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Abstract

The effectiveness of detecting malicious files heavily relies on the quality of the training dataset, particularly
its size and authenticity. However, the lack of high-quality training data remains one of the biggest challenges
in achieving widespread adoption of malware detection by trained machine and deep learning models.
In response to this challenge, researchers have made initial strides by employing generative techniques to
create synthetic malware samples. This work utilizes deep variational autoencoders (VAE) and generative
adversarial networks (GAN) to produce malware samples as opcode sequences. The generated malware
opcodes are then distinguished from authentic opcode samples using machine and deep learning techniques
as validation methods. The primary objective of this study was to compare synthetic malware generated using
VAE and GAN technologies. The results showed that neither approach could create synthetic malware that
could deceive machine learning classification. However, the WGAN-GP algorithm showed more promise by
requiring a higher number of synthetic malware samples in the train set to effectively be detected, proving it
a better approach in synthetic malware generation.

Received on 15 February 2024; accepted on 30 June 2024; published on 09 July 2024

Keywords: Malware, Synthetic Malware, GAN, VAE

Copyright © 2024 A. Choi et al., licensed to EAI. This is an open access article distributed under the terms of the CC 
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any 
medium so long as the original work is properly cited.

doi:10.4108/eetiot.6566

1. Introduction
The threat of malware attacks poses a significant and
constantly evolving challenge to information security.
As our society becomes more digitally connected, mal-
ware has become increasingly sophisticated and able
to exploit various vulnerabilities [1]. Malicious soft-
ware, or malware, is designed to harm computers,
systems, and networks, encompassing a range of types
such as viruses, worms, trojans, spyware, ransomware,
adware, fileless malware, bots, rootkits, mobile mal-
ware, and wiper malware [2]. These malicious programs
can cause disruptions in multiple areas, including busi-
nesses, supply chains, infrastructure, government sys-
tems, financial systems, personal computers, mobility
systems, and more. To combat these threats, researchers
are actively working on leveraging machine learning
and deep learning techniques to classify and detect
malware [3, 4]. Additionally, there has been a focus
on generating synthetic malware to augment training
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datasets [5]. The effectiveness of detecting malicious
files greatly depends on the quality of the training
dataset, particularly in terms of sample size and authen-
ticity [6]. However, the scarcity of high-quality training
data remains a significant challenge for the widespread
adoption of malware detection by trained machine
learning and deep learning models. Fortunately, recent
advancements in generative techniques have shown
promising results in creating synthetic malware sam-
ples that closely resemble authentic malware and can
deceive machine learning detection models in some
cases.

In this study, malware samples were generated
as opcode sequences using a variational autoencoder
(VAE) with inputs from multiple original malware
families. The objective was to distinguish synthetic
malicious code from actual malicious code samples
using machine learning and deep learning techniques
as validation methods.
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2. Related Work

Synthetic malware generation is a growing field
that uses both machine learning and deep learning
generation techniques to augment training datasets
for malware classification and detection algorithms.
The primary driver behind selecting the appropriate
synthetic malware generator is based on which
malware features will be extracted and how they will
be represented. The following are all examples of
features that can be extracted from malware: API call
sequences [7], images [8, 9], opcode sequences [10], [11],
assembly code and dynamic-link library import [12],
control flow graph [13], [14], portable executable
header data [15], network activities [16], malicious
domain name server [17], and more [18].

After extracting the desired features there are several
options for how to represent the data. One popular
example is converting the binary malware file into an
8-bit grayscale image which can then be replicated
three times to create an RGB corollary [8, 19]. Another
approach is to use opcode sequences or opcodes,
which are mnemonic representations of machine code
that symbolize assembly instructions [10]. Opcodes
can be converted to an integer vector, n-grams, or
word embeddings with Word2Vec [5]. Oftentimes,
combinations of approaches complement each other to
provide a comprehensive view of the malware signature
and behavior [20]. For our research, we chose to
work with opcode sequences and implement integer
embedding.

