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Abstract

The number of cases involving Child Sexual Abuse Material (CSAM) has increased dramatically in recent
years, resulting in significant backlogs. To protect children in the suspect’s sphere of influence, immediate
identification of self-produced CSAM among acquired CSAM is paramount. Currently, investigators often
rely on an approach based on a simple metadata search. However, this approach faces scalability limitations
for large cases and is ineffective against anti-forensic measures. Therefore, to address these problems, we
bridge the gap between digital forensics and state-of-the-art data science clustering approaches. Our approach
enables clustering of more than 130,000 images, which is eight times larger than previous achievements,
using commodity hardware and within an hour with the ability to scale even further. In addition, we evaluate
the effectiveness of our approach on seven publicly available forensic image databases, taking into account
factors such as anti-forensic measures and social media post-processing. Our results show an excellent median
clustering-precision (Homogeinity) of 0.92 on native images and a median clustering-recall (Completeness)
of over 0.92 for each test set. Importantly, we provide full reproducibility using only publicly available
algorithms, implementations, and image databases.
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1. Introduction

Today, investigators are faced with a growing volume
of Child Sexual Abuse Material (CSAM) cases [36] and
the data involved often reaches hundreds of thousands
of CSAM instances [11, 41]. Although low in frequency,
CSAM cases with an initial suspicion of actual sexual
child abuse are the highest priority for investigators. In
these cases, it is critical to identify evidence of actual
sexual child abuse as quickly as possible to protect
children from continuing harm. With respect to digital
forensics, the detection of such evidence is primarily the
identification of self-produced CSAM among acquired
CSAM. This is preferably done on the crime scene,
as suggested by the Computer Forensics Field Triage
Process Model (CFFTPM) introduced by Rogers et al.
[42].

∗Corresponding author. Email: samantha.klier@unibw.de

In contrast, most CSAM cases originate from auto-
mated reports based on hash-known CSAM uploaded to
a Electronic Service Provider (ESP), such as the Cyber-
Tipline reports. In 2022, more than 1.5 million Cyber-
Tipline reports were tracked in the US alone, translates
into incomprehensible 4.7 CSAM uploads per 1,000
population [37], flooding digital forensic laboratories.
Although these cases have no initial suspicion of actual
sexual child abuse, there is a non-negligible overlap
between suspects possessing CSAM on the one hand
and committing hands-on sexual abuse on the other, as
noted by Bissias et al. [7].

Investigators are fully aware of this problem and
the demanded triage [11, 22, 42] has become a
fact for CSAM cases, due to limited digital forensic
resources and despite the ethical considerations of
overlooking victims in CSAM cases, as the lesser of
two evils, as pointed out by Casey et al. [11]. However,
the investigators still lack adequate technical and
conceptual support. Therefore, they search for CSAM
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captured by a camera model used by the suspect [38],
which is time consuming, insufficiently reduces the
amount of data, and is futile in the presence of anti-
forensic measures.

Contributions and organization of paper With this
paper we leverage the investigator’s traditional ap-
proach and contribute further steps towards an effi-
cient and effective screening of CSAM for self-produced
CSAM. Our contributions are as follows.

We show that the inherent value of the traditional
approach is that it can be confirmed by any person in
court and avoids technical discussions, but, it struggles
with large image sets and fails in the presence of anti-
forensic measures (Section 2). Therefore, we present
our screening concept, which retains the advantages,
but can be applied to very large image sets (more than
100,000 images), is resilient to anti-forensic actions, and
reduces the required expert time (Section 3).

Our key contribution is the translation of a complex
digital forensic problem into a format compatible with
advanced data science tools, which is by no means
obvious and includes the selection of metadata as
the best-suited data input and the development of a
custom distance metric tailored to the problem domain
(Section 4). Subsequently, we implement a proof of
concept based on the open-source tools UMAP and
HDBSCAN, specifically selected to suit our use case
(Section 5).

This way, we accomplish a significant breakthrough
by successfully clustering more than 130,000 images,
surpassing the previous limitations of clustering sets of
more than 10,000 images, as we show in our evaluations
(Section 6). We perform our clustering in less than 17
minutes once metadata is available or in less than 50
minutes including all steps on commodity hardware
and, as we show empirically, scales linearly with the
number of images, allowing even larger image sets
to be clustered. We evaluate the effectiveness of the
clustering on the basis of seven publicly available
image databases with respect to the source camera and
achieve an excellent median Completeness and good
Homogeneity of more than 0.95 and 0.71, respectively,
even in the presence of anti-forensic measures. Our
approach is able to cluster images after post-processing
by social networks, based on their software stack, with
an excellent median Completeness of 0.97, but with a
low Homogeneity, of less than 0.30.

