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Abstract

The machine learning (ML) community has extensively studied adversarial threats on learning-based systems,
emphasizing the need to address the potential compromise of anomaly-based intrusion detection systems
(IDS) through adversarial attacks. On the other hand, investigating the use of moving target defense (MTD)
mechanisms in Internet of Things (IoT) networks is ongoing research, with unfathomable potential to equip
IoT devices and networks with the ability to fend off cyber attacks despite their computational deficiencies.
In this paper, we propose a game-theoretic model of MTD to render the configuration and deployment of
anomaly-based IDS more dynamic through diversification of feature training in order to minimize successful
reconnaissance on ML-based IDS. We then solve the MTD problem using a reinforcement learning method
to generate the optimal shifting policy within the network without a prior network transition model. The
state-of-the-art ToN-IoT dataset is investigated for feasibility to implement the feature-based MTD approach.
The overall performance of the proposed MTD-based IDS is compared to a conventional IDS by analyzing
the accuracy curve for varying attacker success rates. Our approach has proven effective in increasing the
resilience of the IDS against adversarial learning.
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1. Introduction
The Internet of Things (IoT) has become an intrinsic
technology in various automated industries and large-
scale smart city and government services including
wearable health devices and autonomous transporta-
tion [1]. A major concern about IoT systems is secu-
rity, which has become more difficult to implement in
embedded IoT devices having limited computational
resources to run firewalls and advanced cyber defense
algorithms [2]. IoT devices and networks are known to
be increasingly vulnerable to security attacks on data
integrity and service availability [3, 4]. With increased
connectivity, IoT devices can become compromised and
used as zombies. Hackers can control these devices
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remotely and exploit them for illegal purposes like
carrying out large-scale distributed denial of service
(DDoS) attacks, e.g., via a Control & Command (C&C)
server [5].

At the IoT network level, intrusion detection systems
(IDS) constitute one of the essential defense tools that
monitor the entire IoT network traffic [6]. As most
IoT devices are deficient in computational and memory
resources, most IoT networks rely on network-based
IDS to provide security for the collective nodes within
the network [7]. These IDS can either be signature-
based or anomaly-based [8]. However, adversaries
continue to devise new ways of orchestrating stealthy
attacks that are usually cunningly evasive and could
render signature-based detection defunct. This is why
there have been growing research interests in building
anomaly-based IDS to detect unknown attacks. These
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IDS often rely on machine learning (ML) algorithms
to detect malicious behavior [9–11]. Nonetheless, this
reliance adds to the IoT network’s threat surface due to
the presence of adversarial learning attacks.

Conventional IDS in IoT networks are as susceptible
to attacks as the nodes within these networks. Little
attention has been placed on protecting IDS, but the
damage caused by a cyber attack that compromises an
IDS could be far more detrimental than that caused
by compromising nodes within the network, since the
IDS’s mission is to protect the network. An adversarial
attack stealthily injects an input to an ML model that
is purposely designed to cause the model to make a
mistake in its predictions despite resembling a valid
input when observed [12]. Adversarial attacks may
belong to three categories: In white-box attacks, the
adversary possesses knowledge of the training and
testing datasets of a given IDS, what ML model and
miscellaneous techniques are employed by the IDS,
among other things. In gray-box attacks, the adversary
only has partial knowledge of the network. Lastly,
black-box attacks require that the adversary has no
knowledge of the network, and launches the attack
blindly and arbitrarily.

In this paper, we aim to proactively protect anomaly-
based IDS in IoT from potential adversarial learning
attacks using a novel Moving Target Defense (MTD)
approach. Our goal is to prevent or mitigate the impact
of successful reconnaissance within the system, where
stealthy adversaries attempt to probe the ML-based IDS
in order to collect useful information about its design
and operation in order to eventually craft subverting
attack patterns. Although researchers using MTD have
made important strides within the community [13], no
work has yet considered implementing MTD on IoT
gateways involving IDS components. The contributions
of this paper are described as follows:

• A novel, stochastic game-theoretic MTD model
based on architecture decentralization and learn-
ing diversification to protect ML-based IDS in IoT
networks against adversarial threats. The model
decomposes the target system into a number of
logical sub-components and apply MTD to miti-
gate the impact of the adversary’s reconnaissance
over time by expanding the exploration surface in
terms of features.

• A reinforcement learning (RL) solution to
autonomously optimize MTD timing and
operations within the network in an adaptive
fashion without prior knowledge of the
adversarial behavior and environment model.
The proposed RL algorithm learns the optimal
defense policy via trial and error in order to avoid
unnecessary configuration shifts.

• An extensive experimental validation of our
proposed threat prevention solution using the
state-of-the-art, real-world ToN-IoT dataset [14].
Our results are promising and demonstrate the
effectiveness of the MTD-enabled IDS in reducing
the impact of adversarial reconnaissance while
maintaining high detection accuracy.

The remainder of the paper is structured as
follows. Section 2 provides background information
and discusses the related work. Section 3 describes
the proposed MTD model. Section 4 presents our RL-
based solution to the MTD timing problem. Section 5
describes our experiments and results. Finally, Section
2 concludes the paper.

