
Publication and Discovery of Things in the Internet of
Things
Naseem Ibrahim1,∗

1Penn State Behrend, Erie PA, USA

Abstract

A large number of IoT platforms have been introduced in the last few years. The major issue with available platforms
is that they view Things as private property. But this view is short sighted. A Thing should be viewed as a service
or a functionality provider. The Thing owner should be able to publish Thing information and make it public. On the
other hand, Thing requesters should be able to discover available Things. Our research is concerned with introducing an
architecture that supports the publication and discovery of Things. This architecture will enable Thing owners to publish
Thing specification and Thing requesters to find Things that best matches their needs. The main contribution of this
paper is an SOA Context-aware Architecture for the publication and discovery of Things. This paper formally defines an
architecture for Things and queries. Also, this paper presents two XML languages that supports the publication and query
of Things.

Received on 11 January 2018; accepted on 04 March 2018; published on 20 March 2018
Keywords: Internet of Things, Service-oriented Architecture, Context, Publication, Discovery
Copyright © 2018 Naseem Ibrahim, licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.20-12-2018.156082

1. Introduction
The Internet of Things is turning into an explosive topic in
today’s technology world. Smart Things are becoming more
prevalent in both business and personal use. From cell phones,
smart homes, smart sensors and more [5], nearly every object
can be made intelligent and relay information and data to a
user at a moment’s notice. Billions [14] of new smart Things
are expected to take hold in the next few years. Each Thing
can provide a functionality or a service to a user or client. You
don’t have to own a Thing to use its functionality or service.
A user should be able to search for Things that provide a
required functionality. But with the massive growth of smart
Things, it will become difficult for users to find these smart
Things and more importantly find one or more that best meets
the user’s requirements.

For example, a person driving a vehicle downtown looking
for a parking spot. How will the user find an available parking
spot without having to drive around? How will the user
find the most convenient parking spot? A spot that is near,
available, within the driver’s budget, and with a size that

∗Corresponding author. Email: nii1@psu.edu

aligns with the type of vehicle they are driving. Smart Parking
Lots and Smart Parking Spaces can be used to determine
if a parking spot is open. This information paired with the
location, time, fee, and spot size can be used to match a driver
with a spot that meets their requirements and then directs
them to the spot. This can not be accomplished using the
current architecture of the Internet of Things.

An architectural model in which service is a first class
element for providing functionality is called Service-oriented
Architecture (SOA) [2]. SOA can be thought of as a
group of individual services that blend and interact with
other services seamlessly, to accomplish a task. Context
awareness [7] is the ability to detect and respond to changes
in context. Context [1] is the conditions that are used
to describe a product, or a service. This paper proposes
representing and publishing the functionalities provided by
a Thing as a service. The service should be rich enough to
represent the changing properties of Things, hence the paper
added context-awareness to the process of publishing and
discovering the services provided by the Things.

The rest of this paper is structured as follows. Section 1.1,
introduces the problem and the proposed solution. Section 2,
gives a brief introduction to the Internet of Things, SOA, and
context. Section 3, introduces the novel architecture for the
provision of services in the Internet of Things. Section 4,

1

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<nii1@psu.edu>

Naseem Ibrahim

introduces the structure of the context-aware service that
is used to publish the functionality provided by Things.
Section 5, introduces the structure of the context-aware query
that is used to query Things. Section 6, introduces the Thing
Specification Language. Section 7, introduces the Thing
Query Language. Section 8, provides a brief introduction of
related work. Finally, Section 9 provides some concluding
remarks and a brief discussion of future work.

1.1. Problem and Contributions

In the Internet of Things, Things provide services or
functionality. A user does not need to own a Thing to get a
functionality. A user should be able to search for all available
Things. But for this process to work, the owner of the Thing
should make the Thing information public and the user of
Thing should be able to find the Thing information. With
the current architecture of the Internet of Things this is not
possible. This paper investigates achieving the publication
and discovery of Things using SOA. Combining SOA with
the Internet of Things will allow users to request and receive
functionalities and services from smart objects in a seamless
manner.

However, as the number of Things and users increase, it
will become difficult to pair a Thing with a user. It will
become even more difficult to find a smart object that will
meet the user’s requirements and context. Because of this,
the process will become time consuming and less efficient. In
order to find the Thing that will provide the user with the most
relevant service, the matching process between the user’s
requirements and available Things must consider context.
Some examples of context with regards to users are location,
time, weather, mood, age, etc. With context awareness, these
smart Things will publish their context, and Things will be
selected using the context of the Thing and user.

This paper aims to solve the problem of scalable publishing
and discovery of smart Things using SOA. It solves the
problem of scalable matching of available Things with the
use of context-awareness. The result will be a Context-aware
Service-oriented Architecture that will allow users to be
paired with Things based on their context and requirements.
This will lead to more accurate data and information coming
from smart objects and services. This will decrease the time
the user spends searching for the services and Things they
need to use.

The main contribution of this paper is a context-aware
service-oriented architecture that will support the publication,
discovery and matching of Things in the Internet of Things.
This architecture will enable Things owners to publish the
information of their Things in a rich definition using context.
It will also enable users or consumers to discover these things.
A matching that will consider the context of Things and
consumers will ensure the best match between the user’s
requirements and available Things.

To support the publication process, we introduce a new
architecture for the specification of Things. This architecture

is formalized to support the formal verification of the
claims made in the Thing description. To support portability
and implementation, we introduce an XML based language
for the specification of Things called Thing Specification
Language(TSL).

To support the discovery process, we introduce a new
architecture for the specification of requesters requirements.
This architecture is formalized to support the formal
verification of the requirements specified in the requester
query. To support portability and implementation, we
introduce an XML based language for the specification of
Queries called Thing Query Language (TQL).

2. Background
This section gives a brief introduction to the Internet of
Things, Service-oriented Architecture and Context. It will lay
the basis for the rest of the paper.

