
EAI Endorsed Transactions
on Internet of Things Research Article

* Corresponding author. Email: raviraj.holla@manipal.edu

Assessing the Effectiveness of MoSCoW Prioritization in
Software Development: A Holistic Analysis across
Methodologies
Suchetha Vijayakumar 1, Krishna Prasad K. 2, Raviraja Holla M. 3,*

1Srinivas University, Mangalore and Assistant Professor, St Aloysius (Deemed to be University), Mangalore, Karnataka,
India.
2Srinivas University Institute of Engineering and Technology, Mangalore, Karnataka, India.
3Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher
Education (MAHE), Manipal, 576104, Karnataka, India.

Abstract

Effective software Requirement Prioritization plays a pivotal role in the success of the Software Development process,
ultimately contributing to the successful delivery of high-quality products. Among the various methods for Requirement
Prioritization, the MoSCoW method has gained widespread adoption due to its ease of use. However, its overall effectiveness
remains a subject of inquiry. This paper presents a rigorous assessment of the MoSCoW Requirement Prioritization
technique, drawing insights from software developers who engage in the Prioritization process. Our evaluation encompasses
a distinct perspective: that of the developers tasked with Prioritization. The feedback solicited from developers encapsulates
a diverse set of criteria, shedding light on the method's efficacy. Additionally, we perform sentiment analysis on the user
experience of the Prioritization task to corroborate the method's accuracy and efficiency. Our study unfolds through a
practical exercise involving the Prioritization of a predefined set of requirements using MoSCoW principles. A mixed
method approach is employed for the purpose of assessing the effectiveness of MoSCoW. The findings of our quantitative
research underscore the method's limitations, indicating that it may not be as effective and precise as previously believed.
Furthermore, through qualitative analysis, we are able to highlight the complexities and challenges associated with
MoSCoW-based Prioritization. The insights gained from this analysis prompt contemplation regarding the potential
introduction of an evolved Requirement Prioritization method, while leveraging MoSCoW as a foundational framework.
This research aims to inform the ongoing evolution of Requirement Prioritization methodologies, ultimately enhancing the
efficiency and accuracy of Software Development processes.

Keywords MoSCoW, Mixed method approach, Sentiment Analysis, Requirement Prioritization, Software Development.

Received on 04 May 2024, accepted on 03 September 2024, published on 28 October 2024

Copyright © 2024 Vijayakumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-
SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the
original work is properly cited.

doi: 10.4108/eetiot.6515

1. Introduction

Software Development is a dynamic process, which is
equally competitive and challenging. The outcome of the
entire process depends on how the developers understand
the Requirements. Therefore, Requirements Engineering is
important and crucial for a successful development
process. Software Requirements Prioritization is an
important step in Requirements Engineering which helps

developers to understand and sort the requirements in the
order in which they have to be taken for implementation.
There are many Software Requirements Prioritization
methods each having its own set of Pros and Cons. Often,
the changing requirements during the Development
process poses as a challenge for Prioritization process [1].
An Effective Prioritization technique [2] helps the
Software Development teams to:

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

mailto:raviraj.holla@manipal.edu
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Assessing the Effectiveness of MoSCoW Prioritization in Software Development: A Holistic Analysis across Methodologies

2

• Concentrate on providing the most beneficial features and
functionalities in line with user requirements on a priority
basis that matches the corporate objectives.
• Make the best use of one’s resources by devoting time
and energy to projects that have the biggest payoff and
importance.
• Control project scope and reduce risks by determining and
resolving important constraints and dependencies.
• Promote cooperation and communication between
stakeholders by outlining precise standards for trade-offs
and decision-making.