Finally, we set our approach in context to the related
work in Section 7 and conclude our paper in Section 8.

2. The traditional procedure

We begin our explanation by looking at the final step in
the forensic process, the presentation of the results in

court, which demonstrates the value of the traditional
approach, before pointing out its problems.

The value of the traditional procedure When a
digital forensic investigation is completed, the results
are often reported in a form suitable for non-technical
target groups in courts [10]. Therefore, every fact
presented in the court must be explained in a way that
is understandable to an ordinary person. In our use case
of correlating CSAM images to actual sexual abuse by
a suspect, a sample of the traditional procedure is as
follows: suppose digital forensic analysis reveals two
images on the suspect’s devices that are presented in
court. One image clearly shows the suspect (e.g., the
image contains his face), who is wearing a T-shirt with
flashy pattern and a bruise on the thumb. The second
image shows sexual child abuse conducted by a person
without revealing the face, but in a T-shirt with the
same flashy pattern and with the same bruise on the
thumb.

This is how investigators and prosecutors tradition-
ally proceed [25], linking images based on their actual
content until a connection to the suspect is established.
This brings digital evidence back into the real world
and hence avoids technical discussions in court. Conse-
quently, anyone in a court is able to judge whether a sus-
pect can be considered guilty. But before a prosecutor
can present such evidence in court, the images that link
a crime to a suspect must be found in sets containing
hundreds of thousands of images.

The problem of the traditional procedure Eventu-
ally, an investigator is interested in evidence for sexual
child abuse (ESCA) by the suspect, which is a set of
images, which we denote as IESCA and is a subset of all
images of a CSAM case we define as I = {i1, i2, ..., in}. We
divide the set I into two subsets, ICSAM which contains
all instances of CSAM, and IP which contains all per-
sonal images of the suspect, such as vacation images.
Some of these personal images identify the suspect,
which we denote as IID . Consequently, the set IESCA
contains CSAM images that are also personal images,
as there is some link to images that identify the suspect.
In all we consider the sets

IESCA = {x ∈ IP | ∃x.x ∈ ICSAM ∧ ∃x.x ∈ IID }
IP ⊆ I IID ⊆ IP

ICSAM ⊆ I

Obviously, the identification of I is a standard task in
digital forensics (e.g., due to known magic bytes in the
common file type headers). Furthermore, the extraction
of its subset ICSAM can be achieved for known
CSAM by hash databases (using both cryptographic
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and perceptual hashes) and is increasingly supported
by artificial intelligence approaches for yet unknown
CSAM [25, 39]. But due to their case-specific and vague
definition IP and its subset IID are not generically
extractable and neither is IESCA. For example, an
identifying image may not show the suspect’s face
but rather moles that can be verified with a physical
examination of the suspect.

Therefore, investigators approximate IP roughly by
searching for images that were taken with a camera
model known to be used by the suspect based on easily
and quickly extracted image metadata, such as the Make
and Model fields of the Exif standard [12, 38, 45].
However, this approach has some major issues: (i) It
fails if none of the fields are set, e.g., due to anti-forensic
measures in the form ofExifremover tools that are easily
available and usable. (ii) Obtaining the knowledge of
the cameras used by the suspect is labor intensive and
hardly exhaustive. (iii) It still yields too many images
for an investigator to detect subtle clues in the content,
as this approach is only moderately discriminatory for
popular camera models.

3. Machine Learning based screening

Our goal is to substitute the simple metadata search
applied by investigators today to address the issues
discussed in Section 2, but not to replace the review.
Simply put, enable investigators to review potential
evidence of actual sexual child abuse first.

Figure 1. Clusters of case images
and boundary conditions of our
approach

Therefore, we
propose a two-
phase approach,
as shown in
Figure 1. First,
all images must
be divided into
packages based
on a sort criterion,
as represented by
the boxes; this will be the focus of this paper.

Next, these packages need to be prioritized for
review by an investigator (as indicated by the left-to-
right arrow) based on additional information, such as
hash-based CSAM detection, which represents known
CSAM (black exclamation mark) and AI classification,
which represents unknown CSAM (black bolt). To find
potentially self-produced CSAM right away, clusters
containing unknown CSAM and images identifying
the suspect (first package) must first be reviewed. On
the contrary, clusters containing hash-known and AI-
detected CSAM will be given a lower priority. This may
seem counterintuitive at first, but simply finding CSAM
is no longer the challenge; our goal is to find evidence
of actual sexual child abusefast.