2.1. Internet of Things
The Internet of Things (IoT) [5] is the connection of physical
objects that collect and transfer data from one object to
another. These objects are embedded with software, and
sensors. These objects can be virtually anything. There is
machine to machine communication, and communication
between sensors and machines. These sensors gather data,
and then communicate that to another object that can
then analyze the data and make decisions. Most of
today’s IoT applications [14] are cloud-based. These cloud
applications [2] combine the characteristics and functionality
of a desktop, and web application by offering portability,
and usability. These applications [14] are key in receiving
the data, interpreting it, and transmitting it to create useful
information and decisions. The idea of the Internet of Things
is a massive fundamental shift. Numerous possibilities of
new products and services are introduced by these intelligent
Things.

The Internet of Things is expected to change the day to day
operations of virtually everything. IoT can be divided into 5
broad categories [5]: smart wearable, smart home, smart city,
smart environment, and smart enterprise.

The main issue with current IoT architectures is that they
are looking at Things as private property. An organization
or an individual owns a Things, they use the functionalities
provided by the Thing to achieve a task or to make a decision.
Basically, only the owner of the Thing can make any use of
the Thing. We believe this is counter productive, Things can
be service providers to anyone. Any client should be able
to find a Thing that provides a service that the client needs.
This service can be an actual physical tasks, information
needed for a decision or a cyber task. Thing owners should
be able to publish the services provided by their Things, and
clients should be able to find Things that provide the required
services. But current architectures for the implementation
of IoT does not support this philosophy. Hence, this paper
investigates the use of service-oriented architecture.

2 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Publication and Discovery of Things in the Internet of Things

Service Registry

Service ProviderService Requester

PublicationDiscovery

Execution

Figure 1. Traditional SOA Architecture

2.2. SOA

Service-oriented Computing (SOC) [4] is a computing
paradigm that uses service as the fundamental element
for application development processes. An architectural
model of SOC in which service is a first class element
is called Service-oriented Architecture [2]. Service-oriented
architecture (SOA) [8] is the collection, communication,
and sharing of services. It can involve sharing data, or
coordinating activity when connected. A service is a task
well defined, that does not depend on the state of other
services. SOA consists of three main modules, the service
provider, the service requester and the service registry. The
service provider publishes a service definition in the service
registry. The service requester searches the service registry
and selects from the published services. After selecting
a service, the service requester interacts with the service
provider by sending requests and receiving responses.

Some benefits [4] of SOA include: platform independence,
code reuse, easier testability, easier developer focus, and
parallel development. Amazon [10] has transformed into an
SOA company, they also have a universal service registry.
Amazon now thinks about everything in a service first
fashion. Accessibility is the most important thing in the
computing world. Scalability with contracts is also important
in SOA. Amazon web pages [6] communicate with around
150 services. Smaller, and simpler tools are more easily
scalable.

Figure 1 illustrates the three main activities in SOA are
service publication, service discovery and service provision.
In the literature, these terms are used in the following sense.
Service publication refers to defining the service contract
by service providers and publishing them through available
service registries. Service discovery refers to the process
of finding services that have been previously published
and that meet the requirements of a service requester [13].
Typically, service discovery includes service query, service
matching, and service ranking. Service requesters define their
requirements as service queries. Service matching refers to
the process of matching the service requester requirements,
as defined in the service query, with the published services.
Service ranking is the process of ordering the matched
services according to the degree they meet the requester
requirements. The ranking will enable the service requester
to select the most relevant service from the list of candidate

services. Service provision refers to the process of executing
a selected service. The execution may include some form
of an interaction between the service requester and service
provider. This paper investigates the use of SOA for the
publication, discovery, and provision of the services provided
by Things in the Internet of Things.

Devices need to communicate information and data to each
other. The seamless integration of applications and different
services are crucial. SOA can also be useful in combining
business and IT. You can take objects and applications, and
use services to add more functionality to an application. You
can send data [11] to a service and have that service analyze
information, without having to develop similar software and
have that infrastructure. IoT devices themselves [17], can
be considered services to enterprises, society, and industries.
You can use Facebook service as a platform to have users
log information. You can use services to process payment
information. This allows modularity, the developer does not
have to worry about these services. SOA deals with IoT in a
business way. SOA can allow IoT and its applications to have
far more features by using seamless services.

2.3. Context

Context has been defined [1] as the information used to
characterize the situation of an entity. This entity can be a
person, a place, or an object. Context is an important concept
to consider when designing and implementing software.
There are multiple different contexts to consider. One of
the most important is the size of the system which will
dictate multiple choices in the design process. Having stable
architecture, using a correct business model, assigning good
team distribution, keeping in mind the age of the system,
safety, and governance are other examples of needing context
in projects.

With the emergence of IoT, context [15] has become even
more important. Some questions to ask when determining
context is who will be using it, why, when, where, and what.
It also consists of more specific aspects such as [19] location,
time, temperature, even users emotions and preferences; these
can be classified as scalar, vector, or abstract values. Selecting
certain factors such as platform, will eliminate a lot of context
of use issues; however, when considering IoT, most cases will
not be platform dependent. An example [15] of context of use
for an IoT design would be considering a heart rate device.
Some context information that developers would want to ask
for are: to make it portable or wearable, the display of the
monitor, what inputs it should take, what type of consumer
would use this, and what is the best way the information can
be shared. Another example for the context of use is when a
driver is driving in a car using navigation or other features.
Developers would need to consider the interface, too simple
may not provide enough functionality, but too complex and it
becomes dangerous for the driver.

Smart devices being context aware is another interesting
concept. Cell phones being completely context aware would

3 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Naseem Ibrahim

require sensors, and RFID tags. This would allow phones to
be aware of locations and other information [19], which will
limit the amount of interaction between the user and device.
Context can also be used in terms of service contracts which
is responsible for the fulfillment of agreed upon conditions.