2. Background Information and Related Work
2.1. Adversarial Learning Threats to IDS
The Fast Gradient Sign Method (FGSM) is an adver-
sarial learning attack that uses the concept of gradient
descent in neural networks, which is in turn an iterative
optimization process to minimize the adversarial error
during an attempt to compromise a given deep learning
(DL) model [15]. This results in data points that look
indistinguishable from the original ones but results in
serious misclassification when passed through a DL
model. FGSM is one of the most common adversarial
learning attacks in the literature and is mostly used in
image misclassification. The Barrage of Natural Trans-
forms (BaRT) randomly sets up the classifier to be vul-
nerable to a number of transforms based on the criteria
which the ML model uses in its prediction. Some trans-
forms could be: Noise injection, FFT perturbation and
Color precision reduction (for image classification) [16].
In a jacobian based saliency attack (JSMA), by analyzing
the jacobian matrix of outputs with respect to inputs,
one is able to deduce how the output probabilities
behave given a slight modification of an input feature.
In [17], JSMA was implemented against a multilayer
perceptron model using the CIDS and TRAbID datasets
for network traffic classification. All these adversarial
threats can render the IoT network highly vulnerable to
compromise by subverting the performance of the IDS.

Generally, the defense approaches against an adver-
sarial learning attack on IDS can be grouped into reac-
tive and proactive [18]:

• Reactive: Involves carrying out patches on a given
network, based on the kind of adversarial attacks
experienced. This could be done in an iterative
manner to enhance the robustness of the IDS.

• Proactive: Involves altering the underlying archi-
tecture or learning procedure of the IDS, e.g., by
adding more layers, training the detection model
in real time with adversarial attack samples, or
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increasing the sensitivity of loss/activation func-
tions. The loss function is given by: f (x + δ) =
f (x), Where δ is the input injected by the adver-
sary to cause perturbation and impact the predic-
tion accuracy of the IDS.

To defend against FGSM, gradient masking (that
naturally transforms a threat model from a white/gray
box into a black box) is used to mask the model’s output
with respect to its input [19]. Adversarial training could
also be used, where the IDS is trained with some
adversarial examples to make it immune to adversarial
attacks, but this can sometimes lead to label leakage
and over-fitting as the adversarial examples generated
during the training phase may not be present during the
predictive/testing phase [20]. The authors in [21] came
up with a novel model for adversarial training that
involves feature scattering in a given latent space. They
generate the feature-scattering adversarial examples
in an unsupervised manner as a deliberate attempt
to address possible label leakage. A novel generative
adversarial network (GAN)-based adversarial defense
method called Cowboy was proposed by [22]. This
approach both detects and defends against adversarial
attacks by using both the discriminator and generator of
a typical GAN trained on the same dataset. The method
is inspired by hypothesizing that adversarial samples
ought to exist out of the data pipeline understudied by
a GAN.

2.2. Moving Target Defense in IoT Systems
In contrast to reactive security approaches where a
cyber attack may cause damage to the system before
counteraction is initiated, MTD is a cyber defense
paradigm that proposes to proactively make systems
and networks dynamic to increase the difficulty for
an attacker to be successful with exploits in the first
place. With MTD, there is a full-on acknowledgment
that systems are always going to be vulnerable
against zero-day threats regardless of how many
times the attack surface is shrunk through patching,
because there is an unfair asymmetrical advantage that
attackers have on static systems over time. Hence, the
reconnaissance activities of the attacker on a static
network would render the attacker in a favorable
position to launch a successful attack [23]. It is also
easier to create backdoors in traditional systems if
system parameters are unchanging/static. Furthermore,
resource-constrained devices and networks may not be
able to add complex security set-ups and hence are
most vulnerable to attacks. So far, MTD research in
IoT networks is typically focused on the nodes, and
is oblivious to the vulnerabilities of the IDS gateways
through which all traffic converge and diverge, which
can also be exploited by resourceful adversaries in order
to penetrate the network.

MTD proposes the movement of system parameters
at certain periods so that the state of the network at
T0 is different from the state of the network at some
arbitrary period T0 + δt, thereby making it difficult
for the attacker to do any proper reconnaissance. The
goal is not to reactively reduce the attack surface
with traditional countermeasures like patches, but
to proactively keep moving the attack surface to
make it seemingly impossible or very difficult to be
successful with an attack. The key design questions
to consider while setting up an MTD-based network
are: what to move, how to move it, and when
to move it. With regards to what parameters to
move/change, the moving parameter (MP) could be
the data (e.g., formats), software, network (e.g., IP
addresses, port numbers), platform (e.g., OS, firmware),
runtime environment (e.g., RAM address space), or
even hardware (e.g., routines in enterprise switch
brands). With regards to how to move, the MP
can be made to move from one configuration to
another via randomized shuffling or using a predefined
optimization algorithm to create diversification. Finally,
the timing problem when implementing MTD involves
determining the trigger to initiate the move in the
network, which could be based on a specific time or
event, or a combination of both.

In a given network, a typical use-case could be
random re-assignment of IP addresses and port
numbers. This can thwart the reconnaissance activities
of the attacker. For example, using scanning tools like
nmap will yield different results for each scan and
will therefore not be useful knowledge to the attacker.
Also, MTD in IoT networks may involve constantly
changing the communication protocols between nodes
and the gateway (e.g., WiFi, Bluetooth, Zigbee, etc.).
Such diversification would make it difficult for an
adversary to complete her exploit as each protocol is
completely different from the other, with no correlation
whatsoever.