Generating synthetic malware can be accomplished
through various methods. Burks et al. [19] have
shown that both GANs and VAEs can generate
high-quality synthetic benign and malware images,
validated by single-digit percentage improvements
in the accuracy of deep learning classifiers when
differentiating between benign and malicious files.
Lu and Li [21] achieved similar results when using
a deep convolutional GAN (DCGAN) to boost the
training datasets. When working with malware opcode
sequences, WGAN with a gradient penalty (WGAN-GP)
produces some of the most realistic synthetic malware,
performing better than Hidden Markov Model (HMM),
regular GAN, and WGAN. WGAN- GP was able to
reduce the average classifier accuracy by approximately
20% compared to HMM and WGAN [5]. Comparing
the performance of a deeper VAE against WGAN-GP
for generating synthetic malware opcode sequences
had not been explored and formed the basis of our
study. Our work drew inspiration from the concepts
presented in [5] for our GAN application, and we
incorporated metrics and implementation strategies
from that source. Furthermore, we attempted to
improve upon the performance of WGAN-GP by using
a Dense VAE and CNN-based VAE (CNN VAE) to

generate synthetic malware opcodes. Bae and Lee [22]
implemented a relatively shallow VAE to augment the
training dataset of opcodes (both benign and malicious
files). Their VAE had a 128-dimensional embedding
layer followed by the encoder and decoder which each
contained one hidden layer and one gated recurrent
unit (GRU) layer. This resulted in an improvement in
accuracy of 0.98% for their long short-term memory
(LSTM) classifier. This indicated that their VAE was
able to produce adequately realistic benign opcode
and malware opcode sequences. However, it did not
address the potential performance improvement of
adding depth to the VAE, nor did it quantify how
realistic the synthetic malware was compared to the
authentic malware.

3. Background
This section provides information about the authentic
malware dataset, and the parameters used for the
generative models and for the machine learning
classifiers.

3.1. Malware Datasets
We utilized malware samples obtained from the Malicia
Project and VirusShare group, which were compiled
from online sources. We selected datasets from five
distinct malware families, namely WinWebsec, Zbot,
Renos, VBInject, and OnLineGames, to train our
deep learning models. Additionally, we created a
sixth dataset by combining the opcode samples from
all five families. This dataset aimed to provide a
more challenging training set for the deep learning
generators and explore their ability to generate
synthetic malware across multiple families.

To preprocess the malware samples, we disassembled
them from their executable format into raw assembly
code. We then eliminated unnecessary data, retaining
only the opcodes. To reduce noise within the data,
we constructed an indexed dictionary containing the
top N most frequently occurring opcodes in each
malware family. This dictionary was used to map the
opcode datasets to integer representations. Creating
a dictionary file for every unique opcode would be
computationally intensive, so we chose the top N
most frequent opcodes for each malware family. The
value of N for each family was determined based
on a parametric study conducted in [5], where the
highest Area Under the ROC Curve (AUC) models
were selected, and their corresponding N values were
kept constant for training the other neural networks.
For the mixed dataset, the unique opcode count
was determined by performing a mathematical union
of the dictionary files from the other five malware
families. During the neural network training, any
opcode not present in the dictionary file was assigned
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an integer value of N+1. Furthermore, within each
family’s dataset, samples with opcode sequences shorter
than 600 were discarded, while samples with opcode
sequences longer than 600 were truncated to 600.
This resulted in training datasets consisting of 600x1
tensors. The value 600 was chosen for consistency with
the research outcome in [5]. Table 1 provides details on
the number of unique opcodes and total samples per
malware family after data processing.

Table 1. Training Data Parameters

Malware Family Unique Opcodes # of Samples
OnLineGames 21 1507
Renos 21 1566
VBInject 24 2429
WinWebSec 21 3932
Zbot 19 1951
Mixed 40 11335

These processed datasets served as the training
data for the generative models. On the other hand,
the machine learning and deep learning malware
classifiers utilized a larger dataset for both training and
testing purposes. The classifiers employed a balanced
dataset comprising a 1:1 ratio of synthetically generated
malware and authentic malware. Each classifier was
provided with six balanced datasets, corresponding
to the five malware families plus the mixed family,
associated with each of the three generative models
(WGAN-GP, CNN VAE, Dense VAE).

3.2. Generative Models
Wasserstein Generative Adversarial Network with Gradient
Penalty. The fundamental structure of a GAN com-
prises generator layers and discriminator layers. The
generator layers are responsible for generating new data
samples that resemble the training data inputs. The
initial generator layers consist of alternating convolu-
tion and batch normalization layers. The convolution
layer transforms input noise into a higher dimensional
space, while the batch normalization layer enhances
the stability and convergence of the convolutional layer
outputs by subtracting the batch mean and dividing it
by the batch standard deviation. After passing through
three sets of convolution and batch normalization lay-
ers, the data flows into a flatten layer and then a dense
layer. Subsequently, the data undergoes a reshape layer,
which converts the higher dimensional input data into
an output matching the shape of the opcode train-
ing dataset (600x1). The GAN discriminator receives
either synthetic data produced by the GAN generator
or authentic data from the training dataset. This data is
processed through a sequence of convolutional layers
that extract higher dimensional features. Unlike the

generator, batch normalization layers are omitted from
the discriminator design because the gradients of each
individual input are of interest. The final flatten and
dense layers transform the higher dimensional data
from the convolutional layers into a lower dimensional
format suitable for the activation function, typically a
sigmoid or Rectified Linear Unit (ReLU) function.