3. Publication and Discovery Architecture
This section reviews our novel SOA based architecture
that was introduced in [9]. This architecture supports the
publication and discovery of Things in the Internet of
Things. The main goal of this architecture is support the
publication and discovery of trustworthy context-dependent
Things. To achieve this goal the architecture should consider
the following criteria:

• Context: Things are context-aware in nature. The
consideration of context information in publication and
discovery is sessional to find the best match between
the requester requirements and the available Things.

• Dynamic context: The context information of
requesters and Things are not static, they can
dynamically change. The architecture should support
dynamic change to best match clients and Things.

• Scalability: As the number of Things increase
drastically, it will be important that the architecture can
adapt and scale with this increase.

• Discovery: In order for a client to find Things, the
architecture must support the discovery of Things.
Discovering Things can be achieved by discovering the
services provided by the Things.

• Search: After discovering the services provided by
Things, the client should be able to search for the
Things that best matches his/her needs.

• Ranking: The search process will be time consuming
with the increased number of Things being published.
To really make this architecture useful, the architecture
should rank the result of the search according to the
context of the Thing and client. This ranking will
decrease the amount of time the user spends searching
for the service they desire. This ranking will also
provide the user with the most relevant Things to them
based on their context and needs.

• Formality: The architecture should be formal. Formal-
ism will enable the validation and verification of the
functions provided by the architecture.

Figure 2 illustrates our newly introduced SOA based
architecture for the publication, and discovery, of Things in
the Internet of Things. This architecture satisfies the seven
criteria discussed above. Below is a brief review of the
elements of the architecture.

Registry: The registry is the entity that will be responsible
for the publication, discovery, matching and ranking of things.

Registry

Publish

Thing
Requester

Thing
Owner

 Context of
User

discover publiish

use

Thing
Architecture

Rank Search

Publication Architecture

Requester
Reviews

Figure 2. SOA-based IoT Architecture

It will allow the Thing owner to publish his Things, and users
to discover these Things. The Registry consists of four main
elements:

• Search: This element is responsible for the discovery of
Things. It will enable clients to find Things that provide
the services they are requesting. The discovery will be
based on the client context, and the context of published
Things.

• Rank: This element is responsible for ranking the
Things that meets the client’s requirements. It is very
common that the registry will find multiple Things that
meets the client’s requirements. It is also common that
none of these Things provide an exact match to the
client’s requirements. Hence, a ranking is necessary.
The ranking element will run ranking algorithms that
will rank Things according to the client’s context and
priorities.

• Publish: This element will be responsible for storing
the information provided by the owners of Things.
The information provided by the providers will be
structured according to the Thing structure discussed
in the next section.

• Requestor Reviews: To ensure the correctness of the
information contained in the registry. The registry will
also allow Thing users to review Things after using
them. The reviews completed by users will be managed
by this element. The review can include, how the
service performed, the correctness of the description,
and any experiences the client have with the Thing
owner.

Requester: This entity represents the client that is trying
to discover a Thing that provides a required functionality or
service. The requester will directly interact with the registry.

4 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Publication and Discovery of Things in the Internet of Things

Thing Architecture

Thing

Context of
Thing

Cost Constraints Functionality

Functional
Properties

Requirements

Example
Data

Non-
Functional
Properties

Scalability
Outcomes
of Service

Performance AvailabilitySecurityInteroperability Accessibility

Figure 3. IoT Thing Architecture

After discovering a Thing, the requester can use the Thing by
directly interacting with it. The requester provides his context
information to the registry to get the best match. Hence, the
requester interacts with the following entity.

• Context of User: This entity is responsible for
collecting and structuring the context of the user.
This entity is dynamic. It monitors the user context
and update the context information accordingly. The
context information provided by this entity will be used
by the client when communicating with the registry.

Owner: This entity represents the owner of the Thing. The
owner of the Thing will publish the Thing information in
the registry to be available for discovery. The Thing owner
will also enable the communication between clients and their
Things. The information published by the Thing owner will
be structured according to the Thing Architecture.

• Thing Architecture: This entity will define the structure
that the Thing owner should use to describe his Things.
This is discussed in details in the next section.

4. Thing Architecture

The previous section discussed the architecture for the
publication, discovery, and provision of Things. In this
architecture, the Thing owner will publish the Thing
information in the registry. This section introduces the
structure of the Thing information that will be published. This
section introduces the informal and formal description of a
Thing.

4.1. Informal description of Things

To ensure consistency and correctness, the information of the
Thing will be structured according to the structure discussed
in this section. Figure 3 illustrates the architecture for a
Thing that can be published and discovered using our SOA
based architecture. A Thing consists of two main elements,
non-functional and functional properties. Following is a
discussion of the main elements of the Thing architecture.

Functional Properties: This element define the behavior
and functionality provided by a Thing. It consists of the
following entities.

• Functionality: This element will include the following
entities.

– Outcomes of Service: This entity states the
postconditions that are guaranteed by the Thing
to be true after execution. It can also include the
technologies used by the Thing.

– Requirements: This entity describes the precon-
ditions that should be satisfied by the Thing user
before execution.

• Example Data: This entity shows what the output will
look like, and how it will be formatted.

Non-Functional Properties: This element specifics the
non-functional properties that will constrain the functionality
provided by the Thing. This element is divided into the
following entities.

• Context of Thing: This entity will describe all of the
Thing’s context, the context used will be dependent
upon the Thing. This will be both static and dynamic
context. The point of having context will be to aid in
pairing a requestor with the proper service based on
their context.

• Cost: This entity will state the cost of requesting a
functionality from a Thing. This can be either for a one-
time use, or a subscription based service.

• Constraints: This entity will contain the non-functional
guarantees that the Thing can provide. It includes the
following.

– Interoperability: This will define if the Thing has
the ability to work with other systems or products
(the service will use or be used by other services).
It can also include information related to platform
support.

– Security: This will describe the security mecha-
nism used to secure data, and communication.

– Scalability: This discuss the Thing ability to scale
to a large number of requests. It can contain the
maximum number of requests it can handle per
unit of time.