This process must work within the constraints shown
at the bottom of Figure 1. Due to time constraints and
the limited number of experts available, the time spent
on a case by an expert must be minimized. Therefore,
we consider a case to be a black box, as any insight into
the case must be elaborated. Furthermore, we expect a
case to contain at least 100,000 images, and thus the
screening must scale well to very large image sets. To
make matters worse, we may also be confronted with
anti-forensic measures. Consequently, we address each
of the three main issues of the traditional approach
pointed out in Section 2.

4. Clustering concept
We will now focus on the first step of sorting images
into packages, for which we use a clustering approach,
as it is superior to classification for the given use case.
Subsequently, we turn to formulating our problem in
a way that is understood by tools of the data science
community, which includes adequate data input and
the development of a problem specific distance metric.
Finally, we present the metrics on which we will
evaluate our approach.

4.1. About clustering
According to Bouveyron et al. [8] the general goal
of clustering is to find meaningful groups of data.
Typically, the data in these groups will be internally
cohesive and separated from one another based on a
discriminating property. Hence the purpose is to find
pairwise distinct groups whose members have some-
thing in common that they do not share with members
of other groups. Unlike classification, clustering does
not require a training set, is unsupervised, and operates
without knowledge on existing classes, which is advan-
tageous for our constraints. However, the disadvantage
is that the clusters are not labeled and therefore need
to be given meaning in the subsequent prioritization
phase.

A clustering function cluster in general compares
members of the set of all images I and yields a set of
clusters C, that is the members of C are depicted as the
different packages in Figure 1:

C = cluster(I) = {IC1
, IC2

, ..., ICn
}

For 1 ≤ k ≤ n, a cluster is inhabited by |ICk
| images.

The data science community offers many clustering
approaches as open-source software, e.g. the clustering
module of scikit-learn1. Although translating a problem
from digital forensics to data science is challenging, it
enables us to use the most sophisticated tools available

1https://scikit-learn.org/stable/modules/clustering.html
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for clustering and concentrate mostly on the digital
forensics part of our research.

4.2. Adequate data input
First, we need to select the discriminating property
for clustering, which in digital forensics is usually the
source camera or model. The sensor pattern noise (SPN)
(also referred to as Photo Response Non-Uniformity
(PRNU) or simply camera fingerprint) in different
variations is widely used to determine the source
camera of an image and has been successfully used for
image clustering, for example, by Marra et al. [30] and
Lin and Li [27], who clustered nearly 10,000 and 16,000
images, respectively. However, extracting the SPN is
computationally expensive, as recently demonstrated
by Bernacki [5], who found that the average time to
compute the SPN on commodity hardware is in the
range of 45-140 seconds, depending on the method.
As we aim for a screening approach with an input
of more than 100,000 images the computation of the
SPNs, which would need approximately 52 days2, is
unbearable.

Therefore, we propose to use image metadata as the
cheapest discriminatory feature available. The most
commonly known type of metadata for users and
investigators alike is Exchangeable Image File Format
(EXIF) [12]. EXIF includes the aforementioned Make
and Model fields that directly refer to the capturing
device, but also fields pointing to, e.g., a location based
on GPS data. However, the metadata saved in images
is not completely standardized and is not limited to
EXIF [15]. Therefore, the metadata fields that can be
extracted from an image set are unknown beforehand.
This makes it impossible to select significant fields in
advance, a problem also encountered by Mullan et al.
[33, 34], who in turn resorted to quantifying the field-
value pairs they encountered.

With this approach Mullan et al. [33] achieved a
classification accuracy of 0.61 for the identification of
iPhone models and a much higher value of 0.80 for iOS
versions, respectively, which confirmed their assump-
tion that for smartphones the constantly updating soft-
ware stack, incl. the operating system and imaging apps
interfere with source model identification. However, we
aim at finding related images rather than images from
the same model, and hence appreciate the impact of
the software stack as, e.g. it reflects user habits and
time. But, the approach of quantifying the number of
set field-value pairs will fail in the presence of anti-
forensic measures. Therefore, we propose to extend the
approach by taking into account all metadata with their
concrete content.

2 45∗100,000
60∗60∗24 ≈ 52, 08

Therefore, we let the extracted metadata of an image
ij ∈ I be mij . We model the metadata element mij as a
set of field-value pairs

mij = {(f1, v1j ), (f2, v2j ), ..., (fl , vlj )}.