Because of the uncertainty created by changing
configurations on the network, it is possible to
quantitatively attempt to describe the degree of
uncertainty of a given network with a chosen MP by
evaluating the number of states the MP is capable
of taking on, and the probability that it takes on a
certain state. This can be modeled using Shannon’s
entropy [24]. For a uniform probability distribution,
Shannon’s entropy will directly depend on the number
of states available for a given MP [24]. This theoretical
inclination further buttresses the following point:
Instead of reducing the attack surface, MTD rather
enlarges the ”exploration surface” domain for attackers,
and then moves the attack surface as a sub-domain with
the exploration domain, thereby making it difficult for
attackers to orchestrate attacks. That said, even though
more states of an MP translate to higher uncertainty

3

Mitigating Adversarial Reconnaissance in IoT Anomaly Detection Systems: A Moving Target Defense Approach based on Reinforcement Learning

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



and hence greater difficulty for the attacker, it could
be much more difficult and costlier to have numerous
states, depending on the MP in question. For example,
it is easier for the defender to deploy multiple states
of IP addresses compared to multiple firmware. This
also means for an attacker, it may be easier to break
through 254 different states of a node’s IP address than
5 different states of a node’s firmware. Hence there
ought to be some qualitative representation of weighing
the cost of states of a given MP, for both the attacker and
the defender.

MTD is a relatively new area of research that is
rapidly gaining momentum, especially for low-resource
networks like IoT [25]. The authors in [26] implement
an MTD model that involves shuffling proxies of which
clients ought to connect to access system resources. The
authors in [27] introduce a novel MTD against network
reconnaissance. It is a software-defined technique
called the Sniffer Reflector. This MTD architecture
is basically set up to prevent successful network
probing by the attacker by providing forged responses
to network scans. The authors in [28] propose a
novel MTD framework employing IoT-enabled data
replication to replicate sensory and control signals
in cyber-physical systems. This framework combines
two layers of uncertainty, hence reducing the arbitrary
attacker’s ability to learn about the IoT network over
time. It also reduces the impact of false data injection
attacks on a given system model.

An MTD system typically requires a continuous
adaptation of system configurations to be able to
effectively hinder attacks, which can cause some
overhead on the resources of a given system. On the
other hand, limiting adaptations in a bid to reduce
the overhead could make it much easier for attackers
to successfully execute attacks. Therefore, determining
the right time to make adaptations with the objective of
minimizing long-term costs highlights the importance
of the MTD timing problem. For instance, the authors
in [29] propose a cost-aware MTD model to make smart
and optimized adaptations by analyzing the trade-
off between reducing system overhead and increasing
the resilience of the system to attacks. Also, the
authors in [30] propose a game-theoretic MTD model
to address the timing problem when proactively facing
DoS attacks. The model provided a guided framework
to ensure that the defending system moved at on
optimal time to yield the most resilience for the least
cost on network performance.

3. The Proposed MTD-enabled IDS
Our MTD model against adversarial learning in IoT
anomaly detection systems is mainly based on a novel
feature shuffling mechanism that can be incorporated
into the training phase of the ML-enabled IDS to

shield it from reconnaissance. To provide the research
community with a solid theoretical foundation that
could become the basis for future works on MTD (e.g.,
using different MP), the designed shuffling mechanism
fundamentally relies on a stochastic game-theoretic
formulation between the IDS and the attacker, which
we describe in detail in this section.

3.1. System Model
The proposed IDS architecture is based on logical
decentralization and aggregation. This was inspired
following the analysis of the ToN–IoT network dataset
[14]. First, the 45 features of the ToN-IoT dataset
were reduced to 15 prime features after conducting
the dimensionality reduction technique of selecting
the features that contribute the most variance in the
dataset. Features with minuscule variance contributions
were eliminated. This is done to reduce the overhead
of applying our MTD approach. In our architecture,
the typical IDS is logically split into i decentralized
IDS components. Each IDS component is trained
with a unique combination of n prominent features,
and every combination is different for each IDS
component. For each instance of traffic that goes
through the IDS architecture, it is transmitted in
parallel to all IDS components to be classified as
either normal or malicious traffic based on the feature
combinations that each IDS component was trained
with. The classification outcome is then aggregated
and a common classification result is chosen by virtue
of a simple majority rule. Features are subsequently
reshuffled during the trigger of the next shuffle
iteration, which is dependent on the action taken by the
IDS as part of the stochastic game.

The attacker is assumed to have unlimited resources
for reconnaissance allowing her to constantly bombard
IDS components with data instances as part of her
adversarial probing goals (e.g., finding out what
combination of features is being used by a given
logical component). If one or more components within
the architecture start to record detection rates α
that are relatively lower than other components, this
implies that it may have been compromised. When
half or more IDS components have been deduced to
be compromised, this triggers the IDS architecture to
shuffle features and re-train its components. Training
of the IDS is performed online when a shuffle is
triggered. The IDS components need to collaborate with
each other in other to classify a given traffic instance.
Therefore, they ought to be trained with the same
instances for meaningful results. The only difference
is that each IDS component’s classifier interprets a
given traffic instance based on the feature combination
assigned to it, but the traffic instances must be the same
for all. The model may adopt a strict policy to ensure
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that the accuracy of the MTD-based IDS always exceeds
a certain threshold. Hence, the combination of features
could be constrained by the total accuracy criterion
set. For example, if it is desired that after training
and testing, the accuracy obtained from aggregating
the results of each IDS component should not be
less than 97% , then this obviously restricts the
number of combinations possible - valid combinations.
After reshuffling and training is complete, the IDS
components are replaced in real time with the newly
trained ones.