– Performance: This will display the performance
information such as: How long the process takes?
and How accurate is the data being received?

– Availability: This will describe the maximum
amount of down time that is guaranteed by the
Thing provider. It can also include the operating
hours.

5 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Naseem Ibrahim

– Accessibility: This can include information about
user location constraints, type of users allowed
and Thing location.

4.2. Formal description of Things
A Thing is formally defined using a model-based specification
notation. The context information encapsulated in the non-
functional part of the Thing is written in the notation
introduced by Wan [18]. The formal definition will enable
the verification of the claims made in the Thing description.
Below we give the formal representation of the Thing
elements.

Let C denote the set of all such logical expressions. X ∈
C is a constraint. The following notation is used in our
definition:

• T denotes the set of all data types, including abstract
data types.

• Dt ∈ T means Dt is a datatype.

• v : Dt denotes that v is either constant or variable of
type Dt.

• Xv is a constraint on v. If v is a constant thenXv is true.

• Vq denotes the set of values of data type q.

• x :: ∆ denotes a logical expression x ∈ C defined over
the set of parameters ∆. A parameter is a 3-tuple,
defining a data type, a variable of that type, and
a constraint on the values assumed by the variable.
We denote the set of data parameters as Λ = {λ =
(Dt, v, Xv)|Dt ∈ T, v : Dt, Xv ∈ C}.

Functional Properties. The functional properties sec-
tion encapsulate the Functionality and Example data. A
Thing can provide a single functionality. This functionality
is defined to include the function Requirements and Outcome
of Service.

Definition 1. A Thing functional properties is a 2-tuple
f p = 〈f , r〉, where f is the functionality, and r is the function
example data which represents the result format. The example
data is defined as r = 〈m, q〉, where m : string is the result
identification name and q = {x|x ∈ Λ} is the set of parameters.
A functionality is a 2-tuple f = 〈re, ot〉 where requirements
re and outcomes ot are data constraints. That is, re :: z, z ⊆ Λ

and ot :: z, z ⊆ Λ

Non-functional properties. The non-functional proper-
ties section encapsulates the following:

Context: Context information and Context rules are
formally specified as part of the context of a Thing. These two
parts provide context-awareness ability to Things. Context
information is formally specified, as defined in [18], using
dimensions and tags along the dimensions. In our research,
we have been using the five dimensions where, when. what,
who, and why. Assume that the service provider has invented

a finite set DIM = {X1, X2, . . . , Xn} of dimensions, and
associated with each dimension Xi a type τi . Following the
formal aspects of context developed by Wan [18], we define
a context c as an aggregation of ordered pairs (Xj , vj), where
Xj ∈ DIM, and vj ∈ τj . A Context rule is a situation which
might be true in some contexts and false in some others. For
example, the situation warm = temp > 30 ∧ humid > 75,
is true only in contexts where the temperature is greater than
30 degrees, and the humidity is greater than 75.

Definition 2. A context is formalized as a 2-tuple β = 〈r, c〉,
where r ∈ C, built over the contextual information c. Context
information is formalized using the notation in [18]: Let τ
: DIM → I , where DIM = {X1, X2,...,Xn} is a finite set
of dimensions and I = {a1, a2, ..., an} is a set of types. The
function τ associates a dimension to a type. Let τ(Xi) = ai ,
ai ∈ I . We write c as an aggregation of ordered pairs (Xj , vj),
where Xj ∈ DIM, and vj ∈ τ(Xj).

Cost: The elements specifies the cost for requesting a
functionality from a Thing.

Definition 3. The service cost p is defined as a 3-tuple
p = 〈a, cu, un〉, where a : N is the price amount defined as
a natural number, cu : cT ype is currency tied to a currency
type cT ype, and un : uT ype is the unit for which pricing is
valid. As an example, p = (100, $, hour) denotes the pricing
of 100$/hour.

Constraints: This element represents the trustworthiness
and quality properties that Thing providers guarantees to be
met before, during and after the provision of the functionality
of the Thing.

Definition 4. A constrains is a rule, expressed as a logical
expression in C. A rule may imply another, however no two
rules can conflict. We write con = {y|y ∈ C} to represent the
set of Constraints.

Putting these definitions together we arrive at a formal
definition for the Thing non-functional properties.

Definition 5. Non-Functional properties is a 3-tuple nf =
〈β, p, con〉, where β is the context of the Thing, c is the cost
of the Thing, and con is the set of constraints.

Finally, the formal definition of a Thing is:

Definition 6. A Thing is a 2-tuple T h = 〈f p, nf 〉, where
f p is the functional properties of the Thing, and nf is the
nonfunctional properties.

5. Thing Query
The previous section briefly introduced the architecture for
the publication and discovery of Things. In this architecture,
the Thing owner will publish the Thing description in the
registry. The Thing requester will then query the Registry
looking for Things that will satisfy a required functionality.
This section introduced the structure of the Thing query
informally and formally.

6 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Publication and Discovery of Things in the Internet of Things

Query Architecture

Query

Required
Context

Cost Constraints

Functional
Requirments

Requirements

Requester
Context

Non-Functional
Requirments

Scalability

Results

Performance AvailabilitySecurityInteroperability

Aggregation

Figure 4. Query Architecture

5.1. Informal description of Query

To ensure consistency and correctness, a Thing query will be
structured according to the structure discussed in this section.
This subsection will introduce an informal description of the
Thing query structure. Figure 4 illustrates the architecture for
a Thing query. A Thing query consists of three main elements,
non-functional requirements, functional requirement, and
requester context. Following is a discussion of the main
elements of the Thing query.

Functional Requirement: This element specifies the
requesters required functionality. The functional requirement
will be used by the registry to match the requester
required functionality with available Things. A functional
requirements is defined in terms of requirements and results.

• Requirements: This entity describes the preconditions
that the Thing requester guarantees to satisfy before
requesting a Thing functionality.