Note that the fields in mij depend on the fields extracted
from the entire image set I . Therefore, the values of the
metadata element mij are empty if the corresponding
field is not set in the image ij . We denote the actual
number of fields set in the image ij by |mij |, which is
as unknown as the contents of the field-value pairs.

4.3. Distance metric
Fortunately, this level of uncertainty is unproblematic
for general-purpose clustering algorithms, as they are
designed to be applicable to any kind of data. However,
to work, they need a metric that computes the so-
called distance between two data elements on which
the clustering results are based. Many general-purpose
distance metrics are available, such as Euclidean or
Jaccard, but to be able to incorporate the knowledge we
have about our particular use case, we define our own.
The two most important factors in our data is the actual
content, but also the number of fields set (i.e. |mij |).

We consider the actual content of the metadata by the
agreement between two metadata elements as defined
in Equation (1) which is the number of identical field-
value pairs. Therefore, agreementserves to measure the
match between the two metadata elements as a non-
negative integer.

agreement(mix , miy ) = |mix ∩miy |. (1)

However, the maximum possible agreement depends
on the number of fields actually set (=|mij |), which
can vary significantly between two images, even if
they are related. This is true not only if anti-forensic
measures have been applied to the images, but also
if, for example, the GPS has been disabled while one
of the images was taken. Therefore, we normalize the
agreement with respect to the minimum number of
fields set in the metadata elements.This means that if
there are only a few fields in a metadata element, the
absolute agreement is low, but the relative agreement is
actually high. Accordingly, the distance function for our
clustering is

dist(mix , miy ) = 1 −
agreement(mix , miy )

min(|mix |, |miy |)
. (2)

4.4. Evaluation metrics for the clustering
Despite the adherence to our general constraints
presented in Section 3, we evaluate the results of

4
EAI Endorsed Transactions on 

Internet of Things 
| Volume 10 | 2024 |



Scalable Image Clustering to screen for self-produced CSAM

our clustering in terms of efficiency and effectiveness
in Section 6. While efficiency is measured in terms
of practical runtime (in our setting on commodity
hardware), we evaluate effectiveness based on ground
truth labels as provided by forensic image databases
with respect to the source camera and software stack
(source camera, including the image capture app and
post-processing, e.g., by Facebook).

Since we are clustering, it makes no sense to use
any of the well-known classification metrics, such as
accuracy, precision or the F1 score [43]. Therefore, we
use evaluation metrics that are well established in the
data science and clustering community:

1. ARI: The Adjusted Rand Index (ARI) is the
standard metric to determine the accuracy of a
clustering algorithm [18]. The ARI is adjusted
for chance and bounded between [−1, 1]. A score
of 0 indicates the result achieved by a random
approach, and a score of 1 implies complete
accordance to the ground truth classes.

2. COMP: The Completeness (COMP) is a suitable
metric for effectiveness in the given use case, as
it measures how well a clustering keeps items
of the same class together [43], and is thus the
clustering counterpart to recall. A Completeness
of 1 indicates a perfect outcome which means
that items with a certain discriminative property
are actually assigned to the same cluster. Thus,
related images will be reviewed together for high
completeness scores. We aim at a Completeness of
0.90 or higher.

3. HOM: The Homogeneity (HOM) is a second
suitable metric for effectiveness in our use case, as
it measures how well a clustering separates items
of different classes [43], and thus is the clustering
counterpart to the precision. A Homogeneity of
1 indicates a perfect outcome which means that
every cluster is inhabited by items of one class
only. Therefore, the investigator only needs to
review related images. On the other hand, a low
Homogeneity score means that an investigator
needs to review more images than necessary, but
evidence is preserved.

4. REJR: The clustering can refuse to assign elements
to a cluster; therefore, we compute a Rejection Rate
(REJR) which is the number of rejected elements
divided by all elements. An investigator must
review these images to preserve evidence.

In general, we consider the evaluation metrics COMP
and HOM (as proposed by Rosenberg and Hirschberg
[43]) to be more important than ARI and REJR because,
for example, investigators should find images taken
by the same individual camera in the same cluster

(as measured by COMP) and, if possible, only by that
specific camera (as measured by HOM).

5. Implementation
Our proof of concept is based on Python and on
open source software of the data science community,
extracted metadata and the proposed distance metric
dist (see Equation (2)). All parts of our implementation
are open, and available from our cloud storage3.