The MoSCoW (Must-have, Should-have, Could-have,
and Won't-have) method of Prioritization is one of the
Prioritization methods that has gained popularity because
of its simplicity. This method of Prioritization is very easy
to understand and adapt [3]. Though MoSCoW provides an
effective decision making framework with respect to the
order of Prioritizing requirements, its effectiveness needs
to be evaluated against real world scenarios. In order to
provide a thorough understanding of its impact on project
outcomes and stakeholder satisfaction, we aim to evaluate
the efficacy of MoSCoW Prioritization in Software
Development through a mixed-methods approach [4] in
this research study. We do this by combining quantitative
metrics with qualitative insights. The main aim of this
Research paper is to evaluate and assess the performance
of MoSCoW Requirements Prioritization Technique by
adapting Mixed methods approach

The Research paper is organised as follows. Section 2
presents an appropriate and thorough Literature Review.
All findings are recorded and presented. Section 3 of the
paper presents a brief overview of MoSCoW Prioritization
technique, formulating the Research problem by
identifying the limitations and gaps in MoSCoW
Prioritization process and also set a Research hypothesis.
Section 4 briefs about the Research Methodology used in
the evaluation process. A brief description about the Data
Set and various Data Analysis methods that are used is also
mentioned in this section. This section also includes Data
collection method and experimental setup to carry out the
analysis. The whole experimental setup and way of
execution is presented in detail here. We have presented a
detailed discussion on the results obtained after the analysis
along with the inferences in Section 5. The paper is well
concluded by mentioning the limitations and future scope
of the work in Section 6.

2. Related Work

Voola, P., & Babu, A. V. (2013) have conducted an
experiment with the three RP techniques: Numerical
Assignment (NA), Analytic Hierarchy Process (AHP) and
Extensive Numerical Assignment (ENA). Here different
scales like ordinal, ratio and interval are taken into
consideration respectively. It is also proved ENA is
superior to NA and AHP [5]. Ali Khan, J., et al (2016) have
evaluated seven software requirements Prioritization
methods such as ANP, binary search tree, AHP, hierarchy

AHP, spanning tree matrix, priority group and bubble sort
through a case study. From their experiment and analysis
of results, they conclude that ANP is the best techniques
[6]. Hatton, S., (2008) have examined and found that
volume of Requirements decreases as the development
process progresses. Therefore, it is concluded that different
Prioritization methods are required at different stages of
development depending on the volume of requirements to
be prioritized [7].

Marthasari, G., et al (2018) have used MoSCoW
approach for development of Batu State Attorney library
application project and came out with the fact that this
approach will not be able to avoid potential delay time
because of the presence of too many ‘must have’ phrases
[8]. Babar, M. I., et al (2015) present the development and
implementation of an expert system called "PHandler" that
addresses the challenges of software requirements
Prioritization. Further, the authors evaluate and prove that
the system offers a scalable and flexible approach,
integrating artificial intelligence and expert system
techniques to support efficient decision-making in the
requirements engineering phase of Software Development
projects [9].

Achimugu, P., et al (2016) introduces and describes the
“ReproTizer” tool, which is designed to facilitate the
software requirements Prioritization process and address
the challenges otherwise faced in the process. The tool
automates and streamlines the Prioritization process,
making it easier for stakeholders to collaborate and make
well-informed decisions. The authors also demonstrate the
effectiveness and practicality of the tool through case study
[10]. Jahan, M. S., et al (2019) discuss the various
challenges faced in traditional Prioritization techniques and
prove that there is a need for an alternate and better
approach. The new technique introduced by them proves to
be effective and also advantageous through an
experimental evaluation [11]. Ahmad, K. S., et al (2017)
have presented a novel and effective approach which is a
combination of fuzzy logic and the traditional MoSCoW
method for prioritizing software requirements. Through
this, the authors are able to handle uncertainty and
imprecision in Prioritization decisions, providing a more
flexible and nuanced way to rank requirements based on
their importance [12].

3. MoSCoW Prioritization: An Overview

Software developers frequently employ the MoSCoW
Prioritization technique to rank requirements, features, or
tasks according to their significance and urgency.
"MoSCoW" is an abbreviation [13] that stands for:

• Must-have: The requirements that have necessary
specifications that are vital to the project's success
and must be fulfilled on schedule. The project
would fail or have a major negative effect on
stakeholders if these elements weren't put into
practice.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Suchetha Vijayakumar, Krishna Prasad K and Raviraja Holla

3

• Should-have: Significant prerequisites that are
appealing but not necessary for the project's quick
success. These add to the product's overall value
and ought to be included after all essential features
have been met.