• Results: This entity describes the postconditions that
the requester is requiring to be satisfied.

Non-Functional Requirements: This element specifics
the non-functional properties that the Thing requester is
requiring. It is important to emphasize that for each of these
requirements the Thing requester can specify a priority. A
priority is a Natural number between 1 and 5, where 1
indicates low priority and 5 indicates a high priority. The
priority will enable the Registry to rank the matched Things
according to the matched functionality and non-functional
properties. This non-functional requirements elements is
divided into the following entities.

• Required Context: This entity will describe any
conditions or rules the requester will have with respect
to the Thing context. This will be both static and
dynamic context. This will also enable the matching of
the required context with the Thing published context.

• Cost: This entity will state the maximum accepted cost
of a Thing functionality. This can be either a one-time
use cost, or a subscription cost.

• Constraints: This entity will contain the non-functional
guarantees that the requester is requesting. It includes
the following.

– Interoperability: This will define the required
platforms or environments.

– Security: This will describe the required security
mechanisms to secure data, and communication.

– Scalability: This discuss the required Thing
ability to scale to a large number of requests. It
can contain the maximum number of requests it
can handle per unit of time.

– Performance: This will display the required
performance information.

– Availability: This will describe the maximum
acceptable down time that is required by the
Thing requester. It can also include the required
operating hours.

Requester Context: This entity will describe the requester’s
context. This will be both static and dynamic context. The
point of having context will be to aid in pairing a requestor
with the proper Thing based on their context information.

5.2. Formal description of Query

A Query is formally defined using a model-based specifi-
cation notation. The context information is written in the
notation introduced by Wan [18]. Below we give the formal
representation of the Thing Query.

Let C denote the set of all such logical expressions. X ∈
C is a constraint. The following notation is used in our
definition:

• T denotes the set of all data types, including abstract
data types.

• Dt ∈ T means Dt is a datatype.

• v : Dt denotes that v is either constant or variable of
type Dt.

• Xv is a constraint on v. If v is a constant thenXv is true.

• Vq denotes the set of values of data type q.

• x :: ∆ denotes a logical expression x ∈ C defined over
the set of parameters ∆. A parameter is a 3-tuple,
defining a data type, a variable of that type, and
a constraint on the values assumed by the variable.
We denote the set of data parameters as Λ = {λ =
(Dt, v, Xv)|Dt ∈ T, v : Dt, Xv ∈ C}.

7 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Naseem Ibrahim

Functional Requirement. : The functional requirement
section encapsulate the function Requirements and Results. A
request includes a single functionality.

Definition 7. A functional requirement is a 2-tuple f̂ =
〈r̂e, ôt〉 where requirements r̂e and results ôt are data
constraints. That is, r̂e :: z, z ⊆ Λ and ôt :: z, z ⊆ Λ

Requester Context:. This information is formally
specified, as defined in [18], using dimensions and tags along
the dimensions. In our research, we have been using the
five dimensions where, when. what, who, and why. Assume
that the service provider has invented a finite set DIM =
{X1, X2, . . . , Xn} of dimensions, and associated with each
dimension Xi a type τi . Following the formal aspects of
context developed by Wan [18], we define a context c as an
aggregation of ordered pairs (Xj , vj), where Xj ∈ DIM, and
vj ∈ τj .

Definition 8. Context information ĉ is formalized using the
notation in [18]: Let τ : DIM → I , where DIM = {X1,
X2,...,Xn} is a finite set of dimensions and I = {a1, a2, ..., an}
is a set of types. The function τ associates a dimension to a
type. Let τ(Xi) = ai , ai ∈ I . We write ĉ as an aggregation of
ordered pairs (Xj , vj), where Xj ∈ DIM, and vj ∈ τ(Xj).

Nonfunctional Requirements. : The non-functional
requirements section encapsulates the following:

Requested Context: A requested context is the set of
context rules, where a context rule is a situation which might
be true in some contexts and false in some others. For
example, the situation warm = T emp > 25 ∧ humid > 50,
is true only in contexts where the temperature is greater than
25 degrees, and the humidity is greater than 50.

Definition 9. A requested context is formalized as r̂ where
r̂ = {x|x ∈ C} .

Cost: The elements specifies the maximum acceptable cost
for requesting a functionality from a Thing.

Definition 10. The cost p̂ is defined as a 3-tuple p̂ =
〈a, cu, un〉, where a : N is the price amount defined as a
natural number, cu : cT ype is currency tied to a currency
type cT ype, and un : uT ype is the unit for which pricing
is valid. As an example, p̂ = (25, $, hour) denotes the pricing
of 25$/hour.

Constraints: This element represents the trustworthiness
and quality requirements. Each requirement can be mapped
to a priority.

Definition 11. A constrains is a rule, expressed as a logical
expression in C. A rule may imply another, however no two
rules can conflict. We write ˆcon = {y|y ∈ C} to represent the
set of constraints.

Putting these definitions together we arrive at a formal
definition for the non-functional requirements.

Definition 12. Non-Functional requirements is a 4-tuple n̂f
= 〈r̂ , p̂, ˆcon,Ξ〉, where r̂ is the required context, p̂ is the

required cost of the Thing, ˆcon is the set of constraints, and
Ξ : (x ∈ {1, 2, 3, 4, 5})→ (y ∈ {ĉ, r̂ , p̂, ˆcon)} is a function that
assign priorities to the elements of the query.

Finally, the formal definition of a query is:

Definition 13. A query is a 3-tuple q = 〈f̂ , n̂f , ĉ〉, where
f̂ is the functional requirement, n̂f is the non-functional
requirements, and ĉ is the requester context.

6. Thing Specification Language
A Thing provider specifies the Thing specification using
the architecture we introduced in the previous section. The
Thing description has been formally defined to support
formal verification. To support portability, in this section we
introduce an XML based language called Thing Specification
Language (TSL). Following is a discussion of the structure of
TSL.

