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Abstract 

The Internet of Vehicle (IoV) is revolutionizing the automobile sector by allowing vehicles to interact with one 
another and with roadside infrastructure. The Controller Area Network (CAN) is a vital component of such smart 
vehicles, allowing communication between various Electronic Control Units (ECUs). However, the CAN protocol's 
intrinsic lack of security renders it opens to a variety of cyber-attacks, posing substantial hazards to both safety and 
privacy. 
In particular, the CAN protocol lacks built-in authentication and encryption mechanisms, making it highly 
vulnerable to a range of sophisticated attacks. These include message spoofing, where attackers can inject malicious 
commands into the network, and replay attacks, which reuse legitimate communication to deceive vehicle systems. 
The broadcast nature of CAN also makes it susceptible to denial-of-service (DoS) attacks that can disrupt vehicular 
communication, significantly impacting system performance and safety. Traditional security solutions are often ill-
suited for the real-time, resource-constrained environment of IoV, necessitating more advanced, data-driven 
defense mechanisms. 
This research investigates the use of deep learning with multi-layer perceptron to improve the security of CAN 
networks inside the IoV framework. We discuss current threats to CAN networks, including spoofing, replay, and 
denial-of-service attacks, and how deep learning may be used to identify and mitigate these threats efficiently. We 
propose a unique deep learning-based defense mechanism for real-time threat detection. 
The suggested method is highly effective in identifying and mitigating potential risks, as evidenced by extensive 
testing on real-world CAN datasets. Based on our findings, the proposed solution has the potential to considerably 
enhance the security of CAN networks in the Internet of Vehicles, making car communication systems more secure 
and reliable. 
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1. Introduction

With the latest technological developments, 
autonomous vehicles (AVs) that were formerly 
deemed science fiction have become a reality. Despite 

the fact that it is still in its early stages of development, 
the concept of autonomous vehicles is gaining global 
acceptance [1].  Autonomous cars are capable of 
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According to the Society of Automotive Engineers 
(SAE), automation in autonomous cars can be 
categorized into six separate levels, ranging from SAE 
Level 0 (fully manual) to SAE Level 5 (entirely 
autonomous)  [2], [3]. Table 1 gives a description of 
these levels. 

sensing their environment and operating 
independently of people. A passenger is not required 
to drive the automobile at any time, nor is their 
presence within the vehicle required. A smart vehicle  
can go anywhere a conventional car can go and 
accomplish all the functions carried out by a 
competent human driver. 
Table 1. SAE level of driving automation 

SAE Level Description 

0 
The driver is the one who controls the entire vehicle. In the form of alerts, such as lane 
departure or blind spot warnings, driver aid is offered. 

1 

With one autonomous function to help, the driver has complete control over the car. 
Adaptive cruise control, for example, uses automated acceleration and braking to maintain 
a safe distance from oncoming traffic. Alternatively, automated steering can be used, 
which involves the assistance of lane centering and other features to keep the car moving 
at a consistently high speed. 

2 
The driver has complete control over how the vehicle performs, with assistance from two 
automated operations such as steering, braking, and acceleration. 

3 
The car may function autonomously under a set of predetermined configurations, and the 
driver can take control of the vehicle at any time. 

4 
The vehicle may operate autonomously under specified settings, eliminating the need for 
the driver to oversee it. The car is extremely close to being totally autonomous. 

5 
At this level, the car is supposed to be completely autonomous and capable of operating 
without restrictions. There is no need for the driver to supervise it. 

Although customers are not yet able to acquire fully 
autonomous vehicles, we are already in the phase of 
partially automated automobiles [3]. The Internet of 
Vehicles (IoV), an interconnected network of 
autonomous vehicles, roadside infrastructure, and 
components that communicate and interact with one 
another using wireless technology, is derived from the 
Internet of Things (IoT), with the objective of 
improving the effectiveness, efficiency, and safety of 
autonomous vehicles. [4], [5].  

