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Abstract 

To enhance monitoring of environmental indicators such as temperature, humidity, and carbon dioxide (CO2) 
concentration in data centers, this study evaluates various deep neural network (DNN) models and improves their forecast 
accuracy using Gaussian smoothing. Initially, multiple DNN architectures were assessed. Following these evaluations, the 
optimal algorithm was selected for each indicator: Convolutional Neural Network (CNN) for temperature, Long Short-
Term Memory (LSTM) for humidity, and a hybrid model combining Long Short-Term Memory and Gated Recurrent Unit 
networks (LSTM-GRU) for CO2 concentration. These models underwent further refinement through Gaussian smoothing 
and re-training to enhance their forecasting capabilities. The results demonstrate that Gaussian smoothing significantly 
enhanced forecast accuracy across all indicators. For instance, R2 values notably increased: the temperature forecast 
improved from 0.59925 to 0.98012, humidity from 0.63305 to 0.99628, and CO2 concentration from 0.71204 to 0.99855. 
Thus, this study highlights the potential of DNN models in environmental monitoring after Gaussian smoothing, providing 
precise forecasting tools and real-time monitoring support for informed decision-making in the future. 
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1. Introduction

In recent years, deep neural network (DNN) models have 
made substantial advancements across diverse fields. 
Accurate forecasting in environmental monitoring is 
especially critical for enabling proactive decision-making. 
This study seeks to evaluate and optimize various DNN 
architectures tailored for forecasting key environmental 
indicators: temperature, humidity, and carbon dioxide (CO2) 
concentration. Through the integration of Gaussian 
smoothing techniques, the objective is to augment the 
accuracy and dependability of forecasts, thereby enhancing 
overall environmental monitoring strategies. 

The motivation behind this study arises from the 
pressing need to enhance the accuracy and reliability of 
environmental monitoring systems. Traditional methods 
often face challenges in accurately capturing and forecasting 
complex environmental dynamics, characterized by 
nonlinear relationships, sudden environmental changes, and 
the requirement for real-time responsiveness. Leveraging the 
capabilities of DNNs to capture time dependencies and 
nonlinear relationships presents a promising approach to 
improving environmental forecast accuracy. DNN models 
such as Convolutional Neural Networks (CNNs), Long 
Short-Term Memory Networks (LSTMs), and their 
bidirectional variants each offer unique advantages in 
capturing short-term fluctuations and long-term trends, 
providing flexibility in modeling various features of 
environmental data. 
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The primary objective of this study is threefold: firstly, 
to evaluate and compare the performance of various DNN 
architectures in forecasting environmental monitoring 
indicators (temperature, humidity, and CO2 concentration); 
secondly, to optimize these forecasts using Gaussian 
smoothing techniques and validate their effectiveness; and 
thirdly, to deploy the optimized models in existing 
dashboards and messaging systems. 

(i) Evaluation of DNN Models: This study systematically
evaluates multiple DNN architectures, including
Simple Recurrent Neural Networks (SRNN),
Bidirectional Simple Recurrent Neural Networks
(BiSRNN), Convolutional Neural Networks (CNN),
Long Short-Term Memory Networks (LSTM),
Bidirectional Long Short-Term Memory Networks
(BiLSTM), Gated Recurrent Units (GRU), 
Bidirectional Gated Recurrent Units (BiGRU), LSTM-
GRU hybrids, and CNN-LSTM-GRU hybrids. The
performance of these models in accurately forecasting
environmental indicators is assessed.

(ii) Optimization using Gaussian Smoothing: After
identifying the optimal model for each environmental
indicator, Gaussian smoothing techniques are applied.
Gaussian smoothing enhances forecast stability by
applying weighted averages to neighboring data points,
thereby reducing noise. This step helps mitigate the
impact of outliers and abrupt changes in environmental
data, ultimately improving the robustness of the
models.

(iii) Deployment of Research Outcomes: The optimized
models will be deployed in existing dashboards and
messaging systems.

By achieving these goals, this study aims to provide a 
robust framework for environmental monitoring in data 
centers, ensuring optimal conditions and efficient energy use, 
ultimately preventing hardware failures and operational 
issues. 