TSL represents a one-to-one mapping to the Thing
structure presented in Figure 3. The two main elements of a
Thing are functional properties and non-functional properties.
Below is the XML schema for the main elements of a Thing.

< x s d : e l e m e n t name=" Thing ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" thingName " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" f u n c t i o n a l P r o p e r t i e s ">

< xsd :complexType >
.

< / xsd :complexType >
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" n o n F u n c t i o n a l P r o p e r t i e s ">

< xsd :complexType >
.

< / xsd :complexType >
< / x s d : e l e m e n t >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Below is a detailed discussion of the XML schema for each
of these components.

6.1. Functional Properties
The functional properties definition includes the Functional-
ity, Example Data. The Functionality part defines the function
requirements, and outcomes. Each Example Data is defined
with an ID and parameter list. Below is the XML schema for
presenting functionality.

< x s d : e l e m e n t name=" f u n c t i o n a l P r o p e r t i e s ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" exampleData ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" ID " t y p e =" x s : s t r i n g " / >
< xsd :complexType name=" P a r a m e t e r ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name="Name" t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" DataType " t y p e ="

x s d : s t r i n g " / >
< x s d : e l e m e n t name=" Value " minOccurs=" 0 " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : s e q u e n c e >
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" f u n c t i o n a l i t y ">

8 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Publication and Discovery of Things in the Internet of Things

< xsd :complexType >
< x s d : s e q u e n c e >

< xsd :complexType name=" r e q u i r e m e n t s " minOccurs
=" 0 " maxOccurs=" unbounded ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" c o n d i t i o n " t y p e ="

x s d : s t r i n g " / >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< xsd :complexType name=" outcomes " minOccurs=" 0 "

maxOccurs=" unbounded ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name=" c o n d i t i o n " t y p e ="
x s d : s t r i n g " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

6.2. Non-functional Properties
The nonfunctional properties associated with the Thing are
listed in this section. It includes, context, cost and constraints.
The XML schema for the structure of the non-functional
properties is shown below.

< x s d : e l e m e n t name=" n o n F u n c t i o n a l P r o p e r t i e s ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" c o s t ">

.
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" c o n t e x t O f T h i n g ">

.
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" c o n s t r a i n t s ">

.
< / x s d : e l e m e n t >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Cost. Cost information, which can itself be a complex
property expressing different prices for different amount of
buying, is a non-functional property. Below is the XML
schema for specify the non-functional property cost.

< x s d : e l e m e n t name=" c o s t ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" v a l u e " t y p e =" x s d : d o u b l e " / >
< x s d : e l e m e n t name=" c u r r e n c y " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" u n i t " t y p e =" x s d : s t r i n g " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Context of Thing. The context part is divided into context
info and context rules. The contextual information of the
Thing provider is specified in the context info section. The
situation or context rule that should be true for Thing delivery
is specified in context rules section. Below is the XML
schema for defining context.

< x s d : e l e m e n t name=" c o n t e x t O f T h i n g ">
< xsd :complexType >

< x s d : s e q u e n c e >
< xsd :complexType name=" C o n t e x t ">

< x s d : s e q u e n c e >

< x s d : e l e m e n t name=" L o c a t i o n " t y p e =" S t r i n g "
minOccurs=" 0 " maxOccurs=" unbounded " / >

< x s d : e l e m e n t name=" Time " t y p e =" x s d : t i m e "
minOccurs=" 0 " / >

< x s d : e l e m e n t name=" Date " t y p e =" x s d : d a t e "
minOccurs=" 0 " / >

< x s d : e l e m e n t name=" WhoProvider " t y p e =" x s d : s t r i n g
" minOccurs=" 0 " / >

< x s d : e l e m e n t name=" WhoRequester " t y p e ="
x s d : s t r i n g " minOccurs=" 0 " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >
< xsd :complexType name=" C o n t e x t R u l e s ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" C o n t e x t R u l e " t y p e =" C o n t e x t "

minOccurs=" 0 " / >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

Constraints. This section lists the guarantees that a Thing
owner can provide to the requesters of the Thing func-
tionalities. It includes interoperability, security, scalability,
performance, availability and accessibility constraints. Below
is the XML schema for specifying constraints.

< x s d : e l e m e n t name=" c o n s t r a i n t s ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" I n t e r o p e r a b i l i t y " t y p e ="

x s d : s t r i n g " minOccurs=" 0 " maxOccurs=" 1 " / >
< x s d : e l e m e n t name=" S e c u r i t y " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" 1 " / >
< x s d : e l e m e n t name=" S c a l a b i l i t y " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" 1 " / >
< x s d : e l e m e n t name=" Pe r f o rmance " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" 1 " / >
< x s d : e l e m e n t name=" A v a i l a b i l i t y " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" 1 " / >
< x s d : e l e m e n t name=" A c c e s s i b i l i t y " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" 1 " / >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

7. Thing Query Language
A Thing requester specifies the Thing requirements according
to the architecture we introduced in the previous section.
The Thing query has been formally defined to support
formal verification. To support portability, in this section
we introduce an XML based language called Thing Query
Language (TQL). Following is discussion of the structure of
TQL.

TQL represents a one-to-one mapping to the query
structure presented in Figure 4. The three main elements
of a query are functional requirements, non-functional
requirements, and requester context. Below is the XML
schema for the main elements of a query.

< x s d : e l e m e n t name=" Query ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" f u n c t i o n a l R e q u i r e m e n t s ">

< xsd :complexType >
.

< / xsd :complexType >
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" n o n F u n c t i o n a l R e q u i r e m e n t s ">

< xsd :complexType >

9 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Naseem Ibrahim

.
< / xsd :complexType >

< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" r e q u e s t e r C o n t e x t ">

< xsd :complexType >
.

< / xsd :complexType >
< / x s d : e l e m e n t >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Below is a detailed discussion of the XML schema for each
of these components.