Metadata extraction For our implementation we
extract the metadata with ExifTool4 because it is open
source, well known in the digital forensic community,
can easily be used in the field, is updated regularly by
a strong community and provides machine-processable
output in the form of a CSV file. Additionally, it
extracts metadata from a plethora of fields, such as
Extensible Metadata Platform (XMP), ICC profiles,
information about the encoding process, and many
more, not just EXIF, as the name suggests. However,
any other tool for metadata extraction can be used
that yields field-value pairs, but the distance metric,
especially the intersection of its agreement calculation
(see Equation 1), must be implemented appropriately.

Reducing the dimensionality From a large image
set, significantly more than 100 unique metadata
fields can be extracted, as shown in Table 2, so the
problem is highly dimensional. To boost the clustering
performance [3], we first reduce the dimensionality
of the problem using UMAP [32], an open source
tool compatible with the well-known scikit-learn.
UMAP takes the high-dimensional input data and
generates, based on the custom distance metric dist (see
Equation (2)), an embedding in a lower dimension. With
the dist metric we have full control over what being
related means to UMAP, but it also means that it is
impossible to identify which metadata proved to be the
most discriminating.

We implement the agreement part of the dist
metric (see Equation 1) based on numerical and
string equality. This means, for example, that a close
location as represented in GPS metadata will not
be counted as an agreement , because the string
’16.682329, 64.781043’ of the GPS Position field
fails to be string equal to ’16.682339, 64.781258’,
though being very close. The same is true for other
fields, as well, be it the position of the thumbnail saved
in the header or simply the file size. Therefore, more

3https://cloud.digfor.code.unibw-muenchen.de/s/AICSEC_
ScalableImageClustering
4version 12.54 and execute with the arguments -rb,https://
exiftool.org/
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profound implementations of agreement are possible,
but they exceptionally increase the execution time.

Otherwise, the results of UMAP are highly influenced
by the parameter n_neighbors which indicates how
many nearest neighbors UMAP should expect. This
value is usually tuned to a specific problem in the range
from 2 to 100. However, as we aim for an approach that
is generic and applicable to any image set without prior
knowledge of its structure, we keep this parameter
fixed in the center of its range (i.e. a value of 50)
throughout our evaluation in Section 6. Additionally,
we initialize UMAP with a fixed seed5 and thus, UMAP
yields repeatable results, but this setting reduces the
runtime efficiency.

The result of UMAP is an embedding of the given
data in two-dimensional space, so we have Cartesian
coordinates that we can visualize, as shown in Figure 4,
and already reveal clusters perceivable by human
perception. Note that we do not draw a coordinate
system because the coordinates themselves have no
meaning, only the distances between each point have.

Clustering Next, we use the low-dimensional embed-
ding of our data as input for HDBSCAN [9, 31] which
finally assigns clusters to our images. The HDBSCAN
algorithm is a density-based, hierarchical clustering
method, that provides a hierarchy from which a simpli-
fied tree of significant clusters can be constructed. We
make use of HDBSCAN as it is density-based, which
means that clusters can have any form or size. In con-
trast to the best-known clustering algorithm, k-means,
extensive knowledge of the data, such as knowing how
many sources are involved, is unnecessary, which is
important given the black-box constraint. Additionally,
HDBSCAN prefers to reject data from clustering instead
of being wrong, which enables investigators to review
borderline images separately.

Similarly to UMAP, HDBSCAN has a parameter, i.e.
min_cluster_size, which highly influences its results
and indicates how many images in one cluster are
expected. Therefore, we set this value accordingly
to n_neighbors (i.e. a value of 50), throughout our
evaluation in Section 6. In contrast, to UMAP, we use
HDBSCAN with its default metric (i.e. Euclidean), as
we transformed our problem with our custom distance
metric to Cartesian coordinates. Finally, HDBSCAN
assigns a label from 0 to |C| − 1 to the images, indicating
to which cluster a image belongs or −1 if the image was
rejected from the clustering.

6. Evaluations
We now discuss the image databases used for our eval-
uations, which includes their metadata composition.

5so called random_state, set to 42

Table 1. Overview of the image databases used, including
year of publication, device types and the number of native,
social media post-processed and total images, as well as the
number of devices and models available.

database published device types native images social media total devices models
IMAGINE not yet SP, DC, AC, UAV 2,465 0 2,465 66 59
PrnuMD 2021 SP 550 0 550 22 17
FODB 2021 SP 3,851 19,255 23,106 27 25
SOCRatES 2019 SP 9,745 0 9,745 102 58
HDR 2018 SP, TAB 5,415 0 5,415 23 21
VISION 2017 SP, TAB 11,732 22,695 34,427 35 29
DIDB 2010 DC 14,713 0 14,713 68 24
Total 48,471 41,950 90,421 343

We then evaluate runtime efficiency, source camera
clustering, and source software stack clustering, all of
which were conducted on a regular laptop6. Finally, we
sum up the limitations of our approach.