The aforementioned descriptions outline the core
architecture of a traditional GAN. To create a WGAN,
a deviation is introduced at the output of the discrim-
inator. Instead of a binary classification decision, the
output of the traditional GAN discriminator is replaced
with a linear function that produces an uncapped out-
put. This allows the model to calculate the distance
between the outputs and the original data, referred to
as the Wasserstein distance. The Wasserstein distance
measures the dissimilarity between the synthetic and
authentic data distributions. The role of the discrim-
inator model shifts to that of a critic model, as it no
longer produces a binary classification but a distance
that it aims to minimize during training to generate
better malware samples.

To further enhance the features of the WGAN, the
WGAN-GP architecture introduces a gradient penalty
to the Wasserstein loss. This penalty penalizes the
discriminator when its gradient norm deviates from a
value of one. This modification encourages the critic
to have a smooth decision boundary and improves the
overall stability and convergence of the model.

CNN-Based Variational Autoencoder. Two types of VAE
architectures were implemented: a one-dimensional
CNN-based VAE (CNN VAE) and a fully-connected
dense VAE (Dense VAE). The encoder takes authentic
malware as a 600x1 tensor input. This tensor is passed
through four one-dimensional convolutional layers.
Each convolutional layer has an increasing number of
filters (64, 128, 256, 512) with a depth of three channels.
This is followed by a flatten layer and a 16-node
dense layer, which branches into two parallel nodes: z-
mean and z-variance. The z-sampling layer uses the z-
mean and z-variance nodes to generate the latent space
variable outputs at the end of the encoder. A Gaussian
distribution is employed to sample the latent variables,
which are then passed to the decoder.

The CNN VAE decoder architecture, receives the 2
latent variables from the encoder and feeds them into
a dense layer with 12,800 nodes. The number of nodes
in this dense layer matches the flattened shape after
the final convolutional layer in the encoder. This dense
layer is followed by five transposed convolutional layers
with three-channel filters. The filter count per layer
mirrors the encoder, gradually decreasing (512, 256,
128, 64, 1) to ultimately produce a 600x1 tensor, similar
to the encoder input.
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During development, various architecture parame-
ters were explored. Two and three convolutional layer
architectures were tested for both the encoder and
decoder. Increasing the number of convolutional layers
up to four showed improvements in training error, but
beyond four layers, the error began to plateau. The
quantity of latent variables was also explored, ranging
from 2 to 4, 8, 16, and 32. However, no significant
improvement in training performance was observed
beyond 2 latent variables. Peak filter counts ranging
from 128 to 1024 were evaluated as well. Increasing
the peak filter count up to 512 resulted in improved
training performance, but further increasing it to 1024
did not yield noticeable changes.

A Leaky ReLU activation function with an alpha of
0.01 was used for both the convolutional and dense
layers. The default alpha of 0.3, as well as 0.2 and
0.1, were also considered, but lowering the alpha value
reduced the training error. Hence, progressively smaller
alpha values were explored until 0.01 was determined
to be optimal. The dense layers originally employed a
sigmoid activation function, but training performance
significantly improved with Leaky ReLU.

During training, an Adam optimizer with a learning
rate of 0.001 was utilized. Learning rates of 0.002 and
0.003 resulted in NaN errors during training, so the
learning rate of 0.001 was maintained. The CNN VAE
was trained using stochastic gradient descent. Batch
gradient descent was also experimented with, but no
improvements in training speed or loss were observed.

Dense Variational Autoencoder. Similar to the CNN VAE,
the encoder takes a 600x1 tensor as input. In the
Dense VAE, the encoder consists of five fully connected
layers with node counts of 256, 128, 64, 32, and 16,
respectively. The 16-node layer is followed by two
parallel nodes: z-mean and z-variance. The z-sampling
layer utilizes the z-mean and z-variance nodes to
generate the latent space variables as outputs at the end
of the encoder.

The decoder receives the two latent variables as
input and proceeds with five fully connected layers,
containing 16, 32, 64, 128, and 256 nodes, respectively.