7.1. Functional Requirements
The required function definition includes the requirements,
and results. Requirements and results are logical conditions
that can evaluate to either true or false.
< x s d : e l e m e n t name=" f u n c t i o n a l P r o p e r t i e s ">

< xsd :complexType >
< x s d : s e q u e n c e >

< xsd :complexType name=" r e q u i r e m e n t s ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name=" c o n d i t i o n " t y p e =" x s d : s t r i n g "
minOccurs=" 0 " maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >
< xsd :complexType name=" r e s u l t s ">

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" c o n d i t i o n " t y p e =" x s d : s t r i n g "

minOccurs=" 0 " maxOccurs=" unbounded " / >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

7.2. Requester Context
The contextual information of the Thing requester is listed
in this section. It is defined according to the five dimensions
discussed earlier. Below is the XML schema for defining the
requester context.
< x s d : e l e m e n t name=" r e q u e s t e r C o n t e x t ">

< xsd :complexType >
< x s d : s e q u e n c e >

< xsd :complexType name=" C o n t e x t ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name=" L o c a t i o n " t y p e =" x s d : s t r i n g "
minOccurs=" 0 " / >

< x s d : e l e m e n t name=" Time " t y p e =" x s d : t i m e "
minOccurs=" 0 " / >

< x s d : e l e m e n t name=" Date " t y p e =" x s d : d a t e "
minOccurs=" 0 " / >

< x s d : e l e m e n t name=" WhoProvider " t y p e =" x s d : s t r i n g
" minOccurs=" 0 " / >

< x s d : e l e m e n t name=" WhoRequester " t y p e ="
x s d : s t r i n g " minOccurs=" 0 " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

7.3. Non-functional requirements
The non-functional requirements are listed in this section.
It includes required context, cost and constraints. The XML
schema for the elements of the non-functional requirements
is shown below.

< x s d : e l e m e n t name=" n o n F u n c t i o n a l R e q u i r m e n t s ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r e q u i r e d C o n t e x t ">

.
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" c o s t ">

.
< / x s d : e l e m e n t >

< x s d : e l e m e n t name=" c o n s t r a i n t s ">
.

< / x s d : e l e m e n t >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

Required Context. The required context lists any
conditions or rules the requester will have with respect to the
Thing context. Each rule is associated with a priority. Below
is the XML schema for defining required context.

< x s d : e l e m e n t name=" r e q u i r e d C o n t e x t ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " minOccurs

=" 0 " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Cost. Cost information lists the maximum acceptable cost
from the requester’s point of view. A cost is also associated
with a priority. Below is the XML schema for specifying the
non-functional requirement cost.

< x s d : e l e m e n t name=" c o s t ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" v a l u e " t y p e =" x s d : d o u b l e " / >
< x s d : e l e m e n t name=" c u r r e n c y " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" u n i t " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >

Constraints. This section lists the trustworthiness and
quality guarantees that a requester is requiring from a Thing.
It includes interoperability, security, scalability, performance,
and availability guarantees. Each required guarantee is
associated with a priority. Below is the XML schema for
specifying constraints.

< x s d : e l e m e n t name=" c o n s t r a i n t s ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" i n t e r o p e r a b i l i t y " minOccurs=" 0 "

maxOccurs=" 1 ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" s e c u r i t y " minOccurs=" 0 " maxOccurs

=" 1 ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >

10 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

Publication and Discovery of Things in the Internet of Things

< / xsd :complexType >
< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" s c a l a b i l i t y " minOccurs=" 0 "

maxOccurs=" 1 ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" p e r f o r m a n c e " minOccurs=" 0 "

maxOccurs=" 1 ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
< x s d : e l e m e n t name=" a v a i l a b i l i t y " minOccurs=" 0 "

maxOccurs=" 1 ">
< xsd :complexType >

< x s d : s e q u e n c e >
< x s d : e l e m e n t name=" r u l e " t y p e =" x s d : s t r i n g " / >
< x s d : e l e m e n t name=" p r i o r i t y " t y p e =" x s d : i n t " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< / x s d : e l e m e n t >
< / x s d : s e q u e n c e >

< / xsd :complexType >
< / x s d : e l e m e n t >

8. Related Work
This research has introduced an SOA based architecture for
the publication, and discovery of Things in the Internet of
Things. This section is concerned with reviewing related
approaches that uses SOA for IoT. Context, scalability,
dynamic context, discovery, search, rank, and formality were
the criteria used to review the related approaches. Each of
these criteria is crucial for any architecture as discussed in
Section 3.

In [16], the authors aims to integrate business systems with
their manufacturing and logistics processes. This architecture
does consider discovery, search, and ranking of Things. This
is achieved by using a service catalogue and ranking services
based on the program needs during runtime. It also uses
web services, which allows it to be scalable. However, this
architecture does not consider context at all.

In [11], the authors look at the interaction between IoT
and the environment. This is caused by the environment
creating events, rather than receiving input from the user.
This architecture does allow discovery and search-ability of
Things using an IoT Browser but does not have a way to
rank them. The browser also allows users to view statistics
and certain context of sensors and devices based on current
events. The events themselves are viewable and dynamic in
nature. This approach is formal, and does show some coding
and algorithms. However, this research does not consider
scalability.

In [17]. the authors consider IoT Things as resources and
builds an architecture for that. Like other approaches, this one
does consider discovery by using a service broker, but there
is no mention of being able to search or rank these services.
Besides discovery, this approach also allows for scalability in

its architecture by using the Web of Things. This approach
also does not consider any type of context.

In [3], the authors introduce a Discovery Driven SOA. The
architecture allows for the discovery of Things, applications,
and middleware. However, no mention of being able to rank
Things, and only a brief mention of being able to search for
Things using a query. By using SOA for services, middleware,
computing, storage, and applications, there is support for
scalability in this architecture. There was no consideration of
context.

In [12], the authors are heavily concerned with dynamic
context-awareness through context aware applications. This
architecture however, does not allow for any scalability. It
also does not allow for any discovery due to its one-to-one
behavior.