3.2. Game Characterization
Game Theory has been extensively used to evaluate
situations where individuals have conflicting objectives.
A game may be defined as a strategic interaction
between two or more entities (players), which act
in such a manner as to maximize their wins
and minimize their losses (whether cooperatively
or competitively) [31]. Pay-offs or Utilities are the
quantifiable motivations that players get for executing
corresponding actions. The characteristics of the
proposed stochastic game can be described as follows.

• States: Let Sv be the set of all possible states
in the game. The i IDS components constitute a
state. They take on binary values: "1" to indicate
that the IDS has been compromised, and "0" to
indicate that the IDS component has not been
compromised yet. The transition from one state to
another, or choosing to remain in the same state,
can be influenced by several factors: one or more
IDS components within a conglomerate being
supposedly compromised (by inferring from the
relative detection rate), the defender just trying to
maximize their rewards, etc.

• Actions: Let AA be the set of all possible actions
available to the attacker, and AD be the set of
all possible actions available to the defender.
Naturally, the number of valid actions heavily
depend on the operational goals of the game,
for example, allowing only feature combinations
that result in a certain accuracy percentage
of the overall IDS. In our model, the agent’s
actions are selected to be between shuffling the
IDS configurations or not. The attacker actions
are selected to be between probing the IDS
parameters or not.

• Transition probabilities: Let P (s′ |s, aA, aD ) rep-
resent the transition probability from state s to
state s′ given the actions of the attacker (aA) and
defender (aD ). This captures the stochastic nature
of the game, where the next state depends on the
current state and the actions taken.

• Payoff functions: Let RA(s, aA, aD ) represent the
payoff received by the attacker when in state s and
taking action aA, given the defender’s action aD .
Let RD (s, aA, aD ) represent the payoff received by
the defender when in state s and taking action aD ,
given the attacker’s action aA.

• Strategies: Let πA(s) be the attacker’s strategy,
which determines the action aA to be taken in
state s. Let πD (s) be the defender’s strategy, which
determines the action aD to be taken in state s.

• Value functions: Let VA(s) represent the expected
cumulative payoff for the attacker starting from
state s, considering the attacker’s strategy πA and
the defender’s strategy πD . Let VD (s) represent
the expected cumulative payoff for the defender
starting from state s, considering the attacker’s
strategy πA and the defender’s strategy πD .

Figure 1 depicts a scenario in our dynamic game,
which is considered a semi-perfect information game.
This is because the attacker is aware of when there is
a change in state within the system. As compromising
just one IDS component is not sufficient to launch an
evasion attack (by virtue of the majority rule principle),
the attacker is able to tell that her attack was impactful
when the malicious payload goes through undetected
(false negatives increase significantly because at a
completely compromised state, the IDS is ineffective at
detecting malicious traffic). After the termination of an
episode due to the game being over, the IDS architecture
is triggered to change the state by executing the
"shuffle" action, and the attacker knows this because the
false negatives would have tremendously dropped after
retraining. The defender on the other hand is aware
of the possible move of the attacker by virtue of the
fact that there is a significant disparity in the relative
detection rate among the IDS components.

The stochastic zero-sum game model formulation can
be expressed as follows [32]:

VA(s) = max
πA(s)

min
πD (s)

RA(s, aA, aD ) +
∑
s′

P (s′ |s, aA, aD ) · VA(s′)




(1)

VD (s) = min
πA(s)

max
πD (s)

RD (s, aA, aD ) +
∑
s′

P (s′ |s, aA, aD ) · VD (s′)




(2)
where the players’ value functions are recursively
defined, considering the expected cumulative payoffs
and the transition probabilities.

Any stochastic game-theoretic model can be further
expanded to include reinforcement learning as a
potential solution. This is because this ML paradigm
is based on the trial-and-error approach, and so
an agent and its environment can be modeled as
playing repetitive games of trial-and-error until an
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optimal solution is found. If we are able to model
our IDS architecture so that a given state provides
information about how many IDS components have
been compromised or not, and the transition to the
next state is dependent on the attacker’s success rate in
compromising IDS components, assuming a perpetual
attacker (an attacker constantly probing), and also that
the transition to the next state is dependent on the
defending system’s choice of action (whether to stay in
a state or shuffle), then the perpetual attacker’s impact
can be incorporated as part of the environment that the
defending system (agent) has to learn from.

The majority rule criteria for the IDS architecture
to maintain high classification accuracy implies that
if more than half of the IDS components are
compromised, then the game is over for the defender,
and hence the termination of an episode. Hence, there
would exist different ways that a game/episode could
terminate, and hence reinforcement learning is used
to ascertain the most optimal policy for the defender
based on the testbed, as well sub-optimal strategies that
could approach the optimal strategy.