• Could-have: Extra criteria that improve the
product but aren't necessary for its main features.
These things are not given priority over must-have
or should-have items, but they may be
accomplished if time and resources allow.

• Won't-have (or Would-have): Needs that are
specifically left out of the project's present scope.
These are either deemed low priority for the
current development cycle or postponed to later
versions.

With the help of the MoSCoW technique, stakeholders
may work together to prioritise requirements and decide on
project scope and resource allocation in an organised
manner. Teams may manage expectations and trade-offs
while concentrating on delivering the most important and
valuable features by classifying objects into must-have,
should-have, could-have, and won't-have categories.

Although MoSCoW Prioritization is a popular technique
for prioritising requirements in Software Development,
there are still a lot of restrictions and gaps in our knowledge
on its usefulness and actual implementation. The following
are some of the identified areas of concern:

• Subjectivity and Interpretation: A significant
portion of the MoSCoW Prioritization process
depends on stakeholders' subjective assessments
in order to classify requirements. But how these
categories are interpreted might differ greatly
amongst people, which makes it difficult to decide
which priorities to prioritise and emphasises the
need for more precise rules and improvement.

• Absence of Formal Criteria: Although MoSCoW
offers a framework for Prioritization, it is devoid
of explicit standards or directives for judging the
significance and immediacy of requirements.
Because of its ambiguity, stakeholders find it
difficult to make well-informed judgements,
which emphasises the need for formalised criteria
and improvement to increase its efficacy.

• Insufficient Stakeholder Involvement: All project
stakeholders must collaborate and actively
participate in order to effectively prioritise
projects. On the other hand, incomplete or biased
Prioritization decisions may result from some
stakeholders' lack of engagement. Enhanced and
supplementary channels of assistance are required
to guarantee thorough stakeholder participation.

• Limited Adaptability: The MoSCoW's strict
classification of requirements into four categories
may not be able to take into account the changing
needs of stakeholders or the dynamic nature of
some projects. It needs to be improved and given
more support systems in order to be more flexible

and appropriate for a variety of Software
Development scenarios.

• Absence of Empirical Evidence: Although
MoSCoW Prioritization is widely used, there is a
lack of empirical studies assessing its efficacy in
practical projects. Current research frequently
uses case studies or anecdotal evidence,
emphasising the importance of the method, but
does not sufficiently provide empirical evidence.

Based on the above limitations and also the research gaps
identified through literature review, the following research
hypothesis is framed:

Although fundamental, the MoSCoW Prioritization
approach may not by itself ensure that requirements are
prioritised accurately, that project management procedures
are effective, or that stakeholders are satisfied with
Software Development projects. But it can make a big
difference in these results when combined with other
guidelines that can be taken as a framework for all
requirements that have to be prioritised.

4. Methodology

A mixed-methods approach [14] will be used in this study
to assess how well MoSCoW Prioritization works in
Software Development projects. This strategy efficiently
addresses the study objectives and offers to provide a clear
result for the research problem by combining quantitative
and qualitative methodologies. The mixed-methods
approach, by itself, contributes for the integration of
numerical data with detailed contextual and situational
understanding thus enhancing the robustness of the
findings.

The quantitative methodology involves the analysis of
survey data with statistical analysis to identify trends,
patterns, and correlations, providing a comprehensive
overview of the effectiveness and impact of the
Prioritization technique. On the other hand, the qualitative
methodology will provide rich, narrative insights to
complement the numerical findings on applications of
MoSCoW Prioritization.

The adapted methodology seeks to provide a more
comprehensive and nuanced knowledge of MoSCoW
Prioritisation through the triangulation of data from both
quantitative and qualitative sources. This methodology
guarantees that the study takes into account both the
quantifiable results and the subjective experiences. It is
anticipated that the combination of these techniques would
produce useful insights that can bring out best practices and
influence upcoming Software Development Prioritisation
process.