Table 1 illustrates a summary of our study of the related
work. A common theme in all of these architectures is either
some type of context awareness and little to no discovery
options is provided, or no context with discovery option
is provided. None of these architectures support all the
comparison criteria. On the other hand, our novel architecture
satisfies all of these criteria.

[16] [11] [17] [3] [12]

Context No Some No No Yes
Scalability Yes No Yes No No

Dynamic Context No Yes No No Yes
Discovery Yes Yes Yes Yes No

Search Yes Yes No Some No
Rank Some No No No No

Formal No Some No No No

Table 1. Related Work

9. Conclusion and Future Work

This paper has introduced an architecture for the publication
and discovery of Things in the Internet of Things. To support
the architecture, the paper has introduced an architecture for
specifying Things and an architecture for specifying queries.
In additions two XML languages to support the architecture
has been introduced. A prototype has been implemented to
simulate the behavior of our architecture. Our future work,
include a complete implementation of the architecture while
utilizing the scalabiltis of cloud computing to avoid the
scalability issue.

References

[1] DEY, A.K. (2001) Understanding and using
context. Personal Ubiquitous Comput. 5(1): 4–7.
doi:http://dx.doi.org/10.1007/s007790170019.

[2] ERL, T. (2007) SOA Principles of Service Design (Upper
Saddle River, NJ, USA: Prentice Hall PTR).

11 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

http://dx.doi.org/http://dx.doi.org/10.1007/s007790170019

Naseem Ibrahim

[3] GEORGAKOPOULOS, D., JAYARAMAN, P.P., ZHANG, M.
and RANJAN, R. (2015) Discovery-driven service oriented iot
architecture. In 2015 IEEE Conference on Collaboration and
Internet Computing (CIC): 142–149.

[4] GEORGAKOPOULOS, D. and PAPAZOGLOU, M.P. (2008)
Service-Oriented Computing (The MIT Press).

[5] GUBBI, J., BUYYA, R., MARUSIC, S. and PALANISWAMI,
M. (2013) Internet of things (iot): A vision, architectural
elements, and future directions. Future Gener. Comput. Syst.
29(7): 1645–1660.

[6] HARRIS, R. (2007) Soa done right: the amazon strat-
egy, http://www.zdnet.com/article/soa-done-right-the-amazon-
strategy/.

[7] IBRAHIM, N. (2016) A service-oriented architecture for the
provision and ranking of student-oriented courses. ICST Trans.
e-Education e-Learning 3(9): e2.

[8] IBRAHIM, N., ALAGAR, V. and MOHAMMAD, M. (2014)
A context-dependent service model. EAI Endorsed Trans.
Context-aware Syst. & Appl. 1(2): e3.

[9] IBRAHIM, N. and BRANDON, B. (2017) Service-oriented
architecture for the internet of things. In The 4th Annual
Conference on Computational Science and Computational
Intelligence (CSCI’17): 1004–1009.

[10] KRAMER, S.D. (2011) The biggest thing amazon got
right: The platform, https://gigaom.com/2011/10/12/419-the-
biggest-thing-amazon-got-right-the-platform/.

[11] LAN, L., WANG, B., ZHANG, L., SHI, R. and LI, F. (2015)
An event-driven service-oriented architecture for the internet
of things service execution. International Journal of Online
Engineering 11(2): 4–8.

[12] OLSSON, C.M. and HENFRIDSSON, O. (2005) Designing
Context-Aware Interaction: An Action Research Study (Boston,
MA: Springer US), 233–247.

[13] PAPAZOGLOU, M.P. (2008) Web Services: Principles and
Technology (Prentice Hall), 1st ed.

[14] RAY, P. (2016) A survey on internet of things architectures.
Journal of King Saud University - Computer and Information
Sciences .

[15] SHAMONSKY, D. (2015) Internet of things: Context of use just
became more important, https://www.ics.com/blog/internet-
things-context-use-just-became-more-important.

[16] SPIESS, P., KARNOUSKOS, S., GUINARD, D., SAVIO, D.,
BAECKER, O., SOUZA, L.M.S.D. and TRIFA, V. (2009) Soa-
based integration of the internet of things in enterprise services.
In Proceedings of the 2009 IEEE International Conference
on Web Services, ICWS ’09 (Washington, DC, USA: IEEE
Computer Society): 968–975.

[17] VUJOVIC, V., MAKSIMOVIC, M., KOSMAJAC, D. and
PERISIC, B. (2015) Resource: A connection between internet
of things and resource-oriented architecture. In Smart SysTech
2015; European Conference on Smart Objects, Systems and
Technologies: 1–7.

[18] WAN, K. (2006) Lucx: Lucid Enriched with Context. Phd
thesis, Concordia University, Montreal, Canada.

[19] YU, L., YANG, Y., GU, Y., LIANG, X., LUO, S. and TUNG,
F. (2009) Applying context-awareness to service-oriented
architecture. In 2009 IEEE International Conference on e-
Business Engineering: 397–402.

12 EAI Endorsed Transactions on
Internet of Things

01 2018 - 03 2018 | Volume 4 | Issue 14 | e3

	1 Introduction
	1.1 Problem and Contributions

	2 Background
	2.1 Internet of Things
	2.2 SOA
	2.3 Context

	3 Publication and Discovery Architecture
	4 Thing Architecture
	4.1 Informal description of Things
	4.2 Formal description of Things
	Functional Properties
	Non-functional properties

	5 Thing Query
	5.1 Informal description of Query
	5.2 Formal description of Query
	Functional Requirement
	Requester Context:
	Nonfunctional Requirements

	6 Thing Specification Language
	6.1 Functional Properties
	6.2 Non-functional Properties
	Cost
	Context of Thing
	Constraints

	7 Thing Query Language
	7.1 Functional Requirements
	7.2 Requester Context
	7.3 Non-functional requirements
	Required Context
	Cost
	Constraints

	8 Related Work
	9 Conclusion and Future Work