2. Literature Review

This section delves into pertinent literature concerning a 
variety of topics including deep learning neural networks, 
cloud computing, and Internet of Things (IoT). 

2.1. IoT and Environmental Control Systems 
with Machine Learning 

Ahmed et al. [1] developed an air quality monitoring system 
based on the Internet of Things (IoT), emphasizing the 
importance of real-time data collection and predictive 
analytics. They summarized advancements and application 
cases related to this technology. Sarun Duangsuwan et al. [2] 
introduced the use of Low Power Wide Area Network 
(LPWAN) and Narrowband Internet of Things (NB-IoT) 
technologies for air pollution monitoring in smart cities in 
Thailand, demonstrating the potential of these technologies 

in real-time monitoring. Ting Yang et al. [3] conducted a 
comprehensive review of recent advancements in smart 
environmental monitoring systems, focusing particularly on 
the monitoring of air quality, water pollution, and radiation 
pollution. The paper extensively analyzed the sensors 
employed, machine learning techniques, and classification 
methods used in these systems, and proposed further 
research directions. Mengda Jia et al. [4] used Extreme 
Learning Machine (ELM) to predict air pollution 
concentrations in Hong Kong, demonstrating the 
effectiveness of machine learning techniques in improving 
pollution prediction accuracy. The study highlighted ELM's 
advantages in handling large-scale data and enhancing 
prediction accuracy. Ullo et al. [5] conducted a 
comprehensive review of recent advancements in smart 
environmental monitoring systems, focusing particularly on 
the monitoring of air quality, water pollution, and radiation 
pollution. The paper extensively analyzed the sensors 
utilized, machine learning techniques, and classification 
methods employed in these systems, and proposed 
recommendations for further research. 

2.2. CNN 

CNNs, initially proposed by LeCun et al. for handwritten 
digit recognition, demonstrated superior performance in 
image processing tasks [6]. Alex Krizhevsky et al. [7] 
applied deep CNNs to the ImageNet dataset, significantly 
improving the accuracy of image classification. Karen 
Simonyan et al. [8] further increased the depth of CNNs, 
demonstrating that deeper networks could achieve better 
performance. Kaiming He et al. [9] introduced the residual 
learning framework (ResNet), effectively addressing the 
degradation problem of and advancing the field of deep 
learning. Additionally, Goodfellow et al.'s comprehensive 
book comprehensively summarizes the theory and 
applications of deep learning [10]. 

2.3. LSTM 

LSTM were initially proposed by Hochreiter and 
Schmidhuber to address the challenges faced by traditional 
RNNs in handling long-term dependencies [11]. Gers et al. 
[12] further expanded LSTM by introducing the concept of
"Forget Gates", enhancing its performance in processing
long sequential data. Graves et al. [13] demonstrated
LSTM's application in speech recognition, showcasing its
robust performance in practical applications. Sutskever et al.
[14] introduced the LSTM-based Sequence-to-Sequence
(Seq2Seq) learning model, which achieved significant
success in tasks such as machine translation. Additionally,
Klaus Greff et al. [15] conducted a comprehensive
comparison and analysis of various LSTM variants,
providing valuable reference material for LSTM research.
Kun Wang et al. [16] proposed a hybrid flow model using
an improved CNN classification algorithm and key frame
extraction mechanism to reduce video data load and network
congestion. Experimental results showed its effectiveness in
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reducing video size while maintaining stable Quality of 
Experience. 

2.4. GRU 

Accurate prediction of traffic flow can significantly improve 
quality of life, with IoT devices capturing real-time data. 
The GRU model has shown promising results in traffic flow 
prediction, albeit with complexities in hyperparameter and 
window optimizations. A recent study introduces a new 
algorithm aimed at enhancing prediction accuracy and 
stability, reducing errors by 4.5% [17]. Predicting runoff is 
crucial for flood prevention. LSTM and GRU models excel 
in automatically filtering redundant information. Research 
indicates that both LSTM and GRU models outperform 
Artificial Neural Networks (ANN), with GRU 
demonstrating shorter training times [18]. 