The electrical and electronic system of a smart car 
is a scattered and complicated network of Electronic 
Control Units (ECUs), sensors, and actuators. ECUs, 
which are computing units, are required to operate a 
specific subsystem and make critical autonomous 
driving decisions. They must interact with one another 
and exchange sensitive data using a set of standard 
protocols. The CAN bus is regarded as the de facto 
standard for the in-vehicle communication network, 
and it is ubiquitously used in almost all automobiles 
[1] [6] [7].

On the opposite side, due to broadcast transmission;
ID-based priority of the messages; lack of 
authentication, and encryption mechanisms, make it 
vulnerable to various security attacks [6]. It is also 

reported by researchers in their findings that 
vulnerabilities of CAN protocol can be exploited by 
hackers to launch Fuzzy, spoofing, DOS, or 
impersonation attacks on autonomous vehicles [1], 
[6], [7], [8]. These attacks may push the driver, co-
passengers, or others who are on the road in a life-
threatening situation. The widespread adoption of IoV 
depends on the way these issues also are addressed. 
Therefore, this article particularly focuses on the 
security and privacy issues in IoV which are raised due 
to the unique characteristics of CAN bus. The article 
proposes a novel and intelligent, intrusion detection 
solution to defend the CAN bus of autonomous 
vehicles from malicious attacks. The major 
contributions of this article are outlined as follows. 

Highlight and discuss attack surfaces and potential 
security risks to the CAN bus network.   

i. Introducing a cutting-edge deep learning-
based intrusion detection model designed to
enhance the security of the CAN bus. This
innovative solution not only detects but also
classifies malicious attacks with unparalleled
efficiency, ensuring robust protection for
vehicular communication systems against
cyber threats.
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ii. Presents a comprehensive comparative
analysis to rigorously evaluate the proposed
defense solution against benchmark systems
and other related studies.

The remaining sections of this article are organized 
as follows. Section 2 introduces the relevant 
background knowledge. Section 3 discusses related 
work and their limitations. In Section 4, we describe 
the specific design details of our intrusion detection 
model, while the performance evaluation is shown in 
Section 5, followed by the conclusion in Section 6. 

2. Background Knowledge

The power train, chassis & safety, body & comfort, 
and telematics & infotainment domains are the four 
main segments of a smart vehicle's internal 
communication system [8]. Real-time responsiveness 
is necessary for the Powertrain domain, which 
manages every aspect of engine and transmission 
operations. The airbag control, anti-lock braking, 
suspension, and Advanced Driver Assistance System, 
which performs real-time, safety-critical operations 
are included in the Chassis & Safety domain. The 
Body & Comfort domain includes operations that do 
not frequently need real-time processing, such as in-
vehicle climate control, seat control, door, window, or 
light control. The remote communication, 
information, and entertainment services are managed 
by the Telematics & infotainment domain. Each 
domain's performance and reaction time requirements 
vary depending on the function performed. Figure 1 
depicts how these domains are integrated via various 
standards like as CAN, MOST, and LIN. The CAN 
Bus protocol is most commonly used in the internal 
communication network of vehicles to support the 
aforementioned operations [9]. 

2.1. Controller area network (CAN) 

Robert Bosch GmbH, a multinational company, 
developed many versions of the CAN standard. It is a 
bus-topology-based synchronous protocol that serves 
as a communication channel for autonomous vehicle’s 
ECUs. The most recent specification is CAN 2.0, 
which is divided into two parts: CAN 2.0A and CAN 
2.0B [10]. It specifies four frame types: data, remote, 
error, and overload frame [11]. Figure 2 depicts the 
CAN data frame, which begins with a 1-bit Start of 
Frame (SOF) field, followed by an Arbitration field 
containing an 11- or 29-bit Identifier (ID) (CAN 2.0A 
has an 11-bit ID, whereas CAN 2.0B is the extended 
format with a 29-bit ID), and a 1-bit Remote 