During the development process, various architec-
ture parameters were explored. Increasing the number
of fully connected layers and the number of nodes
per layer in both the encoder and decoder led to a
reduction in the overall reconstruction loss. The ReLU
activation function was applied to each dense layer in
both the encoder and decoder. The AdamW optimizer
was utilized with a learning rate of 0.001. Once trained,
the Dense VAE was capable of generating synthetic
samples solely by utilizing the latent variables as inputs
to the decoder.

To generate synthetic malware using the trained
VAEs, the latent space was randomly sampled and

passed through the trained decoder. The resulting
outputs served as the synthetic data, which could
then be fed into machine learning and deep learning
classifiers.

3.3. Machine Learning Classifiers
Random Forest. To maintain consistency with the pre-
vious research [5], we employed a Random Forest (RF)
classifier as one of the machine learning classifiers to
distinguish between synthetic and authentic malware.
Following the approach in [5], we used 50 decision trees
with a depth of 5 for each tree as the parameters for the
RF classifier.

Support Vector Machine. In line with our goal of
comparing our results to the previous research, we
selected a Support Vector Machine (SVM) as the
second machine learning classifier for differentiating
between synthetic and authentic malware. Similar to
the methodology employed in [5], we maintained the
SVM parameters. Specifically, we implemented the
SVM with a regularization parameter of five and
utilized the radial basis function (RBF) kernel.

k-Nearest Neighbors. To ensure consistency with the
previous findings [5], we included a k-Nearest Neigh-
bors (KNN) classifier as the third machine learning
classifier to distinguish between synthetic and authen-
tic malware. The number of neighbors for the KNN
classifier was set to one, and the power parameter for
the Minkowski metric, which determines the distance
calculation, was set to two for Euclidean distance.

Long Short-Term Memory Recurrent Neural Network Clas-
sifiers. To leverage the capability of processing long
sequences of data, we built and utilized three different
LSTM classifiers: a standard LSTM, a bi-directional
LSTM, and a CNN-based LSTM (CNN LSTM).

The standard LSTM architecture was implemented as
a sequential model consisting of an embedding input
layer, an LSTM middle layer, and a dense output layer.
In the embedding layer, each opcode was mapped to a
32-length real-valued vector. The LSTM layer, with 100
memory units, evaluated the similarity between opcode
sequences by measuring their proximity in vector space.
The dense output layer, with a single neuron and
sigmoid activation function, computed the probability
of classifying the malware as authentic or synthetic.

For the bi-directional LSTM architecture , the
network was trained in both the forward and backward
directions. Similar to the standard LSTM, the bi-
directional LSTM included an embedding layer, but the
middle layer was replaced with a bi-directional layer.
The input data was passed to both the forward and
backward layers within the bi-directional layer, and
their outputs were fed into the activation layer. Dropout
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layers were introduced between the embedding and bi-
directional LSTM layers, as well as between the bi-
directional LSTM and dense output layers, to mitigate
overfitting. A dropout rate of 0.2 was used for each
dropout layer, including the input and recurrent
connections.

To capture invariant features of the malware, a
CNN LSTM architecture was constructed by integrating
a one-dimensional convolutional layer between the
embedding and LSTM layers of the standard LSTM
classifier. In this architecture, the convolutional layer
had a filter size of 32, a kernel size of three, and a ReLU
activation function. A MaxPooling layer with a size of
two was added after the convolutional layer to reduce
the feature map size.

During training, we employed the binary cross-
entropy loss function, commonly used for binary clas-
sification problems. The Adam algorithm, a combina-
tion of AdaGrad and RMSProp, was selected as the
optimization algorithm for efficient stochastic gradient
descent during backpropagation [23].

4. Methodology and Implementation

There were five sequential steps involved in our imple-
mentation process. First, we built the three generator
models, that is, WGAN-GP, CNN VAE, and Dense VAE.
Second, we trained the generators on authentic malware
samples. Third, we generated synthetic malware sam-
ples using the trained generators. Fourth, we classified
the malware samples using three machine learning clas-
sifiers and three deep learning classifiers to differentiate
between synthetic and authentic malware. Finally, we
determined the minimum number of training samples
required for the classifiers to achieve at least 95%
accuracy in detecting the synthetic malware.

The primary goal of the classification process was
to assess the quality and believability of the synthetic
malware. A lower classification accuracy indicated that
the synthetic malware was harder to distinguish from
authentic malware, implying higher quality. The inclu-
sion of deep learning classifiers aimed to explore poten-
tial performance improvements over machine learning
classifiers and provide alternative classifier architec-
tures if the machine learning classifiers struggled with
the malware datasets.