2.5. Gaussian Smoothing 

Gaussian Smoothing is a crucial technique in image 
processing and signal processing used to eliminate noise and 
enhance main structures. The concept of scale-space 
filtering, where Gaussian smoothing plays a fundamental 
role in handling structures of different scales, was first 
introduced by Andrew P. Witkin [19]. Marr et al. [20] 
incorporated Gaussian smoothing as a preprocessing step in 
their edge detection theory to improve edge detection 
accuracy. Koenderink et al. [21] demonstrated the multiscale 
representation of image structures, highlighting the critical 
role of Gaussian smoothing. For achieving full automation 
in the segmentation process, Jaya Brindha G. et al. [22] 
proposed the use of Gaussian process-based regression 
techniques to estimate tuning parameters required for 
morphological processing. This method was tested on 
sunflower leaf and ImageCLEF datasets, showing potential 
for automation in leaf segmentation processes. 
     Gaussian smoothing is a technique widely used in signal 
processing and image processing to smooth data and reduce 
noise. Gaussian smoothing is implemented through a 
convolution operation, where data 𝐼𝐼 is convolved with a 
Gaussian kernel 𝐺𝐺. For the one-dimensional case, the 
formula is [20][23][24]: 

For the two-dimensional case, applied in image processing, 
the Gaussian smoothing formula is: 

where the Gaussian kernel 𝐺𝐺 is defined as: 

 G(𝑥𝑥) is the smoothed output
 𝜎𝜎 is the standard deviation of the Gaussian

distribution
For the two-dimensional case, the Gaussian kernel formula 
is: 

3. Research Methodology

Here are the steps of the research methodology, as depicted 
in Figure 1: 

(i) Problem Definition: Define the issues that need to be
addressed concerning the management of critical
environmental monitoring resources.

(ii) Data Collection and Preprocessing: Gather data on
temperature, humidity, and carbon dioxide (CO2)
concentration in the environment. Clean and transform
the data to prepare it for subsequent analysis and
modeling steps.

(iii) Evaluating DNN Models: Assess various DNN
architectures to preliminarily select the optimal
models for training.

(iv) Initial Selection of Optimal Model Algorithm for
Gaussian Smoothing: Based on the optimal
performing algorithms identified in the previous step,
apply Gaussian smoothing preprocessing as necessary
and retrain the models.

(v) Deploying to a Visualization Dashboard and Message
Push Notifications: Send the time-series forecast
waveforms generated by the trained models to
visualization dashboard systems and relevant
stakeholders. This serves as proactive measures for
decision-making.

These steps outline a structured approach to enhancing 
environmental monitoring through data-driven 
methodologies, DNNs, and Gaussian smoothing techniques. 

4. System Implementation and Evaluation

The implementation procedure of the system in this study is 
detailed in the following subsections. 

4.1. Problem Definition, Data Collection, and 
Preprocessing 

This study aims to address the following questions: 

(i) Which DNN architecture performs optimally in
forecasting environmental monitoring indicators?

(ii) How does Gaussian smoothing enhance the forecast
accuracy of DNN models?
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This study explores key indicators in the environmental 
control system of data center to forecast future operational 
dynamics. The data sources include: 

(i) Temperature sensor: Monitors the air temperature in
the server farm of the data center. It is measured in
Celsius to indicate changes in the environmental
temperature.

(ii) Humidity sensor: Measures the air humidity in the
server farm of the data center. It is measured in
percentage to indicate the water vapor content in the
air.

(iii) Air quality sensor: Detects the concentration of CO2 in
the office air. It is measured in ppm (parts per million)
to indicate the concentration of carbon dioxide in the
air.

Figure 1. Research Architecture 

The normal ranges for temperature, humidity, and CO2 
in a typical data center are generally defined as follows: 

(i) Temperature: Ideally maintained between 20 to 25
degrees Celsius to ensure stable and efficient operation
of equipment.

(ii) Humidity: Controlled within a relative humidity range
of 40% to 60%. Lower than 40% may lead to static
electricity issues and equipment damage, while higher
than 60% can cause equipment failures and corrosion.

(iii) CO2 Concentration: Higher concentrations, tpm), can
significantly impact the comfort and health of office
personnel, although their effect on equipment is
relatively minor.

Alarm lights and messages should be triggered 
immediately for values above or below the normal range as 
mentioned above. 