6.1. Image databases for verification
The image test sets for our proof of concept are based on
seven publicly available forensic image databases. The
ground truth in terms of the source cameras and the
social media post-processing are known, respectively.
We give a summary of the databases used in Table 1,
where the term native refers to images that are available
as stored by the source camera, and images of the social
media category have been post-processed by a social
media service.

Of course, these databases are not a perfect fit for the
intended use case, but evaluating our approach under
controlled conditions is a necessary intermediate step
before challenging real-case data.

In total, we have 48,471 native images from 343
unique devices and 41,950 images post-processed via
social media for our tests available. Each database
contains at least two devices of the same model to
test if an approach can distinguish devices even if
they are of the same model. Finally, we report what
types of devices are included. Most databases primarily
contain images from smartphones (SP) and digital
cameras (DC), but some databases also include images
from drones (unmanned aerial vehicles, UAV), action
cameras (AC), and tablets (TAB).

To obtain as many images as possible for a large-scale
test, the IMAGINE database was included, although it
is not yet published. However, it has been announced
and used by Bernacki et al. [6] and is publicly available.
It is also the database with the largest variety of device
types.

The PrnuModernDevices (PrnuMD) database, propo-
sed by Albisani et al. [2], focuses on images captured
in different modes as offered by modern smartphones.
Therefore, every device was used to capture images
in its native and bokeh mode. The latest smartphone
model included is from 2019 (Apple iPhone11) and,

6i7-1165G7 CPU, 32 GB RAM, SSD, Windows 11
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as such, is the most recently published one of all
databases. The PrnuModernDevices database is the
smallest of all and contains only about 25 native images
per device.

The subsequent recent database is the Forchheim
Image Database (FODB), proposed by Hadwiger and
Riess [17]. Every incorporated device was used to
capture the same scenes under the same conditions.
This means that each of the 27 images has the same
content and each device contributes the same number
of images. Furthermore, each image was post-processed
using Facebook, Instagram, WhatsApp, Telegram, and
Twitter, respectively.

In contrast, the SOCRatES database, proposed
by Galdi et al. [13], has been created from submissions
of the smartphone owners themselves. Most impor-
tantly, this introduces heterogeneity in the data, e.g. due
to different habits or software versions. The smartphone
owners followed a simple guideline to capture the im-
ages that i.a. instructed them to capture 50 images of
the blue sky or another uniformly colored surface (so-
called flat images) and 50 images of any kind of scene.
This means that there are approximately 100 images
available for each device, 50 of which were taken under
nearly identical conditions and content.

Next the HDR database, as proposed by Al Shaya et al.
[1], focuses on images captured in High Dynamic Range
(HDR) or Standard Dynamic Range (SDR) mode. This
database also includes shaky images, and about half of
the available images are flat images.

The VISION database, proposed by Shullani et al.
[44], offers native images (and videos that are not
considered for this paper) from portable devices in their
native state (incl. flat images), as well as post processed
by social media. With a native image to device ratio of
335, VISION offers more native images per device than
any other included database.

The Dresden Image Database (DIDB) from Gloe and
Böhme [16] was published 2010 and is the oldest
database that we included and offers only images from
digital cameras. The Dresden Image Database (DIDB)
is no longer available at the published address, but
we were able to obtain a copy (which we provide via
our cloud service7), though not identical to the original
DIDB, as devices and images are missing. With a device-
per-model ratio of 2.83, the DIDB contains more devices
per model than any other included database.

6.2. Metadata analysis
First off, we show the results of our ExifTool-based
metadata extraction from the images of each database
in Table 2. The native column shows that there are a

7https://cloud.digfor.code.unibw-muenchen.de/s/DIDB

"Create", "Modify", "Access", "SourceFile",

"^File", "Directory"

Figure 2. Regexes to exclude fields that would leak the
database structure.

minimum of 168 (VISION database) and a maximum of
999 (IMAGINE database) that can be extracted from the
set of native images in each database. In total, we find
1,304 unique metadata fields across all databases. The
most unique fields of native images can be extracted
from the database with the most diverse device types,
i.e. IMAGINE.