Transmission Request (RTR). The Control field 
follows, consisting of 1 bit for the Identifier extension 
bit, 1 reserved bit (r0), and 4 bits for the Data length 
code. After the control field, the frame contains a Data 
field with 0 to 8 bytes of data. The frame then has a 
CRC field with 15 bits of CRC and 1 bit of CRC 
delimiter, an ACK field with 1 bit of ACK and 1 bit of 
ACK delimiter, and lastly 7 bits of End of Frame 
(EOF). The ID of a CAN data frame can be used to 
determine which signals are encoded in the message. 
For example, a message with one ID may encode the 
vehicle speed, but a message with another ID may 
contain information such as the engine temperature or 
speed. The ID can also be used to determine the 
priority of a communication. A low ID signifies higher 
priority, whereas a higher ID indicates lesser priority 
of the frame [12]. 

2.2. Attack Surface 

The CAN protocol has various inherent weaknesses 
as a result of broadcast data transfer without 
authentication and encryption, as well as message ID-
based prioritization. Adversaries can use interfaces 
such as the OBD, USB ports, and wireless interfaces 
to get access to data on the internal communication 
channel. The OBD port is especially vulnerable to 
attack since it is used to diagnose the vehicle's issues, 
modify the ECU parameters, and has access to data 
transmitted on the internal communication channel by 
other nodes, making in-vehicle networks open to 
malicious attacks [13]. A laptop or intelligent 
computing device attached to the OBD port can easily 
intercept messages sent over the CAN bus. In recent 
years, the majority of experimental attacks against 
smart vehicles have used the same port [14].   

  Telematics systems in smart automobiles combine 
telecommunications and informatics to provide a 
diverse set of features and services such as location-
based service, cellular network service, and so on. The 
telematics system's ability to link to external networks 
renders it vulnerable to cyber-attacks, which might 
pose security issues to in-vehicle networks. 
Cybercriminals can get access to the internal 
communication network of the targeted vehicle using 
the aforementioned interfaces and carry out a range of 
attacks, including ‘replay’, ‘DoS’, or ‘spoofing’ 
attacks [11]. Table 2 shows a list of effective attacks 
undertaken and analysed by various researchers on the 
IoV subsystem. 

To improve the security of the internal 
communication network of a vehicle, it is beneficial to 
know the theories behind the possible attacks. As a 
result, in this part, we introduce the attack methods 
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that have been proven to be successful on the internal 
communication network of a vehicle, and are 
discussed in previous publications [1], [6], [12], [13]. 
The attacks are mentioned below. 

Figure 1. In-Vehicle sub-systems adapted from[9]

Figure 2. CAN frame structure

Table 2. Attacks executed and analyzed on IoV subsystem

Ref. Attack Surface Impact 

Eisenberth et al. [15] Keyless entry system Control the door lock, unlock, and  the engine 

Koscher et al. [16] 
Interfaces Infotainment using OBD-

II/USB port 
CAN Bus injection, full access to the vehicle 

Miller et al. [17] OBD-II port 
Control brakes, wheels, and get access to the 

CAN Bus of a real vehicle 

Petit et al. [18] LiDAR, Cameras Sensors Signal jamming 

Zorz et al. [19] OBD-II Cellular Dongle CAN Bus injection in Real vehicle 

Palanca et al. [20] OBD-II interface DoS attack on CAN Bus 
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Woo et al. [21] OBD-II interface 
Replay, impersonation attack using the 

smartphone application 

Nie et al. [22] Wi-Fi, GSM 
Replay, impersonation using access to CAN 

network using browser exploit 

Mukherjee et al. [23] OBD-II port 
DoS attack by compromise ECU using data link 

layer exploit 

i. Frame Sniffing: Frame sniffing lays the
groundwork for numerous afterwards attacks.
As previously stated, data frames are
broadcast to all nodes in the vehicle's internal
communication network, allowing an
infected node to monitor and record them.
The cyber attacker can utilize this
information to get access to the vehicle's
internal communication network [13].

ii. Replay Attack: This is the method in which
attackers just need to control the
compromised nodes to broadcast legitimate
frames into the internal communication
network, which subsequently delivers orders
to the vehicle's various subsystems. The
autonomous vehicle's communication
protocol lacks an authentication technique,
making it difficult to validate the source of
the received frames [13].

iii. DoS Attack: If a message with the highest
priority is being conveyed on the vehicle's
internal communication network, no node
can send its message to the same
communication channel. The attackers may
easily use the policy to carry out DoS attacks
by commanding the infected node to always
broadcast legitimate messages with the
highest priority, preventing other nodes from
delivering essential signals [13].