4.1. Data Set and Data Analysis Methods

The Data Set used here is a real time Data which consists
of eleven Prioritization orders as understood by the
respondents followed by Level of Ease, Completion Status,

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Assessing the Effectiveness of MoSCoW Prioritization in Software Development: A Holistic Analysis across Methodologies

4

Total number of comparisons done, Average time taken for
every decision (in minutes), Satisfaction level and
Drawbacks [15].

i. Quantitative Data Analysis: In order to compile
important metrics like Satisfaction level, Completion
Status, and the amount of time needed for
Prioritization, quantitative survey results were
analysed using descriptive statistics [16]. The results
of the same are presented and interpreted in the
sections that follow.

ii. Qualitative Data Analysis: Qualitative data analysis
[17] is done to compile themes and patterns found in
open-ended responses about stakeholders' opinions of
MoSCoW Prioritization. The gathered data is
subjected to a variety of analyses, including sentiment,
content and thematic analysis [18].

4.2. Data Collection

In this Research, Quantitative data is collected through
structured surveys distributed to stakeholders involved in
Software Development projects who have a knowledge
about MoSCoW Prioritization. The survey consists of
questions that is meant to collect information about
stakeholders' perceptions of MoSCoW Prioritization
effectiveness, satisfaction levels, completion of
Prioritization process, and other relevant information.
Open-ended survey questions and semi-structured
interviews is used to gather qualitative information about
stakeholders' experiences, opinions, and difficulties
regarding MoSCoW Prioritization.

4.3. Experimental setup and execution

This study was conducted by circulating a set of
Requirements among students of Post-Graduation Studies.
The number of respondents are 172 as this type of response
requires a thorough knowledge of Software Development
and Prioritization methods. The experiment is somewhat
similar to an experiment conducted by Javed Ali Khan et al
[2] for evaluating other type of Requirement Prioritization
techniques . For our experiment, a set of Requirements of
an Online Food Ordering system was given for
Prioritization which is as follows:

Req 1. The system must let a Customer who is logged
into the Food ordering system to place an order
Req 2. The system should confirm that the Customer is a
registered Customer
Req 3. The System can prompt the Customer for an order
through the menu
Req 4. The Customer may specify whether the order is to
be delivered or picked. By default it is delivered
Req 5. The system will display a menu of that particular
day only with available food items.

Req 6. When the Customer is done with the orders, the
System should display the orders along with individual
food prices and also the total payable amount
Req 7. The System will ask for Confirmation which
needs to be accepted by Customer
Req 8. The order given by the Customer could be
accepted or rejected based on the number of orders being
processed by the Food ordering system at the moment
Req 9. After the order confirmation, the system must ask
to select payment confirmation
Req 10. When the payment is confirmed, the system
should accept the order and process
Req 11. A confirmation mail/message may be sent
depending on the availability of mail id or phone number

The following table explains the verbal meaning of each
requirement.

Table 1. Verbal meaning of requirements

Requirement Verbal
meaning

1. The system must let a
Customer who is logged into the Food
ordering system to place an order

Necessity

2. The system should confirm that
the Customer is a registered Customer

Advise

3. The System can prompt the
Customer for an order through the menu

Possibility

4. The Customer might specify
whether the order is to be delivered or
picked. By default it is delivered

Low Possibility

5. The system will display a menu
of that particular day only with available
food items.

Certainty

6. When the Customer is done
with the orders, the System should
display the orders along with individual
food prices and also the total payable
amount

Advise

7. The System will ask for
Confirmation which needs to be
accepted by Customer

Certainty

8. The order given by the
Customer could be accepted or rejected
based on the number of orders being
processed by the Food ordering system
at the moment

Low possibility

9. After the order confirmation,
the system must ask to select payment
confirmation

Necessity

10. When the payment is
confirmed, the system must accept the
order and process

Necessity

11. A confirmation mail/message
would be sent depending on the
availability of mail id or phone number

Conditional
certainty

The survey was conducted in two phases. Initially, the
students (respondents) were given a presentation of
MoSCoW method of Prioritization with few examples.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Suchetha Vijayakumar, Krishna Prasad K and Raviraja Holla

5

They were given a day’s time to study the concept and
understand it. Then the requirements and the various
factors that were supposed to be evaluated by them post
prioritising the requirements were given. The whole
exercise was done through Google Forms and the
responses were recorded.