Table 2. Overview of the number
of extracted unique metadata fields
by image type. Total refers to the
number of unique fields over all
databases.

database native
removed
Exif

social
media

IMAGINE 999 99 -
PrnuMD 288 174 -
FODB 189 74 59
SOCRatES 335 131 -
HDR 195 86 -
VISION 168 46 62
DIDB 395 32 -
Total 1,304 296 69

For the next
column removed
EXIF we consider
the number of
unique fields
that remain af-
ter the removal
of allExiffields.
Unsurprisingly,
the removal ofEx-
ifinformation re-
duces the number
of extractable
metadata fields
tremendously, but
not completely, as at least 32 (DIDB) and at most
174 (PrnuMD) metadata fields are still available.
In total, 296 non-EXIF metadata fields are present
across all databases. For example, these fields con-
tain technical metadata (e.g. ChromaticAdaptation,
ConnectionSpaceIlluminant) and are usually not
deleted to remain private because they are used to
display an image correctly. The most unique non-
EXIF fields can be extracted from the database with
the newest devices, i.e. PrnuMD.

However, as the last column in Table 2 shows, the
worst effect in terms of extractable metadata is due
to post-processing by social media applications, which
not only removes most of the metadata but may even
change it, as observed by the IPTC [19].

Due to the sheer volume, we are not able to
understand the meaning of each of the 1,304 fields
extracted, but fortunately, this is unnecessary, since
we are only interested in the patterns we can detect
through our clustering approach. However, for our
proof of concept, we need to exclude some metadata
fields that would leak the unnatural structure of the
databases into our results, which mainly refers to the
location of the images on the runtime system, the
various file timestamps, and the file names. Therefore,
we excluded any field that matches any of the regexes
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shown in Figure 2. However, when clustering an image
set from a real case, this metadata is valuable and
should not be excluded.

6.3. Runtime efficiency

In all, we performed 37 runs containing between 550
and 138, 892 images to evaluate the runtime efficiency
which must be differentiated between the metadata
extraction phase and the clustering phase.

In general, the time needed to extract the metadata
scales linearly with the number of images and the size
of their headers and depends mostly on the speed of
the storage. For a large-scale test, we created a real-
life-sized test set of 138, 892 images containing every
native and post-processed image from each database,
plus a copy of every native image with removed Exif
information. Extracting the metadata for these 138, 892
images took 33 minutes on our runtime system,
which translates into a processing speed of about 70
extractions per second.

After the metadata extraction phase, the cluster-
ing phase consists mainly of computing the distances
between the images. UMAP and HDBSCAN approx-
imate the pairwise distances with a nearest-neighbor
approach and therefore avoid computing the distances
for all possible n·(n−1)

2 pairs. Figure 3 shows the em-
pirical results for each set of tests with respect to the
number of images included and the time required for
the clustering, as well as a linear trend line (R2 = 0.86).
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Figure 3. Clustering times of test sets
(blue) and linear trend line (red).

Although
the scaling
complexity
of our clus-
tering can
be generally
described as
linearly de-
pendent on
the number
of images,
it also de-
pends on the
difficulty of
the problem.
For example, the four test sets of approximately 50, 000
images each take between 260 and 560 seconds, almost
a twofold difference, while containing the same number
of images. These test sets contain the native images
of all databases with different levels of anti-forensic
measures (see Section 6.4 for details). However, there
is no obvious correlation between the amount of anti-
forensic measures applied, the number of metadata
fields extracted, the heterogeneity of the data, etc. and
the time required for clustering.

In summary, our approach applied to a real case-
sized test set requires less than 17 minutes for
the clustering phase, along with the 33 minutes for
metadata extraction, for a total of 50 minutes for both
steps. As a key result in terms of runtime efficiency, our
metadata-based approach is able to cluster more than
130,000 images, well over eight times more than any
previously proposed approach [21, 24, 26, 27, 30, 40],
in less than an hour on commodity hardware, and is
expected to scale linearly with the number of images.