3. Literature Review

Encryption, authentication, protocol stack redesign, 
and intrusion detection systems are among the 
suggested security options for CAN Bus protection 
[8]. Some studies in recent years have focused on 
encryption techniques to secure the CAN system. 
However, adopting similar algorithms may need extra 
hardware or modifications to current ECUs. Intrusion 
detection methods that do not need changes to the 
network protocol or hardware are a better alternative 
for security inside AVs [7]. Researchers have utilised 
a range of ways to identify CAN bus intrusions, 

including rule-based, machine learning-based, and 
other technologies. The authors of the article [24] 
present a deep learning-based CNN model for 
protecting the CAN bus in smart automobiles. The 
findings are also compared to various traditional 
methods; among them, the deep learning system 
achieves excellent accuracy. The study conducted in 
[25], describes another deep learning-based intrusion 
detection model that utilizes LSTM and CNNs 
network models, whereas identical research has been 
done by authors in [12], [26], [27], [28], [29]. These 
studies have shown that standard CAN network data is 
growing increasingly sophisticated, and neural 
network-based models, particularly deep learning 
models, are the most effective way to handle the 
identified weaknesses in IoV security [30]. 
The majority of DNN-based solutions were built using 
Convolutional Neural Networks (CNN) and Recurrent 
Neural Networks (RNN), which are extensively 
utilised to solve complicated problems in computer 
vision, text processing, audio recognition and 
classification, and so on. Because of their complexity, 
DNNs often take a long time to train on input data. 
They also require powerful computers with 
specialized processing units like Tensor, and Neural 
Processing Units. In this study, we present a deep 
learning-based IDS for CAN bus networks that 
outperforms previous work due to its simpler and more 
optimized network model. 

4. Defence Mechanism

To detect and categorize various assaults on 
autonomous vehicles by recognizing abnormal CAN 
network traffic patterns, we present an MLP-based 
deep learning model that may be deployed as an extra 
CAN Bus node, such as an OBD-2 dongle. It is more 
affordable and practical, and there is no need to modify 
the CAN Bus. It can detect and identify several types 
of attacks on the IoV CAN network. Section 4.1 
describes the realistic and most recent dataset used to 
train our model, whereas section 4.2 describes the 
structure of the suggested solution.   

4.1. Description of the dataset 
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In this study, we used the CICIoV2024 dataset [31] 
[32]. It is a benchmark dataset, generated using a 
testbed of the real vehicle, to encourage the 
development of innovative security solutions for IoV 
processes, and it is published on the CIC dataset 
homepage. It contains traces for normal as well as five 
attack scenarios: DoS, ‘spoofing-steering wheel’, 
‘spoofing-RPM’, ‘spoofing-GAS’, and ‘spoofing-
SPEED’ attack, carried out by leveraging the unique 
characteristics of the CAN protocol in a real testbed of 
a Ford automobile equipped with all ECUs  [31].  
The dataset preprocessing began with an initial 
cleaning phase to ensure the removal of incomplete, 
invalid, and duplicate entries, alongside identifying 
and eliminating outliers using statistical techniques. 
This was critical to ensure that the data was both clean 
and accurate for subsequent processing. Following 
this, feature selection was performed to retain only the 
most relevant features, such as CAN message IDs and 
payloads, while redundant or irrelevant attributes were 
removed. Table 3 shows the class and sample’s 
information, while Table 4 shows the retrieved 
features. The dataset is subsequently divided into 
training and testing datasets. The data is divided into 

60:40 ratios, which means that 60% is utilised for 
model training and 40% is used for model validation.  