3.3. Threat Model
As is the case with most ML-based systems, anomaly-
based IDS are prone to adversarial attacks. The kind
of adversarial attacks that the attacker is able to
launch depends on the information that she is privy
to about the system. Our MTD model defends against
gray-box adversarial attacks and assumes that: 1) the
attacker has knowledge of the entire feature space
that the IDS architecture uses to train and test traffic
(datasets); 2) the attacker has knowledge of the IDS
architecture including its decentralization-aggregation
approach; and finally 3) she is cognisant of the
splitting number of prominent features among the IDS
components. Nonetheless, the attacker is oblivious to
the innerworking of the feature shuffling mechanism
the IDS uses for the dissemination of features among
the logical IDS components. Specifically, the attacker
is unaware of the exact feature combination per
IDS component at any given time. Consequently, if
this is figured out by the attacker, she is able to
inject successful adversarial examples into that IDS
component. Also, if the attacker had knowledge of the
feature shuffling mechanism, his information about the
entire system would be complete and hence this would
have been a white-box attack model. Therefore, on the
spectrum of gray-box attack scenarios, this is the worst-
case scenario from the defender’s perspective. This is
particularly important because in assuming that the
attacker has enough knowledge to compromise a given
network, we are able to address most of the loopholes
within a network for worst-case eventualities which
rarely happen, but are very possible.

Typically, with unrestricted access to the feature
space of the network traffic of the IDS architecture,
the two categories of adversarial injection attacks that
could be launched are: Data poisoning and evasion
attacks. The former is implemented during the training
phase of the IDS, while the latter is usually executed
in the testing phase of the IDS (i.e., traffic transmission
in real time). There has been significant progress in
protecting systems against data poisoning attacks [33].
Hence, we only focus on evasion attacks due to their
potential stealth. An evasion attack typically involves
manipulating a given instance of traffic so that it is
misclassified by the IDS. Ideally, because the attacker
has knowledge of what features the IDS uses for
classification, this attack should be easy to execute
over time by constantly probing the IDS components.
However, the dynamic shuffling of unique combination
of features among IDS components makes it difficult
for the attacker to know what combination of features
are used for a given IDS component at a given time
t, rendering the information gathered by the attacker
unworthy of being used. The goal of MTD in any
case is to stretch the time t that an attacker requires
to compromise a network as practically as possible -
bearing in mind the cost involved in terms of system
resources and performance degradation [34]. Hence,
allowing both the defender and the omnipotent attacker
to play the game of features provides insights on how
long the game can go on before the entire IDS is
compromised.

3.4. Uncertainty Analysis of our MTD Approach
The feature space diversification of the theoretic model
highlights the different possible feature combinations
of the IDS components. For i components of a given
IDS architecture, each component is represented by a
bit. Assuming 5 IDS components, the IDS architecture
is represented by [00000] bits. The flip of a bit from 0
to 1 denotes the compromise of an IDS component. The
termination of a single iteration of the game is triggered
when more than half the IDS components (i/2) have 1
as their bit values. It is important to re-emphasize that
the objective of MTD is to create as much uncertainty
in the system as possible, so as to make it difficult
for an arbitrary attacker to successfully complete the
reconnaissance phase and launch an attack over time.

Let X = i/2. The diversification of the proposed
IDS architecture can be measured by the sum of
combinations of all possible bits that can take the value
0 before termination at X = i/2. This is bounded by:

Ci
i + Ci

i−1 + Ci
i−2 + Ci

i−3 + Ci
i−4 + ... + Ci

i−X

where

Ci
X =

n!
X!(i − X)!

(3)
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Figure 1. Diagram showing dynamic game scenario.

On the other hand, the diversification based on feature
combinations (MP) is given by:
Cn
f If f denotes the number of unique features per IDS

component, the total diversification of the system is
thus given by the product of the two expressions as
follows:

(Ci
i + Ci

i−1 + Ci
i−2 + Ci

i−3 + ... + Ci
i−X ) × Cn

f

Entropy is a measure of the randomness or
uncertainty within the system. The correlation between
entropy and uncertainty implies that the greater the
entropy within the system, the higher the uncertainty
and difficulty for the attacker to successfully gather
reconnaissance and launch an attack [24] [23]. The
entropy H(X) is given by [35]:

H(x) = −
∑
x∈X

p(x)log(p(x)) (4)

Based on the diversification expressions above, the
maximum probability that the theory stipulates for
which the IDS architecture will not be compromised is
given by:

(Ci
i (

1
2

)i(
1
2

)0 + Ci
i−1(

1
2

)i−1(
1
2

)1 + Ci
i−2(

1
2

)i−2(
1
2

)2+

Ci
i−3(

1
2

)i−3(
1
2

)3 + ... + Ci
i−X(

1
2

)i−x(
1
2

)x) ×
(
Cn
f (

1
n

)3
)

The 1
2 probability of the IDS components represents a

uniform probability of a bit either being 0 or 1. The
1
n probability of the feature set represents a uniform
probability of training a given IDS component from an

n feature space. The entropy then is given as:

H(x) = −
x∑

j=0

(
Ci
i−j

(1
2

)j (1
2

)i−j
× Cn

f (
1
n

)f
)

× log2

(
Ci
i−j

(1
2

)j (1
2

)i−j
× Cn

f (
1
n

)f
) (5)

Based on these theoretical expressions, the following
can be deduced: 1) The measure of uncertainty can
be increased by increasing the features space n from
which IDS components can be trained; 2) The measure
of uncertainty can be increased by reducing the number
of feature combinations f that each IDS component
is trained with, given a feature-space pool n (this
obviously would have an impact on the accuracy of
each IDS component because the less features one trains
an IDS with, the less information it has to properly
classify a given data instance); and 3) The measure of
uncertainty can be increased by increasing the number
of IDS components i in a given IDS architecture (but
this will incur more computational overhead). In all
cases, it is preferred to use entropy as the ultimate
measure of uncertainty because it provides a tighter and
systematic way of looking at which parameters matter
the most when it comes to increasing the uncertainty
within the system [23].

