dimensional RSSI data 
wereseparated into training/testing sets with 80 : 20 ratio 
( 640 training sets and 160 testing sets) and training sets 
were input to an ANNwith the same structure as that de-
scribed above. The network was found to converge with 
an accuracy approaching 99.58% after 200 training 
epochs. Having trained the model, 160 RSSI samples 
were used for testing purposes.  Table 3 shows the result-
ing confusion matrix.  
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Table 3. Confusion matrix for testing results obtained 
using RSSI data in Figure 12 

The results presented in Table 3 confirm the effica-
cy of adding a second AP to the sensing field to improve 
the localization accuracy. However, it is still necessary to 
confirm whether the addition of this AP improves the 
localization accuracy for all possible distributions of the 
RSSI-distance profile. Accordingly, the RSSI generators 
were used to produce 6 random sets of RSSI data for AP1 
and AP2, as shown in Figure 14(a)~(f). In each depict, the 
circled regions show the RSSI discontinuity points which 
cause confusion when implementing the ANN using a 
single input feature space.  Figure 15(a)~(f) shows the 
corresponding AP2 vs. AP1RSSI signal plots. The results 
show that the addition of the second AP resolves the con-
fusion problem in three out of the six cases. In other 
words, while the deployment of an additional AP is bene-
ficial in improving the average accuracy of the localiza-
tion process, it cannot guarantee a precise localization 
outcome in every case.   

Figure 14(a)~(f). Six sets of RSSI data and correspond-
ing confusion regions 

Figure 15(a)~(f). RSSI distributions of AP2 vs. AP1 for 
RSSI profiles shown in Figure 14(a)~(f) 

Table 4. Confusion matrixfor testing results obtained 
using RSSI plots in Figure 14(e) 

For illustration purposes, consider the RSSI plot 
shown in Figure 14(e). Inputting the two-dimensional 
feature training data into the ANN, the localization accu-
racy is found to be just 0.88 (88%). Furthermore, the 
confusion matrix shows that the Class 5 outcome (corre-
sponding to a sensing distance of 15 m) and Class 2 out-
come (corresponding to a sensing distance of 7.5 m) are 
confused. This result is reasonable since the RSSI data at 
15 m (AP1: -46 dB, AP2 : -46 dB) are identical to those at 
7.5 m (AP1 : -46 dB, AP2 : -46 dB ). Since the distance 
between the two confusion points is just 7.5 m, the 0.12 
error rate (i.e., 1.0-0.88=0.12) prevents the ANN from 
discriminating between them. It is possible that this prob-
lem can be overcome simply by adding a third AP.  How-
ever, this inevitably introduces a cost-accuracy tradeoff. 
Consequently, an alternative method for improving the 
localization reliability is required, as described in the 
following section.  
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4.2 Ap2 Placement Adjustment 

In practice, the distance between AP1 and AP2 is 
flexible. Hence, the potential exists to solve the confusion 
problem described above by adjusting the distance be-
tween the two APs. Accordingly, the distance between 
AP1 and AP2 was increased from 20 m to 25 m. The cor-
responding RSSI distributions are shown in Figures 16 
and 17. It is seen in Figure 17 that a continuous RSSI 
profile with no crossing points is obtained. In other 
words, the region of confusion is eliminated. The trained 
model converged to an accuracy of 0.95 (95%) after 200 
epochs. The confusion matrix for the test results is shown 
in Table 5 and confirms the improvement in the estima-
tion results. In other words, the results confirm that the 
localization performance can be improved without any 
increase in the hardware cost simply by adjusting the 
distance between the APs. 

Figure 16. RSSI distributions of AP1 and AP2 after location 
adjustment 

Figure 17 RSSI distributions of AP2 vs. AP1 after location 
adjustment 

Table 5. Confusion matrixfor testing results obtained using 
RSSI plots in Figure 16 

5. Conclusion

This paper has shown that when using a single AP,
the localization performance of RSSI-based methods is 
seriously degraded due to a non-linear decay of the RSSI 
signal strength with an increasing sensing distance and 
fluctuations of the RSSI signal at the same observation 
point. A similar problem may occurs even when using 3 
APs to define a two-dimensional coordinate location. 
Notably, the deployment of additional APs in an attempt 
to improve the localization performance also introduces 
an inevitable tradeoff between the localization perfor-
mance and the hardware cost. Accordingly, this study has 
proposed a low-cost solution for improving the localiza-
tion performance in indoor environments using a minimal 
number (two) of APs.The detailed steps in the proposed 
approach can be summarized as follows:  

1. Collect historicalreal-world RSSI data in the
target sensing field and analyze the RSSI dis-
tribution (mean, variance and standard devia-
tion).

2. Plot the RSSI data of two APs against one an-
other in the X-Y coordinate space and identify
any possible regions of confusion (as indicat-
ed by crossing-points in the AP2 vs AP1RSSI
profile).

3. Check if the confusion problem can be re-
solved by adjusting the distance between the
two APs.

4. As a last resort, deploy an additional AP with-
in the sensing field.

The feasibility of the proposed methodology has 
been demonstrated by means of numerical simula-
tions. This study has used a Multi-Layer Neural 
Network for estimation purposes. However, the re-
sults regarding the feasibility of a two-dimensional 
feature space for fingerprinting purposes are also 
applicable to a k-NN localization algorithm. 
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