4.2. Proposed deep learning model 
and experimental setup 

Multi-Layer Perceptron (MLP), which serves as the 
foundation for our deep learning approach, is a neural 
network with multiple hidden layers. It is best suited 
for regression or classification problems in which 
inputs are allocated to a class. The neurons (or nodes) 
are arranged in different layers, as illustrated in Figure 
3, and are connected to every neuron in the next layer, 
so the output of one neuron becomes the input of the 
next. Each connection between neurons has a weight, 
which is one of the variables that change throughout 
training. The weight of the link influences how much 
information is sent between neurons. Once a neuron 
gets inputs from all other neurons linked to it, the 
output (y) is determined using the formula provided in 
equation (1). 

Table 3. Number of samples collected for each class

S.No. Class #Samples 

1 BENIGN 80000 

2 DoS 74660 

3 SPOOFING_GAS 9991 

4 SPOOFING_RPM 54899 

5 SPOOFING_SPEED 24950 

6 SPOOFING_STEERING_WHEEL 19976 

TOTAL 264476 

Table 4. Features extracted from the dataset

S.No. Features Description 

1 ID Arbitration ID 

2 ‘DATA_0’ 

1st to 8th byte of data transmitted through CAN data frame 

3 ‘DATA_1’ 

4 ‘DATA_2’ 

5 ‘DATA_3’ 

6 ‘DATA_4’ 

7 ‘DATA_5’ 

8 ‘DATA_6’ 
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9 ‘DATA_7’ 

10 LABEL Type of traffic (Benign/Malicious) 

11 TARGET LABEL Six Specific Class of the traffic  

(‘Benign’, ‘DoS’, ‘Spoofing_GAS’, ‘Spoofing_RPM’, ‘Spoofing_SPEED’, 

and ‘Spoofing_STEERING_WHEEL’) 

𝑦 = ∑(𝑥𝑖 ∗ 𝑤𝑖)

𝑁

𝑖=1

+ 𝑏 − − − (1)

Where xi is an input of the neuron, wi is the associated 
weight, and b is the bias. The output value (y) is then 
given to the activation function g(y), which introduces 
nonlinearity into the neuron's output. Finally, the 
model employs the backpropagation algorithm to 
update the weights of the input layer based on the error 
at the output layer.  
The proposed MLP-based deep learning model 
consists of an input layer, an output layer, and two 
dense hidden layers. The model receives input that is 

extracted from the data packet transmitted over the 
internal communication channel of the vehicle. Due to 
153 features being extracted from in-vehicle network 
traffic, the same number of neurons are inserted in the 
first layer. It is followed by two dense hidden layers of 
two and eight neurons, respectively. Because CAN 
network traffic is to be classified into six classes 
(TARGET LABEL in Table 4), the output layer is 
made up of completely linked six neurons. The model 
has a total of 386 trainable parameters. Figure 4 
depicts the layer relationships, while Table 5 provides 
the model’s summary. 

Figure 3.  Multi-Layer Perceptron (MLP)

EAI Endorsed Transactions on 
Internet of Things

 | Volume 10 | 2024 |



Kiran Aswal and Heman Pathak 

Figure 4. Plot of proposed MLP Model Graph

Table 5. Proposed MLP Model Summary

Layer 
Shape of the 

Output 
Number of 
Parameters 

Activation function 

dense_136 (Dense) (None, 2) 308 Rectified Linear Units (ReLU) 

dense_137 (Dense)  (None, 8) 24 Rectified Linear Units (ReLU) 

dense_138 (Dense)  (None, 6) 54 Softmax 

Total parameters: 386 (1.51 KB) 
Trainable parameters: 386 (1.51 KB) 
Non-trainable parameters: 0 (0.00 Byte) 
Optimizer: ‘Adam’,  
Loss function: ‘categorical_crossentropy’, 
Performance Metrics: ‘Accuracy’ 