For the WGAN-GP generator, we used the same
parameters as in [5]. The Adam optimizer with a
learning rate of 0.0001, beta1 of 0.5, and beta2 of
0.9 was employed. However, we trained the WGAN-
GP on 10,000 epochs instead of 100,000 mini-batches
to ensure that the generator model encountered every
available malware sample at each training step. The
number of samples seen by the generator using epochs
is roughly equivalent to the mini-batch system, as each

epoch’s size is at least ten times that of a single mini-
batch. The generated malware from WGAN-GP was
then compared to the malware samples generated by
the CNN and Dense VAE models.

When training the CNN VAE generator, the majority
of the error reduction occurred within 30 to 50
epochs. Training up to 75, 100, 150, and 200 epochs
resulted in only marginal improvements in training
performance. Therefore, we selected 100 epochs as
the nominal value to capture some of the marginal
improvements along the plateau. Additionally, the
WinWebSec family was used to iterate quickly through
various hyperparameters due to its relatively larger
dataset compared to the other families.

For the Dense VAE generator, we explored eight dif-
ferent model optimizers: Stochastic Gradient Descent
(SGD), Root Mean Squared Propagation (RMSprop),
Adadelta, AdaGrad, Adam, AdamW, Nadam, and Fol-
low The Regularized Leader (FTRL). Each optimizer
produced a unique distribution of the trained latent
space. SGD created a latent space with samples clus-
tered in parallel lines, while Nadam resulted in a large
z-variance (greater than 40) and fewer extreme out-
liers. Most other optimizers produced a z-mean and z-
variance between -5 to 5. After comparing the impact of
all the optimizers on Dense VAE training performance
for the WinWebSec family at 30 epochs, we found that
AdamW achieved the lowest training loss and generated
a latent space that contributed to the most realistic
synthetic malware.

After training the three generative models on
authentic malware, they were utilized to generate
synthetic malware samples. The WGAN-GP generator
accomplished this by converting random noise into
synthetic malware samples using the trained generator.
The CNN VAE and Dense VAE generators generated
synthetic malware by randomly sampling from the
learned latent spaces using a Gaussian distribution
and feeding the samples into the decoder. All three
generators produced sequences of real-valued numbers
ranging from zero to one. These values were then scaled
up by multiplying them by the number of unique
opcodes for their respective malware family. The scaled-
up values were rounded to obtain synthetic integer
mappings for the opcode sequences.

Figure 1 provides a visual representation of authentic
and synthetic malware. In (a), malware from the
WinWebSec family is represented, while (b), (c), and
(d) display visual representations of synthetic malware
generated by the WGAN-GP, Dense VAE, and CNN
VAE, respectively. Each visualization represents a
600x1 one-dimensional malware sample as a 20x30
two-dimensional representation. Each pixel value
corresponds to an integer mapping of an opcode. These
visualizations facilitate the observation of the varying
resemblance of each synthetic malware sample to the
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(a) Authentic Malware.

(b) Synthetic Malware (WGAN-GP).

(c) Synthetic Malware (Dense VAE).

(d) Synthetic Malware (CNN-VAE).

Figure 1. Visual representation of authentic and synthetic
malware (WinWebSec family).

authentic sample, characterized by a darker top half
and a lighter lower half.

These visualizations were instrumental in exploring
the sensitivity of the latent space sampling and its
impact on the generated synthetic malware. Figure 1
(c), for instance, was produced by randomly sampling
from the trained latent space of the Dense VAE using a
Gaussian distribution. While it bears some resemblance
to the authentic malware sample in 1 (a), other synthetic
samples were visually distinct. Further investigation
revealed that these distinguishable synthetic samples
consisted of very few opcodes within the top N for a
given family, sometimes as few as 5 out of 600. This
sampling approach failed to consistently produce high-
quality synthetic malware with the Dense VAE as the
sampling noise propagated into the generated samples.
Moreover, these noisy synthetic samples exhibited
overlap between different clusters of encoded malware
samples.

To mitigate unwanted noise when sampling in
undesired locations, K-means clustering was introduced
to the latent space. Twenty clusters were created,
and the cluster with the smallest sum of squared
Euclidean distances (SSE) was selected as the new
sampling space. Instead of sampling from the entire
latent space, a Gaussian distribution was employed
to randomly sample from within the selected cluster.
The mean of the Gaussian distribution was set as the
center of the selected cluster. Applying this approach
to generators trained on the combined dataset of
all five malware families did not yield any benefits.
However, when clustering was applied to generators
trained on individual malware families, there was
an approximate 10% reduction in machine learning
classifier performance when classifying between 100
synthetic and 100 authentic samples. This clustering
approach helped avoid overlap between samples from
different clusters and produced samples that closely
aligned with the encoded authentic samples in the
latent space.