4. Reinforcement Learning for Solving the MTD
Timing Problem
In RL, the agent undertakes a sequence of actions
that yield feedback signals from the environment
in the form of rewards or punishments. The agent
learns over time based on the actions taken and the
rewards/punishments received, and the environment
evolves based on the agent’s actions. The environment
state transitions can be seen as stochastic sequences or
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Markov decision processes [36]. The agent’s ultimate
task is to find an optimal policy that yields the most
rewards after experiencing several episodes of the RL
game [37]. In our MTD model, we propose a new
reward function for the agent which depends on the
number of compromised components ic and the number
of shuffled components is = i − ic. It also depends on
the action taken (whether "shuffle" or "stay"), and if
the action is taken at a time when the number of
compromised IDS components ic is below or above the
threshold i/2. We setup our reward function according
to algorithm 1, where the parameters a, b, c, and d
are used to tune the reward estimation be the system
administrator according to the importance of actions.
Based on this model, the defender has two (2) actions:
Stay or Shuffle. The "Stay" action indicates a decision by
the defender to remain in the same state based on pre-
defined objectives of the model. For example: Reward
threshold, number of compromised components, etc.
The "Shuffle" action indicates a decision by the defender
to change state. This also means the "Shuffle" action
would involve different feature combinations and how
that affects metrics like the overall performance of the
IDS architecture.

The agent’s decision to trigger a shuffle or not would
either result in an episodic game ending quickly or
going on for as long as possible, provided the agent
chooses to shuffle before at least half of the IDS
components within the architecture are compromised.
However, choosing to shuffle continuously results
in computational and memory costs on the IDS
architecture due to retraining IDS components with
different feature combinations iteratively for every
trigger move. Ultimately, the agent would want to

Input : ic, i
Output: reward
Function compute_reward():

reward← i − ic;
if agent_action == 1 and ic ≤ i/2 then

cost← a ∗ ic;
return (reward - cost);

end
else if agent_action == 1 and ic > i/2 then

cost← b ∗ ic;
return (reward - cost);

end
else if agent_action == 0 and ic ≤ i/2 then

cost← c ∗ ic;
return (reward - cost);

end
else if agent_action == 0 and ic > i/2 then

cost← d ∗ ic;
return (reward - cost);

end
Algorithm 1: The reward function of the agent

learn about the environment over time for a given
number of episodes and total corresponding rewards
yielded based on the actions taken, and to find the
closest optimal policy or sub-optimal policy so as to
determine when to initiate a move. The model is set
up so that the attacker constantly attempts to launch a
successful evasion attack. This would naturally consist
of sub-actions of feature combinations. For the sake
of simplicity of the model, the attacker’s action is
to constantly attempt to evade, and is incorporated
into the environment the defense agent has to learn.
Given an arbitrary pool of prominent features fp to
shuffle from, if each IDS component was shuffled
with f features, then the number of combinations
possible for each IDS component from the pool is

given by: C
fp
f . To represent each IDS components’

combination by using bits, we obtain log2(C
fp
f ) bits. This

relation indicates that each IDS component’s feature
combination is represented as an x-bit binary number,
which is extremely important in the implementation
phase, where it is much easier and more convenient to
put an abstraction on feature combinations with binary
representations. Hence, an evasion attack is deemed
successful if for any arbitrary log2(Cf

fsplit
)-bit feature

combination of each IDS component, the attacker’s
feature combination matches.

The Q-learning algorithm adopted to solve the MTD
timing problem is shown in algorithm 2. Given a policy
function π(s), which indicates a set of "action-paths" to
follow as a function of the present state s, Vπ(s) denotes
the expected utility at a given state and U (R, γ) is the
sum of discounted rewards (where γ is the discount
factor and is equal to 1 if the reward function is not
affected by the circumstances of the future) [38]. The
RL problem is formulated as follows:

Q(s, a) = E[R(s, a, s′) + γVπ(s′)] (6)

Vπ(s) = maxaQ(s, a) (7)

π(s, a) = argmaxaQ(s, a) (8)

Qπ(s, a) is referred to as the Q-value at a chance node,
which is the quality of a state action-pair. Essentially,
the optimal value at any state s would be the Q-
value that is maximized over a set of actions. The
optimal policy π(s, a) is the state-action combinational
subset that maximizes the quality function (Q-value),
as seen in algorithm 2. The bell’s optimality equations
are feasible solutions only when there is a working
model for the environment. This is where model-free
RL solutions come in handy. We leverage the Q-learning
technique which has information about which state-
action in any given policy yields the most rewards. At
each step k, there is a re-evaluation of the value of
a state (or the quality of a state-action pair Q) until
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Input : state space, action space, Q table,
α, γ, ϵ, num-episodes,
max-steps-per-episode, iteration-count