The activation functions in MLP are critical for 
generating complex decisions and predictions. This 
article uses the ReLU activation function in the 
intermediate layers, which operates by performing a 
basic mathematical operation on the input value. If the 
input value is higher than or equal to zero, the output 
is the same as the input. If the input value is negative, 
the result is zero. The mathematical representation of 
the ReLU function is as follows: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) − − − (2) 
The output layer employs the softmax activation 
function which transforms the raw output scores of the 
model into probabilities, facilitating the distribution of 
these probabilities across various classes. This 
transformation is mathematically represented by 
equation (3). 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝐾
𝑗=1

− − − (3)

Here, Zi represents the input value for the Softmax 
function and is the output value of the node for ith 

class at the output layer. K is the total number of nodes 
at the output layer.  
Cross entropy measures the difference between the 
predicted probability and the true probability. 
Multiclass Cross-Entropy Loss, also known as 
categorical cross-entropy, is used as a loss function in 
the proposed deep-learning model. The loss function 
is mathematically represented by equation (4). 

𝐿 =  −
1

𝑁
∑ ∑(𝑦𝑖,𝑗 log(𝑝𝑖,𝑗))

𝐾

𝑗=1

𝑁

𝑖=1

− − − (4)

Here, N is the number of instances in the dataset, K is 
the number of classes, yi,j is the true output for the ith 
sample and jth class, and pi,j is the predicted 
probability for ith sample and jth class. The Adam 
optimizer, which stands for “Adaptive Moment 
Estimation”, is employed to iteratively minimize the 
loss function during training.  
The rationale behind selecting specific 
hyperparameters for the Multi-Layer Perceptron 
(MLP) model is essential for enhancing 
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reproducibility and understanding how these decisions 
impact model performance. The MLP model consists 
of three layers designed for effective classification in 
the IoV context. The first layer outputs 2 units with 
ReLU activation, facilitating a compact feature 
representation while reducing dimensionality. The 
second layer has 8 neurons, enhancing the model’s 
capacity to learn complex patterns, also using ReLU 
for non-linearity. The final layer, with 6 units and 
softmax activation, corresponds to the number of 
output classes and converts logits into probabilities for 
multi-class classification. 
The Adam optimizer is chosen for its adaptive learning 
rate, allowing faster convergence, while the 
categorical cross-entropy loss function is appropriate 
for multi-class tasks, measuring the difference 
between true and predicted probabilities. Accuracy is 
used as the performance metric, providing a 
straightforward measure of model performance in 
classification tasks. Overall, this configuration 
balances model complexity, efficiency, and accuracy 
for CAN network traffic classification. 
The Google Co laboratory, commonly known as 
Google Colab, is used to set up, compile, train, and 
validate the proposed deep-learning based intrusion 
detection model for the protection of the CAN network 
of autonomous vehicles. It offers access to Graphical 
and Tensor Processing Units. The suggested model 
was trained and examined across 40 epochs using a 
1000-batch size. The dataset contains 264476 
instances, of which 158685 (60% of total samples) are 
used for training and 105791 (40% of total samples) 
are utilised for validations of the trained model. The 
simulation results are gathered and processed for 
comparison with benchmark and relevant research. 
The results are reported, and a comparative analysis is 
provided in the next section. 

5. Results and comparative 
analysis

In the domain of deep learning, a perfect fit model is 
desired since it assures strong generalization and 
consistent performance on new data. Overfitting and 
underfitting, on the other hand, provide unreliable 
results and poor generalization. A well-performing 
deep learning model should have training and 
validation loss curves that converge to a comparable, 
low data point. This shows that the model is 
generalizing properly and not overfitting or 
underfitting.  Analyzing the behaviour of these curves 
during training gives vital insights into the model's 

learning process and aids in making the required 
changes to increase performance. Table 6 shows the 
training and validation losses reported for each epoch 
throughout the simulation, which are also represented 
in Figure 5. The convergence of the training and 
validation loss curves demonstrates that our suggested 
model is learning the core trends in the data and 
generalizing successfully to the validation set. It also 
indicates that the model is neither overfitting nor 
underfitting. 
Evaluating the performance of a deep learning model 
incorporates a series of procedures and metrics that 
offer a full picture of how well the model is doing. 
Figure 6 depicts the confusion matrix obtained as a 
consequence of the simulation and used to calculate 
accuracy, precision, recall, and F1-score. Precision 
and recall are measures used to assess the 
effectiveness of a classification model, particularly in 
cases with unbalanced classes or where different types 
of classification errors have varying costs. 