The classification process involved utilizing both
machine learning and deep learning classifiers. Deep
learning models were particularly useful for classi-
fication tasks and provided a meaningful compari-
son to machine learning models in case the machine
learning classifiers performed poorly. To address any
issues related to classification imbalance, the number
of synthetic samples was matched with the number of
authentic malware samples.

During the training of the classifiers, it was observed
that the deep learning classifiers required significantly
more time compared to the machine learning classifiers.
To expedite the training process, an early stopping
criterion was implemented for the LSTMs. If there
was no improvement in the loss by at least 0.01 after
10 training epochs, the training was stopped, and the
model parameters were selected from the epoch with
the best loss value.
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The machine learning and deep learning classifiers
were trained using an 80/20 train/test split on all
five datasets comprising both authentic and synthetic
malware generated by WGAN-GP, Dense VAE, and
CNN VAE. To ensure consistency and evaluate the
performance of classifying unseen malware, the results
were averaged using K-fold cross-validation. The
accuracy, precision, and recall scores of all six classifiers
were compared across all three generators for each
malware family, as well as a mixed malware family.
In the case of well-trained and highly accurate
classifiers, lower classification scores indicated higher
quality synthetic malware, as the classifier struggled to
differentiate between synthetic and authentic malware.

The final experiment aimed to determine the
minimum number of mixed family malware samples
required by each classifier to achieve a classification
accuracy of at least 95% for the three generators. To
optimize efficiency, a binary and jump search routine
was applied to the classification process.

5. Analysis and Results
Figure 2 illustrates the training loss of WGAN-GP on
the WinWebSec malware family. Although the model
was trained for 10,000 epochs, it appeared that the
generator loss had stabilized around 1,500 epochs.
This loss value was calculated using the Wasserstein
distance, which measures the dissimilarity between the
generated malware samples and the authentic malware
samples.

Figure 2. Training loss of WGAN-GP for WinWebSec.

Figure 3 displays the training loss of the CNN VAE
(a) and Dense VAE (b), also on the WinWebSec dataset.
Both models were trained for 100 epochs, with the
loss values gradually decreasing during the training
process. The loss function of the VAE consists of a
reconstruction loss and a KL divergence loss. In the
case of the CNN and Dense VAEs, the reconstruction
loss was computed using binary cross entropy. The
KL divergence loss quantifies the difference between

(a) Training Loss of CNN VAE for WinWebSec.

(b) Training loss of Dense VAE for WinWebSec.

Figure 3. Training loss for WinWebSec.

the distribution of the latent space and a Gaussian
distribution. Both VAEs exhibited relatively low KL
divergence loss compared to the reconstruction loss. It
is worth noting that the loss value reached a higher
level of convergence for the CNN VAE compared to the
Dense VAE, indicating that the Dense VAE may be more
effective in generating synthetic malware samples that
closely resemble authentic malware.

Figure 4 depicts the sampled points in the latent
spaces of the VAEs for the WinWebSec malware family.
Notably, the Dense VAE’s latent space exhibited the
formation of multiple clusters (a), whereas the CNN
VAE’s latent space displayed a single, larger cluster
resulting from the sampling process (b).

Although both the Dense VAE and CNN VAE
utilize the reconstruction error and KL divergence,
the CNN VAE provides a more regular latent space.
As demonstrated in Figure 4, the encoded samples in
the CNN VAE are closer to each other compared to
the Dense VAE. This suggests that the decoder of the
CNN VAE is capable of generating synthetic samples
that are more realistic when compared to the irregular
latent space of the Dense VAE. Generating samples
from the latent space would result in more nonsensical
samples. The random selection of samples using a
normal distribution would produce fewer meaningful
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(a) Latent space visualization of Dense VAE for WinWebSec.

(b) Latent space visualization of CNN VAE for WinWebSec.

Figure 4. Latent space visualization for WinWebSec.

data points. This is because the mean of the encoded
data is not evenly distributed or close to zero.