5. Results and Discussion

Python libraries were used to analyse the data obtained
though the survey. The results of analysis done on various
columns which will henceforth be called as Evaluation
parameter are as follows:

Table 2. Descriptive statistics of various evaluation
parameters

Evaluation
parameter

Coun
t

Set of
uniqu

e
value

s

Top
value

Frequenc
y of the

top value

Satisfaction
level

172 3 Moderatel
y satisfied

145

Total
number of

comparison
s done

172 27 11 45

Average
time taken
for every
decision

172 27 3 30

Level of
Ease

172 3 Confusing 126

i. Satisfaction Level: Satisfaction level is an evaluation
parameter that defines the performance and also calls for
improvements, if any. In our questionnaire, three
satisfaction levels were given to respondents to choose
from, namely highly satisfied, moderately satisfied and not
at all satisfied. Analysis of satisfaction levels revealed that
the majority of respondents (145 out of 172) reported being
"Moderately satisfied", which happened to be the most
frequent satisfaction level as shown in Table 2. Figure 1
gives a visual comparison of various satisfaction levels as
put forth by the respondents.

Figure 1. Visualisation of ‘Satisfaction level’

ii. Completion of Prioritization Process: This
column in the dataset represents the status of
completion of Prioritization Process. The completion
rate of the Prioritization process was found to be
72.67%, indicating a substantial level of engagement
among participants. This also supports the fact that
MoSCoW can still be considered as the best option for
prioritising requirements, though a small percentage of
respondents were not able to complete the process.
This is shown with a bar chart in Figure 2.

Figure 2. Visualisation of ‘Completion of
Prioritization Process’

iii. Total Number of Comparisons Done: The number
of comparisons done by the respondents shows the
volatility of MoSCoW method of Prioritization. In our
analysis (Table 2), we see that 11 comparisons are
done by 45 respondents. Out of the total 11
requirements given, 45 people actually compared all
the requirements, indicating the prioritization method

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Assessing the Effectiveness of MoSCoW Prioritization in Software Development: A Holistic Analysis across Methodologies

6

is not volatile. Also Figure 3 shows a wide range of
values and the high standard deviation suggests
significant variability in the number of comparisons
performed by respondents. The median value being
lower than the mean indicates that the distribution of
the data might be right-skewed, with some respondents
performing a relatively large number of comparisons,
leading to a higher mean. The minimum value of 0
suggests some respondents may not have performed
any comparisons for various reasons including the
confusion involved in the MoSCoW method. The
quartile values provide insight into the distribution of
responses, indicating that a significant portion of
respondents performed relatively few comparisons,
with a smaller proportion performing a larger number
of comparisons. Overall, these descriptive statistics
provide valuable insights into the distribution and
characteristics of the total number of comparisons
done by respondents in the Prioritization process.

Figure 3. Visualisation of ‘Total Number of
Comparisons done

iv. Average Time Taken for Every Decision: The
average time taken for making decisions during the
Prioritization process ranged across 27 unique values.
The most frequently reported time was 3 minutes, with
30 respondents indicating this duration (Table 2). The
distribution of the average time taken for every
decision in minutes was analyzed using a box plot also.
The median time taken for each decision was
approximately 10 minutes (Figure 4). The interquartile
range (IQR), ranged from approximately 7 to 15
minutes, encompassing the middle 50% of the data.
However, the distribution exhibited variability, with
several outliers present beyond the whiskers of the box
plot, indicating some decisions took significantly
longer or shorter times compared to the majority of the
dataset.