Output: old-state, new-state, agent-action,
reward, accuracy

state_space← 32;
action_space← 2;
q_table← np.zeros(state_space, action_space);
α ← 0.5;
γ ← 0.9;
ϵ← 0.1;
num_episodes← 100;
max_steps_per_episode← 2500;
iteration_count ← {};
k ← 0;
for episode to num_episodes do

observation_action_pair ← [];
observation_action_observation← [];
Game.reset(restart = T rue);
state← binary_to_decimal(old_state) −1;
for step to max_steps_per_episode do

if random.uniform() < ϵ then
agent_action← agent_action_space.sample();

else
agent_action← argmax(q_table[state]);

end
observation, agent_action← Game.step
(Game.agent_action_space.sample());
pair ← old_state, agent_action;
observation_action_pair.append(pair);
triplet ←
old_state, agent_action, new_state, reward, acc;

observation_action_observation.append(triplet);
state← binary_to_decimal(observation) − 1;
next_state← binary_to_decimal(new_state) − 1;
td_error ← reward +
γ · (np.max(q_table[next_state]) −
q_table[state][agent_action]);
q_table[state][agent_action]←
q_table[state][agent_action] + α · td_error;
state← next_state;
if Game.done1 then

iteration_count[k + 1]←
observation_action_observation;
k ← k + 1;
break;

end
end

end
Algorithm 2: Q-learning process in our MTD model

termination.

Qnew(sk , ak) =Qold(sk , ak)

+ α[rk + γmaxaQ(sk+1, a) −Qold(sk , ak)],

∀k ∈ [1...K]
(9)

where K is the total number of steps. Q-learning is an
off-policy RL technique, which implies that the quality
of the next state-action pair is explorative, and will
capture even sub-optimal Q-values in an attempt to find
the optimal policy - the argmax that maximizes the Q-
value for the next state. Its off-policy quality makes it
possible to keep track of almost all episodes that lead
to termination. There is a tunable parameter ϵ to add
some randomness in exploring sub-optimal policies. In
algorithm 2, the Q-table is updated iteratively, and the
agent’s choice of action gains optimality over time.

5. Experiments and Results
5.1. Experimental Setup
We validate our MTD solution using the state-of-the-
art IoT security dataset called ToN-IoT, which was
generated by simulating MQTT-based traffic [39] -
an MQTT machine-to-machine network architecture
of 12 sensors, a broker, a camera, and an attacker.
Also, five scenarios of data records were retrieved:
Normal operation, aggressive scan, UDP scan, Sparta
SSH brute-force attack, and MQTT brute-force attack.
Three abstraction levels of features are also employed
in the composition of this dataset (after extraction
from raw pcap files): packet features, unidirectional
flow features, and bidirectional flow features. The MTD
parameter n was chosen to be 3 based on the analysis
performed on the ToN-IoT dataset. It was found that
for an IDS component to be trained on a combination
of prominent features that have enough variance for
decent classification of traffic instances, they ought to
be trained with at least three features.

The anomaly-based IDS relies primarily on a ML
classifier. In our experiment, we set-up a random
forest classifier consisting of ten decision trees as
our ML model for the IDS. The random forest is
a meta estimator that understudies and fits a given
dataset into two or more decision trees, and uses the
average classification of each decision tree for a more
accurate and robust classification. Our experimental
MTD-enabled IDS consists of 5 different random
forest classifiers (logical IDS components). After feature
selection was conducted on the ToN-IoT dataset, the
chosen features were recorded in a mutable list (called
the pool of features). During the training phase of the
IDS components, each was randomly trained on three
unique combinations of features from that feature pool.
To compromise a given IDS component, we use the
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CleverHans library for our adversarial learning attack
implementation. It is an open source python library
for conducting adversarial attacks on ML models.
Adversarial examples were generated by feeding the
test traffic through the cleverhans.torch.attack.noise
class, which generated the adversarial examples for the
ToN-IoT test data samples by injecting adversarial noise
that led to the misclassification of data instances.

From the python repository, the Scikit-Learn library
was used to implement the random forest classifier
model. The Pandas library was used for reading the
ToN-IoT dataset as a data frame into the working
environment, and then for the various manipulations
of the data frame. The Numpy library was used for
handling data fragments as arrays, tinkering with
them, and re-writing them back on to the data
frame for further analysis. The OpenAI gym library
was used to provide the baseline environment for
implementing the RL algorithm and incorporating the
incessant adversarial attacks as part of the the agent’s
environment. The machine used for the experiment is
an Intel64 Family 6 Model 165 Stepping 2 GenuineIntel
Processor with 7,968 MB of RAM.

The experimentation steps can be summarized as
follows. First, we set up and train two separate IDS:
A conventional IDS and the MTD-based IDS, each
using the random forest ML model as the classifier,
using the ToN-IoT dataset as the traffic specimen. Next,
we measure and record the accuracy test traffic going
through the conventional IDS. Using the cleverhans
adversarial framework, we inject adversarial noise into
the test traffic and measure the accuracy drop, then
we do this for increasing odds of success of the attack
launch (i.e., 0.5, 0.6, 0.8, 1). For each adversarial attack
attempt on the MTD-based IDS, the RL algorithm learns
the corresponding reward obtained progressively over
time and influences in real time what action the agent
takes over the course of a number of episodic runs.
The odds of the attacker are increased accordingly from
50% to 100%. The accuracy at each of these odds is
recorded, as well as the CPU and memory usage amidst
adversarial attacks and MTD deployment.