4.2. Evaluate DNN Models 

This study employs the Python programming language, 
utilizing libraries including NumPy, Pandas, Matplotlib, 
SciPy, Scikit-learn, and TensorFlow. The implementation is 
conducted on the Colab Notebooks cloud platform [25]. 

This study adopts commonly used regression metrics to 
evaluate CNNs and RNNs. 

(i) Mean Absolute Error (MAE) [26]
 MAE is a metric used to evaluate the accuracy of a

model's forecasts. It measures the average absolute
difference between the predicted values and the
actual values.
 Unlike Root Mean Squared Error, MAE does not

square the errors, thus it is not sensitive to outliers.
 A smaller MAE indicates that the model's forecasts

are more accurate.
(ii) Root Mean Square Error (RMSE) [27]

 RMSE is a metric used to assess the accuracy of
model forecasts by measuring the differences
between predicted values and actual values. It is
calculated by taking the square root of the average of
the squared differences between predicted and actual
values.
 RMSE provides a measure of the average size of

errors in model forecasts. It is sensitive to outliers.
 A lower RMSE indicates that the model's forecasts

are closer to the actual values, reflecting better
accuracy.

(iii) Coefficient of determination (R-squared or R2) [28]
 R2 is a statistical measure used to assess the goodness

of fit of a regression model to the data.
 It ranges from 0 to 1 and represents the proportion of

the variance in the dependent variable that is
predictable from the independent variables.
 R2 indicates the model's ability to explain the

variability in the data. A value closer to 1 indicates a
better fit of the model to the data, whereas a value
closer to 0 indicates a poorer fit.

To forecast future server room temperature, humidity, 
and office CO2 concentration, we explored algorithms such 
as SRNN, BiSRNN, CNN, LSTM, BiLSTM, GRU, BiGRU, 
LSTM-GRU, and CNN-LSTM-GRU during the model 
selection process. The following presents the loss curves for 
each training model used to assess fit on the training set, 
evaluate model overfitting on the validation set, and assess 
model generalization on the test set. We utilized metrics 
including MAE, RMSE, and R² to compare error values 
across the training, validation, and test sets. Model 
performance comparison was based on the majority voting 
principle. 
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4.3. Model Selection Process and Criteria 

The following steps outline the model selection process 
before applying Gaussian smoothing: 

(i) Model Exploration: Various DNN architectures, such
as SRNN, BiSRNN, CNN, LSTM, BiLSTM, GRU,
BiGRU, LSTM-GRU, and CNN-LSTM-GRU, were
tested to identify the most effective model for
forecasting temperature, humidity, and CO2
concentration.

(ii) Loss Curve Analysis: Analysis of the loss curves of
each model on the training, validation, and test sets
was conducted to evaluate their performance. This
involved monitoring the reduction of loss values with
each iteration to ensure the models learned correctly
and converged.

(iii) Validation Curve Evaluation: To check for overfitting,
we compared the loss curves on the training and
validation sets. Through validation curves, we can
comprehend how well each model generalizes to
unseen data during training.

(iv) Test Set Evaluation: Final evaluation was conducted
on the test set to assess the models' generalization
ability. This step ensured that the selected models
performed well not only on the training and validation
sets but also on new, unseen data.

(v) Performance Metrics: MAE, RMSE, and R2 were used
as primary metrics to compare each model's
performance across the training, validation, and test
sets.

(vi) Majority Voting Principle: Based on these evaluation
metrics, we selected the model that consistently and
significantly outperformed others across all sets as the
optimal forecast model. Specifically, models ranking
higher in MAE, RMSE, and R2 were given priority.

Gaussian smoothing is a commonly used technique in 
signal processing and image processing to reduce noise and 
smooth data. Here are the specific technical details of 
Gaussian smoothing: 

(i) Gaussian Kernel: The core of Gaussian smoothing
involves generating a smooth kernel function using the
Gaussian distribution. This kernel function can be a
multidimensional matrix or a one-dimensional vector,
characterized by a peak at its center that decreases in
amplitude as the distance from the center increases.
The standard deviation (σ) of the Gaussian function
determines the strength of the smoothing; a larger σ
results in a more pronounced smoothing effect.