Figure 4. Visualisation for Average Time taken for
every decision

v. Level of Ease: Respondents' perceptions regarding the
ease of the Prioritization using MoSCoW principle varied.
The majority (126 / 172) found the process "Confusing",
followed by 33 respondents who found it "Easy", and 13
respondents who found it "Difficult". The Descriptive
statistics is as shown in Table 2 and the corresponding
graph in Figure 5 illustrated the fact that respondents found
the MoSCoW Prioritization to be confusing.

Figure 5. Visualisation of ‘Level of Ease’

vi. Drawbacks: In this study, respondents were provided
with an open-ended question to express their views on the
drawbacks of the MoSCoW Prioritization method. This
open-ended format allowed participants to freely articulate
their concerns, challenges, and criticisms without being
constrained by predefined response options. The responses
collected provide rich qualitative data that can offer deeper
insights into the perceived weaknesses and limitations of
the MoSCoW method from the stakeholders' perspectives.

To analyze the qualitative data collected from the
"Drawbacks" question, a combination of thematic analysis,
content analysis and sentiment analysis were employed.
Each of these methods provides a different lens through
which to examine the data, allowing for a comprehensive
evaluation of the feedback

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Suchetha Vijayakumar, Krishna Prasad K and Raviraja Holla

7

a) Thematic Analysis: Thematic analysis is one of
the most popular qualitative data analysis
techniques used to understand the common
themes or patterns within the responses [19].
Responses were systematically reviewed to detect
recurring topics and ideas. Themes such as
"confusion", "difficult", "time-consuming
process" and issues with "multiple must-have
items" were identified. A small Python code was
written that helped in categorizing the responses
into predefined themes and counting the
occurrences of each theme and the results are
recorded and a bar chart drawn for the resulting
values as shown in Figure 6. The result of
thematic analysis is documented in Table 3 which
reveals the following key issues:

i. Confusion: Mentioned by 83 respondents,
indicating a significant issue with
understanding the MoSCoW method.

ii. Difficulty: Reported by 9 respondents,
highlighting challenges in using the method.

iii. Time-Consuming: Noted by 12 respondents
as a major drawback.

iv. Multiple Must-Haves: Identified by 7
respondents, pointing to the impracticality of
having too many must-have items.

v. Other: Various other concerns were
mentioned by 61 respondents.

Table 3. Result of Thematic analysis
performed on ‘Drawbacks’

 Total
Respo
nses

Number of responses showing

Confusion/C
onfusing

Diffi
cult Time

consu
ming

Mult
iple
‘mu
st’

Ot
her

172 83 9 12 7 61

Figure 6. Visualisation of Thematic Analysis
performed on ‘Drawbacks’

b) Content Analysis: A research technique called
content analysis can be used to find specific terms,
themes, or ideas in a given set of qualitative data [20].
Content analysis was performed to quantify the presence
of specific words, phrases, or concepts within the
responses to determine the frequency of certain themes.
This was done by using a tool like word cloud [21]
generation to highlight the most commonly mentioned
drawbacks. A word cloud thus generated visualized the
most frequently mentioned terms in the open-ended
responses about the drawbacks of the MoSCoW
Prioritization method as shown in Figure 7 . In the word
cloud, larger words represented terms that were
mentioned more frequently by respondents.

Figure 7. Word Cloud after performing Content
Analysis of ‘ Drawbacks’

The word cloud visually summarized the main issues
identified by users of the MoSCoW method. The
prominence of terms such as "confusing", “confusion”,
"difficult," and "time-consuming" underscores significant
challenges in the method's application, suggesting a need
for additional training, clearer guidelines, and potentially
supplementary tools to improve its effectiveness.