5.2. Results Analysis
As seen in Figure 2, the simulation testbed for the MTD-
based IDS is set up so that the IDS defending agent
goes through various scenarios of which an episode
could terminate, and the associated reward is obtained
after an episodic termination. The attacker’s incessant
adversarial attacks are incorporated as part of the
environment and the testbed also records in real time
how the overall accuracy of the MTD-based IDS is doing
for each episodic step. Resetting to a new episode or
triggering the "action" results in the retraining of the
5 IDS components (indexed 0 − 4). Figure 3 provides a

microscopic view into what goes on within an episodic
step: The combination of features used to train a specific
IDS component, what each IDS component’s accuracy
is after training, and the combined IDS accuracy after
training (with or without an adversarial attack).

One of the biggest concerns of having an MTD-based
system is coming up with a systematic scheme to know
when to initiate an adaptation in an optimized or quazi-
optimized manner. Here, we leveraged RL to guide the
behavior of the agent and allow it to learn in real time
what actions to take and when to take them to maximize
gain and minimize cost. Figure 5 shows the cumulative
reward of the MTD-based IDS agent over 250 episodes.
The results show the agent’s reward was increasing over
the number of episodes, which is a strong indication
that learning was taking place.

Figure 4 shows the overall accuracy comparison
of the conventional and MTD-based IDS for various
attack success rates. The various success rates of
the attacker were simulated using the python library
Numpy’s uniform probability distribution (using the
same seed value for both the conventional and MTD-
based IDS for objectivity and neutrality), and changing
the odds incrementally. For example, as can be seen
from the figure, at 50 % odds of success, the attacker
has an equal chance of success and failure for both
the conventional and MTD-based IDS. In this case,
there was no trigger for an adversarial attack, hence
the reason the conventional IDS has an accuracy of
close to 100 %. Neither was attacked at this success
rate, however the slight drop in the accuracy of the
MTD-based IDS is due to the implementation of MTD
(the decentralization and aggregation in the MTD
architecture). As the attacker’s success keeps increasing
however, it can be seen that the accuracy degrades
significantly for the conventional IDS, whereas for the
MTD-based IDS, it degrades much less comparatively.

Figure 5 shows the progression of the agent’s reward
duting learning. Figure 6 shows a positive correlation
between the reward accrued and the overall accuracy
of the MTD-based IDS. This also informs us that
the MTD-enabled IDS agent was truly learning to
optimize and maximize its overall accuracy. It must be
clarified though that the system’s inherent costs were
not incorporated into the reward function of the agent
during the RL training phase. The agent’s reward was
simply a function of the number of compromised IDS
components and number of shuffled IDS components,
as ratios of the total number of IDS components within
the system. In our future work, we intend to include the
network cost within the reward function of the agent.

In Figure 7, we show the CPU usage of the MTD-
based IDS in comparison to the conventional IDS
for different success rates of the attacker. As can be
deduced, the constraints on CPU resources increase
for every increase in the adversarial attack success
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Figure 2. The first 10 episodes of the game played by the MTD-based IDS agent, and the corresponding reward and accuracy obtained in each
episode.

Figure 3. Microscopic view into the first 8 episodes (indexed by their accuracy values) showing the feature combinations each IDS component was
trained with.
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Figure 4. Accuracy of both IDS architectures for varying attack success rates.
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Figure 5. Cumulative reward of the agent during the learning process
(250 episodes).
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Figure 6. Accuracy vs reward of the MTD-based IDS agent during the
game.

rate. This is more so for the MTD-based IDS because
it requires shuffling of features and re-training of
IDS components to mitigate attacks. It was observed
that the biggest contributing factor to the high CPU
usage in the MTD-based IDS is the re-training of IDS
components every time an MTD move is triggered. The
conventional IDS still incurs more CPU usage because
of the increase in the number of successful adversarial
probing by the attacker. Memory usage also went up
for the MTD-based IDS for different attacker’s success
rates, as seen in Figure 8. This was not surprising,

given the complexity of the MTD architecture that
was implemented. The memory usage cost incurred
by the conventional IDS as a result of more frequent
adversarial activity pales in comparison to the cost
incurred by the MTD-based IDS for all instances, and
justifiably so. Nonetheless, the resource drainage from
CPU and memory usage were not infused into the
reward function of the learning agent and may have
influenced the reason for the wide gaps in the curves
shown.
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Figure 7. CPU usage of both the MTD-based IDS and conventional
IDS for varying success rates of the attacker.
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Figure 8. Memory usage of both the MTD-based IDS and conventional
IDS for varying success rates of the attacker.

6. Conclusion
Anomaly-based IDS in IoT networks mostly rely
on machine learning, and hence are vulnerable to
adversarial threats. In this paper, we designed a
novel MTD solution based on feature shuffling to
allow the IDS to counter stealthy reconnaissance
efforts and prevent successful evasion attacks. Our
solution is based on a solid game-theoretic problem
formulation between the defense system and the
adversary, which we solve using reinforcement learning
to orchestrate the configuration shifts in an adaptive
fashion. The results show that our MTD-enabled IDS
is more resilient to adversarial attacks. The impact
of our findings is indisputable and will undoubtedly
contribute significantly to the MTD literature. We plan
to replicate the experiments in a real-world IoT testbed
to achieve stronger validation on various datasets and
investigate other potential moving parameters that may
allow us to expand the exploration surface of the IDS.
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