(ii) Application of Deep Neural Networks (DNN): In
certain applications, Gaussian smoothing can be
implemented using deep neural networks. By training a
deep neural network and applying it to signal or image
processing, especially in scenarios requiring nonlinear
smoothing, noise can be effectively handled while
preserving the essential features of the signal. Deep

neural networks typically consist of multiple layers of 
neurons, optimized using backpropagation to minimize 
the error between the smoothed signal and the original 
signal. 

(iii) Selection of Kernel Size: When applying Gaussian
smoothing, it is crucial to choose an appropriate kernel
size (typically indicated by the standard deviation σ of
the Gaussian kernel). A kernel that is too small may
not effectively smooth out noise in the signal, while a
kernel that is too large may blur the details of the
signal. The choice of kernel size should be based on
the specific requirements of the application and the
characteristics of the signal.

(iv) Factors Affecting Smoothing Effectiveness: Besides
kernel size, the effectiveness of smoothing is
influenced by the characteristics of the signal itself and
the level of noise present. In some cases, multiple
applications of Gaussian smoothing may be necessary
to further improve the smoothing effect, or adjustments
to the kernel size may be made based on the particular
properties of the signal.

The following steps outline the process of retraining the 
selected optimal model after applying Gaussian smoothing 
preprocessing: 

(i) Gaussian Smoothing Preprocessing: Apply Gaussian
smoothing to the respective training time series data by
adjusting the standard deviation (σ) of the Gaussian
kernel. This process aims to reduce noise and outliers,
thereby enhancing the smoothness of the data.

(ii) Loss Curve Analysis: Analyze the loss curves of each
model across the training, validation, and test sets to
evaluate their performance. This involves tracking the
reduction of loss values with each iteration to ensure
correct learning and convergence of the models.

(iii) Validation Curve Evaluation: Compare the loss curves
between the training and validation sets to detect
potential overfitting. Validation curves provide an
understanding of how well each model generalizes to
unseen data during training.

(iv) Test Set Evaluation: Perform a final evaluation on the
test set to assess the model's ability to generalize. This
step ensures that the selected model performs well not
only on the training and validation sets but also on new,
unseen data.

(v) Performance Metrics: Use MAE, RMSE, and R2 as
primary metrics to demonstrate the performance of
each optimal model across the training, validation, and
test sets.

4.3.1. Evaluation and Selection of the Optimal 
Training Model for Temperature 

This section outlines the evaluation and selection process to 
identify the optimal training model for temperature 
forecasting in the server room. Figure 2 presents a segment 
of raw temperature data. Table 1 displays evaluation metrics 
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(MAE, RMSE, and R²) for the training results of various 
models before applying Gaussian smoothing. 

Figure 2. Segment of the temperature data graph from 
the dataset 

Table 1. Temperature model test scores and rankings 
without Gaussian smoothing 

The evaluation results underscored the CNN model's 
exceptional performance in accurately capturing temperature 
dynamics. Therefore, the CNN model was chosen as the 
optimal model for temperature forecasting. Figure 3 
illustrates the CNN model's loss curves, validation set 
performance, and test set generalization. 

Figure 3. CNN training performance without 
Gaussian smoothing 

Figure 4 illustrates the CNN model's forecasts for the 
next 72 hours of temperature without applying Gaussian 

smoothing. This graph visually represents how the CNN 
model predicts future temperature changes in the server 
room based on its training data. The forecasts are plotted 
alongside the actual observed values for comparison. 
Examining this figure allows us to assess the initial 
performance of the CNN model and identify any 
discrepancies or areas for improvement before applying 
Gaussian smoothing to enhance forecast accuracy. 

Figure 4. CNN model's future 72-hour forecast without 
Gaussian smoothing 

With the CNN algorithm identified as the optimal model 
for temperature forecasting, we proceeded to preprocess the 
raw temperature data using Gaussian smoothing. Figure 5 
illustrates the temperature data after Gaussian smoothing. 
Figure 6 showcases the CNN model's fitting and 
generalization performance across the training, validation, 
and test datasets, supported by actual experimental data. 
Furthermore, Figure 7 presents the forecast results for the 
next 72 hours. 