c) Sentiment Analysis: Sentiment Analysis is a handy
NLP technique to determine the emotions and opinions
expressed in a text having reviews or comments [22]. The
result of this analysis could be either positive or negative
based on the type of emotions it holds. This is sometimes
referred to as Sentiment Orientation [23]. Sentiment
analysis was performed on the Drawbacks expressed by the
stakeholders while using MoSCoW method of
Prioritization. In order to analyse the sentiments, two
effective tools ‘VADER’[24] and ‘TEXTBLOB’[25] were
used. The analysis proved that the sentiment carried in this
column is mostly negative across both the tools used for
analysis. Vader gave a result of 58.1% as negative
sentiment and TextBlob gave a percentage of 41.9% as
negative sentiment. The same is tabulated in Table 4.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Assessing the Effectiveness of MoSCoW Prioritization in Software Development: A Holistic Analysis across Methodologies

8

Table 4. Result of Sentiment analysis performed on
‘Drawbacks’

Tool Positive Negative Neutral
VADER 4.7% 58.1% 37.2%
TEXTBLOB 24.4% 41.9% 33.7%

6. Conclusion and Future work

The comprehensive analysis of the MoSCoW Prioritization
method reveals both its strengths and limitations. While the
method provides a structured framework for categorizing
requirements into must-have, should-have, could-have, and
won't-have categories, the subjective nature of these
classifications and the lack of formal criteria can lead to
inconsistencies and challenges in practical application. Our
findings indicate that, although MoSCoW can be effective
in improving the accuracy of Requirement Prioritization
and enhancing project management efficiency, it requires
additional support and refinement to address its inherent
ambiguities.

The sentiment analysis of stakeholder feedback on the
'Drawbacks' of MoSCoW, using both VADER and
TextBlob, showed a predominant negative sentiment,
highlighting the perceived challenges and dissatisfaction
among users. Themes such as confusion, difficulty, and the
time-consuming nature of the process were recurrent in the
responses.

To enhance the effectiveness of MoSCoW, it is crucial
to implement supplementary guidelines and criteria that
provide clearer distinctions between Prioritization
categories. Increased stakeholder involvement and iterative
feedback mechanisms can also mitigate the subjective
biases and improve the overall satisfaction levels. Future
research should focus on empirical studies to validate these
findings across different project contexts and explore the
integration of MoSCoW with additional Prioritization
techniques and rules to create a more robust and adaptable
framework for Requirement Prioritization.

In conclusion, while MoSCoW is a valuable tool in the
arena of Project Management techniques, its full potential
can only be realized through continuous improvement and
supplementary strategies so as to adapt to specific needs of
Software Development projects.

References

[1] Licorish, S. A., Savarimuthu, B. T. R., & Keertipati, S. (2017,
June). Attributes that predict which features to fix: Lessons for
app store mining. In Proceedings of the 21st International
Conference on Evaluation and Assessment in Software
Engineering (pp. 108-117).
[2] Ali, A., Hafeezb , Y., Hussain, S., & Yang, S. (2020). Role
of requirement prioritization technique to improve the quality of
highly-configurable systems. IEEE Access, 8, 27549-27573.

[3] Kravchenko, T., Bogdanova, T., & Shevgunov, T. (2022,
April). Ranking requirements using MoSCoW methodology in
practice. In Computer Science On-line Conference (pp. 188-199).
Cham: Springer International Publishing.
[4] Migiro, S. O., & Magangi, B. A. (2011). Mixed methods: A
review of literature and the future of the new research paradigm.
African journal of business management, 5(10), 3757-3764.
[5] P. &. B. A. V. Voola, "Comparison of requirements
Prioritization techniques employing different scales of
measurement.," ACM SIGSOFT Software Engineering Notes,
vol. 38, no. 4 doi.org/10.1145/2492248.2492278, pp. 1-10, 2013.
[6] Ali Khan, J., Qasim, I., Khan, S. P., & Khan, Y. H. (2016). An
Evaluation of Requirement Prioritization Techniques with ANP.
International Journal of Advanced Computer Science and
Applications, 7(7).
[7] Hatton, S. (2008, March). Choosing the right Prioritization
method. In 19th Australian conference on software engineering
(ASWEC 2008) (pp. 517-526). IEEE.
[8] Marthasari, G., Suharso, W., & Ardiansyah, F. A. (2018).
Personal Extreme Programming with MoSCoW Prioritization for
Developing Library Information System. Proceeding of the
Electrical Engineering Computer Science and Informatics, 5(1),
537-541.
[9] Babar, M. I., Ghazali, M., Jawawi, D. N., Shamsuddin, S. M.,
& Ibrahim, N. (2015). PHandler: an expert system for a scalable
software requirements Prioritization process. Knowledge-Based
Systems, 84, 179-202.
[10] Achimugu, P., Selamat, A., & Ibrahim, R. (2016).
ReproTizer: A fully implemented software requirements
Prioritization tool. In Transactions on computational collective
intelligence XXII (pp. 80-105). Springer Berlin Heidelberg.
[11] Jahan, M. S., Azam, F., Anwar, M. W., Amjad, A., & Ayub,