Tables 2, 3, and 4 present the classification results
obtained by the three machine learning classifiers for
the WGAN-GP, Dense VAE, and CNN VAE generators,
respectively. The classifiers evaluated a balanced
dataset consisting of 50% synthetic and 50% authentic
malware samples from all five malware families,
including the mixed family. All three classifiers
achieved high precision, recall, and accuracy across all
malware families for each generator, with SVM and RF

Table 2. Classification Results for WGAN-GP Synthetic
Malware

WGAN-GP MalwareClassifier Performance

PrecisionRecallAccuracy

OnLineGames SVMa 1.00 1.00 1.00
(3014 Samples) RFb 1.00 0.96 0.98

KNNc 1.00 0.95 0.98

Renos SVM 1.00 0.99 0.99
(3132 Samples) RF 0.90 0.98 0.93

KNN 1.00 0.87 0.94

VBInject SVM 1.00 1.00 1.00
(4858 Samples) RF 0.98 0.95 0.97

KNN 1.00 0.66 0.83

WinWebSec SVM 1.00 1.00 1.00
(7864 Samples) RF 0.99 0.98 0.99

KNN 1.00 0.97 0.98

Zbot SVM 1.00 0.99 1.00
(3802 Samples) RF 1.00 0.97 0.99

KNN 1.00 0.98 0.99

Mixed SVM 1.00 1.00 1.00
(22670 Samples) RF 1.00 0.89 0.94

KNN 0.52 1.00 0.54
a SVM: Support Vector Machines
b RF: Random Forest
c KNN: k-Nearest Neighbor

outperforming KNN. K-fold validation with K = 5 was
employed by each classifier to ensure consistent results.
These findings suggest that the synthetic malware
generated by all three generators does not closely
resemble authentic malware. However, this result is
influenced by the large number of training samples
provided to the three malware classifiers. If the number
of samples is reduced, the machine learning classifiers
would approach the performance achieved in [5] when
comparing the WGAN-GP instance.

The lower performance of the KNN classifier can
be attributed to the inherent limitations of the
classifier itself, rather than the synthetic malware
appearing realistic. This conclusion is supported by the
accurate classification achieved by the other machine
learning classifiers on the same malware samples.
The performance of deep learning LSTM classifiers is
not presented here since at least one of the machine
learning classifiers performed exceptionally well. Deep
learning classifiers are not necessary for this particular
evaluation, as they would surpass the performance of
the machine learning classifiers while requiring longer
training time.

Given the high classification performance achieved
by the machine learning classifiers on sufficiently
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Table 3. Classification Results for Dense VAE Synthetic
Malware

Dense VAE MalwareClassifier Performance

PrecisionRecallAccuracy

OnLineGames SVMa 1.00 1.00 1.00
(3014 Samples) RFb 1.00 1.00 1.00

KNNc 1.00 0.81 0.88

Renos SVM 1.00 1.00 1.00
(3132 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.77 0.85

VBInject SVM 1.00 1.00 1.00
(4858 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.63 0.71

WinWebSec SVM 1.00 1.00 1.00
(7864 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.99 0.99

Zbot SVM 1.00 0.94 0.97
(3802 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.82 0.89

Mixed SVM 1.00 1.00 1.00
(22670 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.82 0.89
a SVM: Support Vector Machines
b RF: Random Forest
c KNN: k-Nearest Neighbor

large datasets from the three generators, a second
experiment was conducted to compare the synthetic
malware. The objective was to determine the minimum
number of training samples required by each classifier
to achieve a target classification accuracy of at least
95%. Table V displays the minimum number of samples
needed to achieve 95% accuracy using a mixed dataset
composed of both synthetic and authentic malware
from all five malware families. A lower number of
samples indicates that synthetic malware is more
easily distinguishable from authentic malware. In other
words, the classifier can differentiate between authentic
and synthetic malware using fewer samples because the
synthetic malware appears artificial. When comparing
the minimum samples required for SVM and RF to
achieve 95% accuracy, it was found that WGAN-GP
necessitated more samples than the CNN VAE or
Dense VAE. This suggests that WGAN-GP produced
synthetic malware that was more realistic. Similarly, the
CNN VAE generated slightly better synthetic malware
compared to the Dense VAE.

It is worth noting that SVM, RF, and KNN required
significantly more samples than the LSTM classifiers
across all three generators. As mentioned earlier
and demonstrated in these experiments, the deep

Table 4. Classification Results for CNN VAE Synthetic Malware

CNN VAE Malware Classifier Performance

Precision Recall Accuracy

OnLineGames SVMa 1.00 1.00 1.00
(3014 Samples) RFb 1.00 1.00 1.00

KNNc 1.00 0.82 0.89

Renos SVM 1.00 1.00 1.00
(3132 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.80 0.87

VBInject SVM 1.00 1.00 1.00
(4858 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.63 0.71

WinWebSec SVM 1.00 1.00 1.00
(7864 Samples) RF 1.00 1.00 1.00

KNN 1.00 0.99 0.99

Zbot SVM 0.91 1.00 0.95
(3802 Samples) RF 0.98 0.98 0.98

KNN 1.00 0.94 0.97

Mixed SVM 1.00 1.00 1.00
(22670 Samples) RF 1.00 0.96 0.98

KNN 1.00 0.82 0.89
a SVM: Support Vector Machines
b RF: Random Forest
c KNN: k-Nearest Neighbor

learning classifiers achieved superior classification
performance compared to the three machine learning
classifiers, requiring only 20 samples to achieve
95% accuracy. This substantial performance difference
underscores the strength of LSTM classifiers over
machine learning classifiers. However, if there are
limitations in computational capacity and the number
of training samples, and it is known that the synthetic
malware is not generated by a GAN, then SVM
and RF machine learning classifiers would still offer
satisfactory classification performance.