Figure 5. The temperature data after Gaussian 
smoothing processing 

4.3.2. Evaluation and Selection of the Optimal 
Training Model for Humidity 

In this section, the study outlines the process of evaluating 
and selecting the optimal training model for forecasting 
humidity in the server room. Figure 8 displays a segment of 
the raw humidity data. Table 2 lists the evaluation metrics 
(MAE, RMSE, and R²) for the training results of various 
models before applying Gaussian smoothing. 
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Figure 6. The performance of the CNN model with 
 Gaussian smoothing 

Figure 7. CNN model's forecast for the next 72 hours 
with Gaussian smoothing 

Figure 8. Segment of the humidity data graph 
from the dataset 

In statistics, R² is used to assess how well a model fits the 
observed data. It ranges from 0 to 1, where 0 indicates that 
the model does not explain any variance in the target 
variable, and 1 indicates a perfect explanation of all variance. 
However, under certain conditions, R² can be negative. 

Negative R² values typically occur when the model's 
predictive performance is worse than simply taking the 
mean of the data. This can happen due to overfitting or 
using an inappropriate model, indicating extremely poor 
model performance. While negative R² values are 
uncommon, they can occur under specific circumstances. 
When evaluating models, it's crucial to recognize this 
possibility and consider other evaluation metrics to 
comprehensively assess model performance [29][30]. 
Therefore, if the R² of the model training results is negative, 
it will be discarded and not included in the ranking order. 

Based on the comprehensive comparison of MAE, 
RMSE, and R² from Table 2, it is determined that the LSTM 
algorithm is the optimal model for temperature forecasting. 
Figure 9 presents the loss curve and evaluation metrics of 
the LSTM model trained without Gaussian smoothing. 
Figure 10 displays the LSTM model's forecasts for the next 
72 hours without Gaussian smoothing. 

Table 2. Humidity model test scores and rankings 
without Gaussian smoothing 

Figure 9. LSTM training performance without 
 Gaussian smoothing 
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Figure 10. LSTM model's future 72-hour forecast 
without Gaussian smoothing 

Due to the LSTM algorithm being the optimal model for 
humidity forecasting, a portion of the smoothed 
preprocessed data is shown in Figure 11. Figure 12 presents 
the LSTM model's training results, validation results, and 
test set outcomes, along with the model's loss graph. Figure 
13 displays the forecast for the next 72 hours. 

Figure 11. The humidity data after Gaussian 
smoothing processing 

Figure 12. The performance of the LSTM model with 
Gaussian smoothing 

Figure 13. LSTM model's future 72-hour forecast with 
Gaussian smoothing 

4.3.3. Evaluation and Selection of the Optimal 
Training Model for CO2 Concentration 

Figure 14 displays a portion of the raw CO2 concentration 
data. Table 3 lists the evaluation metrics (MAE, RMSE, and 
R²) for the training results of each model, showing their 
performance before undergoing Gaussian smoothing. 

Figure 14. Segment of the CO2 concentration data 
graph from the dataset 

Table 3. CO2 model test scores and rankings without 
Gaussian smoothing 

After synthesizing the MAE, RMSE, and R² from Table 
3 to compare the training results of each model, the LSTM-
GRU algorithm emerged as the optimal model for 
forecasting CO2 concentration. Figure 15 displays the loss 
curve and evaluation metrics of the LSTM-GRU model 
training results without Gaussian smoothing. Figure 16 
illustrates the forecast graph for the next 72 hours by the 
LSTM-GRU model without Gaussian smoothing. 
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Figure 15. LSTM-GRU training performance without 
Gaussian smoothing 

Figure 16. LSTM-GRU model’s future 72-hour forecast 
without Gaussian smoothing 

Since the LSTM-GRU hybrid algorithm is the optimal 
model for CO2 concentration forecasting, Figure 17 shows 
the partially smoothed humidity data after preprocessing. 
Figure 18 presents the training results, validation results, 
and test set outcomes of the LSTM-GRU hybrid model, 
accompanied by the model's loss graph. Figure 19 displays 
the forecast for the next 72 hours. 