K. (2019, October). A Novel Approach for Software Requirement
Prioritization. In 2019 7th International Conference in Software
Engineering Research and Innovation (CONISOFT) (pp. 1-7).
IEEE.
[12] Ahmad, K. S., Ahmad, N., Tahir, H., & Khan, S. (2017,

July). Fuzzy_MoSCoW: A fuzzy based MoSCoW method for the
Prioritization of software requirements. In 2017 International
Conference on Intelligent Computing, Instrumentation and
Control Technologies
[13] Hudaib, A., Masadeh, R., Qasem, M. H., & Alzaqebah, A.

(2018). Requirements prioritization techniques comparison.
Modern Applied Science, 12(2), 62.
[14] Almalki, S. (2016). Integrating Quantitative and Qualitative

Data in Mixed Methods Research--Challenges and Benefits.
Journal of education and learning, 5(3), 288-296.
[15] Vestola, M. (2010). A comparison of nine basic techniques
for requirements prioritization. Helsinki University of
Technology, 1-8.
[16] Pentang, J. T., & Pentang, J. (2021). Quantitative data

analysis. Holy Angel University Graduate School of Education:
Research and academic writing. http://dx. doi. org/10.13140/RG,
2(23906.45764), 1.
[17] Lester, J. N., Cho, Y., & Lochmiller, C. R. (2020). Learning
to do qualitative data analysis: A starting point. Human resource
development review, 19(1), 94-106.
[18] Lochmiller, C. R. (2021). Conducting thematic analysis with
qualitative data. The Qualitative Report, 26(6), 2029-2044.
[19] Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content
analysis and thematic analysis: Implications for conducting a
qualitative descriptive study. Nursing & health sciences, 15(3),
398-405.
[20] Bengtsson, M. (2016). How to plan and perform a qualitative
study using content analysis. NursingPlus open, 2, 8-14.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

Suchetha Vijayakumar, Krishna Prasad K and Raviraja Holla

9

[21] Heimerl, F., Lohmann, S., Lange, S., & Ertl, T. (2014,
January). Word cloud explorer: Text analytics based on word
clouds. In 2014 47th Hawaii international conference on system
sciences (pp. 1833-1842). IEEE.
[22] Hussein, D. M. E. D. M. (2018). A survey on sentiment
analysis challenges. Journal of King Saud University-
Engineering Sciences, 30(4), 330-338.
[23] Taboada, M. (2016). Sentiment analysis: An overview from
linguistics. Annual Review of Linguistics, 2, 325-347.
[24] Elbagir, S., & Yang, J. (2019, March). Twitter sentiment
analysis using natural language toolkit and VADER sentiment. In
Proceedings of the international multiconference of engineers and
computer scientists (Vol. 122, No. 16). sn.
[25] Chaudhri, A. A., Saranya, S. S., & Dubey, S. (2021).
Implementation paper on analyzing COVID-19 vaccines on
twitter dataset using tweepy and text blob. Annals of the
Romanian Society for Cell Biology, 8393-8396.

EAI Endorsed Transactions on
Internet of Things

 | Volume 10 | 2024 |