6. Conclusions
The aim of this study was to assess the capability of
Dense VAE and CNN VAE in generating realistic syn-
thetic malware compared to WGAN-GP across multiple
malware families. The evaluation was conducted using
both machine learning and deep learning classifiers,
with the expectation that lower classifier performance
would indicate more realistic synthetic malware.

In the standard classification experiments, the
trained machine learning classifiers were able to easily
differentiate between synthetic and authentic malware
when an adequate number of samples were provided.
This was evident from the high classification scores
obtained for the synthetic malware generated by all
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Table 5. Minimum Number of Mixed Malware Samples Needed
for 95% Classification Accuracy

Generative Model Classifier Number of Samples

WGAN-GPa SVMb 772
Random Forest 236
KNNc 22,670
LSTMd 20
BiLSTMe 20
CNN-LSTMf 20

CNN-VAEg SVM 44
Random Forest 58
KNN 22,670
LSTM 20
BiLSTM 20
CNN-LSTM 20

Dense VAE SVM 20
Random Forest 48
KNN 22,670
LSTM 20
BiLSTM 20
CNN-LSTM 20

a WGAN-GP:Wasserstein Generative Adversarial Networks with Gradient
Penalty

b SVM: Support Vector Machines
c KNN: k-Nearest Neighbor
d LSTM: Long Short-Term Memory Recurrent Neural Network
e BiLSTM: Bidirectional LSTM
f CNN-LSTM: Convolutional Neural Network LSTM
g CNN-VAE: Convolutional Neural Network Variational Autoencoder

three generators. SVM and RF emerged as the strongest
machine learning classifiers, consistently achieving
accuracy scores above 90% for the synthetic malware
produced by WGAN-GP, Dense VAE, and CNN VAE.
On the other hand, KNN consistently underperformed
compared to SVM and RF, likely due to the inherent
limitations of the classifier itself. Since SVM and
RF classifiers demonstrated such high classification
performance in distinguishing synthetic and authentic
malware, there was no need to employ the three LSTM
deep learning classifiers in the initial experiment.

The high classification scores obtained for all
three generators posed a challenge in determining
which generator produced more realistic malware.
Therefore, instead of focusing on classification scores,
we examined the minimum number of samples
required to achieve 95% classification accuracy. As
the LSTM classifiers proved to be too accurate for
the second experiment, and KNN exhibited insufficient
accuracy, the results from SVM and RF provided
better performance comparisons among the three
generators’ synthetic malware. It became evident
that the synthetic malware generated by WGAN-GP
necessitated a significantly larger number of training

samples for SVM and RF to achieve 95% classification
accuracy compared to the malware samples from the
two VAEs. This observation suggested that WGAN-
GP produced synthetic malware that more closely
resembled authentic malware. Among the two VAEs,
the CNN VAE slightly outperformed the Dense VAE
in generating synthetic malware. This finding was
unexpected considering that the Dense VAE had a
significantly lower training loss than the CNN VAE,
and the validation loss of the Dense VAE was also low,
indicating no significant overfitting concerns.

In conclusion, GANs like WGAN-GP demonstrate
more potential in generating synthetic malware that
closely resembles authentic malware compared to
VAEs. However, this improved performance comes at a
higher computational cost. Furthermore, while machine
learning classifiers such as SVM currently suffice, as
synthetic malware becomes more realistic, the use of
deep learning classifiers like LSTM is likely to become
more valuable in evaluating the quality of synthetic
malware.

Future work could involve replicating the current
implementation while employing alternative represen-
tations for the malware sample features, or a hybrid
approach thereof. The present study primarily con-
centrated on model training utilizing the initial 600
opcodes from the files. Despite the adequacy demon-
strated by this quantity as indicated in [5], exploring
the precise number of opcodes required to enhance the
generative models’ performance could offer valuable
insights. Finally, there is potential for a more in-depth
exploration of additional VAE and GAN architectures.
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