Figure 17. The CO2 concentration data after Gaussian 
smoothing processing 

Figure 18. The performance of the LSTM-GRU model 
with Gaussian smoothing 

Figure 19. LSTM-GRU model’s future 72-hour forecast 
with Gaussian smoothing 

4.3.4. Summary and Comparison of 
Implementation Results 

After the above implementations, significant performance 
differences were observed in environmental monitoring 
indicators with and without smoothing. For instance, 
regarding R², Temperature improved from 0.59925 to 
0.98012, Humidity increased from 0.63305 to 0.99628, and 
CO2 concentration enhanced from 0.71204 to 0.99855. 
Detailed evaluation metrics (MAE, RMSE, and R²) are 
summarized in Table 4. 

4.4. Deploying to a Visualization Dashboard 
and Message Push Notifications 

Deploying the trained and smoothed models to the 
dashboard significantly enhances the intuitive visualization 
of temperature, humidity, and CO2 concentration forecasts. 
By integrating forecast charts into the dashboard, users can 
easily access and analyze these visualizations, facilitating 
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more precise decision-making. This visualization not only 
enhances the vivid presentation of data but also promotes 
user understanding of environmental changes. 

Additionally, the system possesses the capability to 
predict anomalies, enabling timely identification of potential 
risks and early risk detection. This capability is crucial for 
operational management, as early identification of issues can 
mitigate potential losses and failures. Real-time messaging 
software swiftly communicates forecasted information to 
relevant stakeholders, facilitating proactive response 
measures and ensuring stable system operation. 

Figure 20 illustrates the integration of the trained models 
from this study with existing threshold settings and an alarm 
interface. This integration allows the models to effectively 
monitor environmental indicators and automatically trigger 
alarms when data exceeds preset thresholds, thereby 
enhancing system responsiveness. The models can be 
transmitted to visualization dashboards or messaging 
systems as needed, such as Line, SMS, and email, ensuring 
rapid communication of information to relevant personnel. 

This deployment approach not only improves data 
accessibility and visualization effectiveness but also 
enhances overall operational efficiency, making the 
decision-making process more flexible and efficient. With 
real-time data feedback, managers can stay informed about 
environmental conditions and make adjustments proactively 
when necessary, further improving the precision and 
timeliness of operational management. 

Table 4. Summary of optimal models after 
Gaussian smoothing 

Figure 20. Deployment to a Visualization Dashboard 
 and Push Notification Systems 

5. Conclusion and Recommendations

This study successfully demonstrates the effectiveness of 
DNN models in enhancing the forecasting accuracy of key 
environmental indicators—temperature, humidity, and CO2 

concentration—through the integration of Gaussian 
smoothing techniques. The findings reveal significant 
improvements in forecast performance. 

The contributions of this research are threefold: 

(i) Model Evaluation and Selection: By systematically
assessing various DNN architectures, this study
identifies the most effective models for each
environmental indicator, thus providing a valuable
reference for future research in environmental
forecasting.

(ii) Enhanced Forecasting through Gaussian Smoothing:
The application of Gaussian smoothing not only
enhances the stability of forecasts but also significantly
reduces the noise in the data, leading to more reliable
predictions.

(iii) Improved Operational Decision-Making: Integrating
optimized models into existing dashboards and
messaging systems ensures the application of research
findings in real-world scenarios, thereby improving
operational decision-making in data centers.

To further build upon this work, the following 
suggestions are proposed: 

(i) Extended Model Testing: Future studies should explore
additional DNN architectures and hybrid models to
identify even more robust forecasting solutions for
other environmental indicators or in different
operational contexts.

(ii) Integration of Additional Data Sources: Incorporating
external datasets, such as weather forecasts or
historical environmental data, could enhance model
robustness and prediction accuracy further.

(iii) Expanding Real-time Monitoring Systems: Continuous
development of real-time monitoring systems that
utilize these optimized models can significantly
enhance operational efficiency and decision-making
processes in data centers and other critical
environments.

(iv) The potential of combining other smoothing techniques:
Future research could explore combinations of
different smoothing techniques to identify solutions
that best suit varying environmental conditions and
data characteristics, thereby further optimizing the
performance and stability of environmental monitoring
systems.
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