The performance evaluation metrics shown in Table 7 
can be produced using equations (5) to (8), where α, β, 
γ, and μ denote True Positive, True Negative, False 
Positive, and False Negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝛼 + 𝛽

𝛼 + 𝛽 + 𝛾 +  𝜇
− − − (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
α

α + γ
− − − (6)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
α

α + 𝜇
− − − (7)

𝐹1𝑠𝑐𝑜𝑟𝑒(𝐹1) = 2 ∗
𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
− − − (8)

Precision and recall should both be high, but they 
should be used in conjunction with other assessment 
measures like accuracy and F1-score to have a 
thorough view of a classifier's performance. The F1-
score, which is the harmonic mean of the Precision and 
Recall values, provides a more balanced assessment of 
the model's performance. 

The results from the Confusion matrix (Figure 6) and 
Tables 7, 8, and 9 show that the proposed deep 
learning model can detect and classify an attack on an 
autonomous vehicle's CAN network with an average 
Recall of 0.999927477, Precision of 0.999930671, and 
F1-Score of 0.999929069. The model performed 
better than the benchmark research [31] in terms of 
accuracy, recall, precision, and F1-Score. It also 
outperformed previous studies [33], [24] with the 
highest accuracy of 99.99%.
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Figure 5. (a) Accuracy curve, (b) Loss curve

Figure 6. Confusion Matrix
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Table 6: Training and Validation efficiency of the proposed model. 

Epoch Tr_loss Tr_accuracy Val_loss Val_accuracy Epoch Tr_loss Tr_accuracy Val_loss Val_accuracy 

1/40 1.4293 0.4142 1.1413 0.4878 21/40 0.0604 0.9809 0.0595 0.9806 

2/40 1.0016 0.4883 0.8921 0.4884 22/40 0.0577 0.9809 0.0570 0.9806 

3/40 0.8277 0.4973 0.7646 0.5072 23/40 0.0553 0.9809 0.0547 0.9806 

4/40 0.6848 0.6311 0.5988 0.7578 24/40 0.0532 0.9809 0.0527 0.9806 

5/40 0.5273 0.7775 0.4573 0.8402 25/40 0.0514 0.9811 0.0509 0.9808 

6/40 0.3966 0.8415 0.3480 0.8423 26/40 0.0497 0.9811 0.0494 0.9809 

7/40 0.3133 0.8789 0.2821 0.9425 27/40 0.0483 0.9811 0.0480 0.9809 

8/40 0.2539 0.9430 0.2272 0.9428 28/40 0.0470 0.9811 0.0468 0.9809 

9/40 0.2022 0.9431 0.1805 0.9428 29/40 0.0459 0.9811 0.0457 0.9809 

10/40 0.1628 0.9594 0.1486 0.9805 30/40 0.0449 0.9812 0.0447 0.9809 

11/40 0.1366 0.9809 0.1274 0.9805 31/40 0.0439 0.9812 0.0435 0.9809 

12/40 0.1187 0.9809 0.1123 0.9805 32/40 0.0423 0.9812 0.0415 0.9809 

13/40 0.1056 0.9809 0.1010 0.9805 33/40 0.0399 0.9812 0.0387 0.9809 

14/40 0.0956 0.9809 0.0922 0.9805 34/40 0.0367 0.9812 0.0353 0.9809 

15/40 0.0877 0.9809 0.0850 0.9805 35/40 0.0333 0.9973 0.0318 0.9999 

16/40 0.0811 0.9809 0.0790 0.9805 36/40 0.0298 0.9999 0.0283 0.9999 

17/40 0.0757 0.9809 0.0739 0.9805 37/40 0.0265 0.9999 0.0251 0.9999 

18/40 0.0710 0.9809 0.0696 0.9805 38/40 0.0234 0.9999 0.0222 0.9999 

19/40 0.0670 0.9809 0.0658 0.9806 39/40 0.0207 0.9999 0.0196 0.9999 

20/40 0.0635 0.9809 0.0625 0.9806 40/40 0.0184 0.9999 0.0174 0.9999 

Tr_loss: Training Loss; Tr_accuracy: Training Accuracy; Val_loss: Validation Loss; Val_accuracy: Validation Accuracy 
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Table 7. Recall, Precision, and F1-Score values for the proposed model

Class Recall Precision F1-Score 

BENIGN 0.99990625 1 0.999953123 

DoS 1 0.999966517 0.999983258 

SPOOFING_GAS 1 1 1 

SPOOFING_RPM 0.999908925 0.999817867 0.999863394 

SPOOFING_SPEED 1 0.999799639 0.99989981 

SPOOFING_STEERING_WHEEL 0.999749687 1 0.999874828 

Macro Average 0.999927477 0.999930671 0.999929069 

Table 8. Proposed solution vs. Benchmark study

Ref. Accuracy Recall Precision F1-Score 

Neto et al. [31] 95% 0.68 0.74 0.63 

Proposed Model 99.99% 0.999927477 0.999930671 0.999929069 

Table 9. Proposed solution vs. Related work

Ref. Solution Type Attack type 
considered 

Efficiency of the solution 
(Avg. Accuracy) 

Sudhakar et al. [33] Deep learning (CNN) based Malware 98.63% 

Ahmed et al.  [24] Deep learning (CNN) based DoS, Fuzzy 96 % 

Neto et al. [31] Deep learning (MLP) based DoS, Spoofing 95% 

Proposed Model Deep learning (MLP) based DoS, Spoofing 99.99% 

6. Conclusion and scope for
future work

The CAN protocol is a key component of the internal 
communication network of smart cars because it 
connects various sub-systems of autonomous vehicles, 
and allows them to communicate with each other. 
However, the protocol's inherent lack of security 
makes it susceptible to a wide range of cyber threats, 
posing significant risks to both the safety and privacy 
of the driver, passenger or the vehicle itself. 

This paper has explored the effectiveness of the 
DL-based approach to enhance the security of internal
communication networks of smart vehicles in the IoV

framework. We have provided a comprehensive 
survey of existing threats to CAN networks, such as 
spoofing, replay, and DoS attacks, and examined how 
deep learning can be utilized to detect and mitigate 
these threats effectively. We also proposed a novel 
deep-learning based defense mechanism that provide 
real-time threat detection. Our findings highlight the 
potential of deep learning to significantly enhance the 
security of CAN networks in IoV, contributing to safer 
and more reliable vehicular communication systems.  

The proposed MLP model for enhancing CAN 
network security within the Internet of Vehicles (IoV) 
has significant practical implications across various 
domains. It offers real-time threat detection, which 
protects vehicles from cyber-attacks like spoofing and 
denial-of-service, thereby enhancing overall vehicle 
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security. The model also plays a crucial role in smart 
traffic management by monitoring CAN traffic, 
leading to improved traffic flow and safer 
infrastructure. 

In the context of autonomous vehicles, the model 
ensures that self-driving cars operate securely, 
fostering public trust and encouraging broader 
adoption of autonomous technology. For commercial 
fleet operators, it provides a means to monitor and 
protect vehicles, minimizing the risk of data breaches 
and enhancing operational safety. 

The simulation results indicate that the proposed 
DL-based model is capable of successfully detecting
and classifying attacks (DoS and spoofing) on the
CAN network of an autonomous vehicle, with an
average Recall of 0.999927477, Precision of
0.999930671, and F1-Score of 0.999929069. The
proposed model outperformed benchmark studies and
other related work in terms of accuracy, recall,
precision, and F1-Score, achieving the highest
accuracy of 99.99%.

Future work will focus on improving the scalability 
of the proposed system and integrating it with broader 
IoV security frameworks to provide a holistic defense 
strategy.  
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