6.4. Source Camera Clustering
Table 3. Results of the clustering evalu-
ated to the source camera of an image with-
out anti-forensic measures.

test set REJR ARI HOM COMP
IMAGINE 0.1927 0.5642 0.7797 0.9957
PrnuMD 0.5800 0.3399 0.4683 1.0000
FODB 0.0104 0.9292 0.9778 0.9789
SOCRatES 0.0923 0.8108 0.9323 0.9769
HDR 0.0669 0.6916 0.9863 0.8221
VISION 0.0934 0.7039 0.9585 0.8420
DIDB 0.0642 0.3055 0.7152 0.6619
ALL 0.0735 0.5790 0.9008 0.8642

median 0.0829 0.6353 0.9166 0.9206

Because in-
vestigators
usually look
at the source
camera of
an image to
find related
images, we
evaluate the
results of
our cluster-
ing against
the known
source cameras of the images.

Each test set contains every native image of the
corresponding database, while the ALL test set contains
the native images of all databases. We first explain the
results per database when no anti-forensic measures
were applied; the results are shown in Table 3. We then
apply anti-forensic actions to an increasing number of
images and explain the results based on the median of
our metrics, as shown in Table 4.

Results for native images While the results vary con-
siderably from database to database, the Completeness
is > 0.8 (except for the obsolete DIDB), the Homogene-
ity is > 0.7 (except for PrnuMD), and the Rejection
Rate is < 0.1 (except for PrnuMD and IMAGINE). In
the following, we present an example of an exceptional
successful result by discussing the results for the FODB,
and then explain the reasons and implications for the
weak clustering performance of DIDB, PrnuDB, and
IMAGINE.

Figure 4 shows the complete low-dimensional
embedding of the FODB. The dots represent the images
contained in the FODB, and the colors indicate to which
source camera they belong to. Overall, we can see clear
and coherent clusters with some errors. For example,
images from a Google Nexus 5 (orange) are split into
two clusters, while images from the two Huawei P9lite
devices (light and dark brown) are clustered together.
Interestingly, the two Samsung Galaxy A6 devices (red
and yellow) are well separated due to different software
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versions. A more quantitative overview of the clusters
with respect to their source cameras is shown as a heat
map in Figure 5.

The columns show the source cameras, the rows show
the clusters, and the last row shows the rejected images.
The lighter the color of the box, the more images are
assigned (see the scale on the right). We can see that
most columns and rows (except the last one) have only
one yellow box, which means that most source cameras
have all their images assigned to exactly one cluster,
which is an almost perfect outcome.

In contrast, we will now illustrate an extraordinarily
bad result using the example of DIDB, for which

Figure 4. The low-dim. embedding of the FODB. The colors
indicate images belonging to a specific source camera.

Figure 5. Assignments of images from a specific source
camera to a cluster for FODB.

we show a section of its low-dimensional embedding
in Figure 6. The figure shows the images from four
source cameras of the same Nikon digital camera
model. The clustering approach produces two clusters
from the low-dimensional embedding and also rejects
some images. This effect occurs for several models of
the DIDB and is reflected in low ARI, Homogeneity,
and Completeness. Although the devices of old digital
camera models are indistinguishable by their metadata,
a fine-tuning of the used clustering parameters, which
are too subtle here, could at least prevent the splitting
into two clusters and thus improve the result in terms
of Completeness.

Figure 6. Section of the low-dim.
embedding of the DIDB. The colors
indicate the images belonging to a
specific source camera. Shown here:
all four devices of the Nikon CoolPix
S710 DC.

On the other
hand, the pa-
rameters used
are too coarse
for the PrnuMD
and IMAGINE
databases, which
contain very few
images per device;
PrnuMD and
IMAGINE have
a ratio of 25 and
37 images per
device, respec-
tively. Thus, these
databases score
almost perfectly
on Completeness, but at the cost of a high rejection rate,
low Homogeneity and ARI. Figure 7 shows the heatmap
of IMAGINE’s clustering, with several boxes per row
reflecting the high Completeness but low Homogeinity.

In summary, the median ARI of 0.63 across all test
sets is too low for the identification of the source
camera. However, our clustering achieves a median
Completeness and Homogeneity of 0.92, effectively
keeping images from the same source camera together
while separating them from others and is therefore
sufficiently effective for our sorting phase, as desired.

Results in the presence of anti-forensic measures
Using the same test sets, we again evaluate against the
source camera of the images, but this time apply anti-
forensic measures to 5%, 10%, and 100% of the images
in each test set by removing their Exif information. Note
that the corresponding native images are not part of
the test sets. Table 4 shows the median value of each
metric achieved across all test sets and detailed results
are shown in the Appendix (see Table I.1).

The median Completeness for test sets without
anti-forensic measures is 0.92 and increases with the
introduction of anti-forensic measures to 0.99, while
the rejection rate decreases. This is counterintuitive at
first, but can be explained by Homogeneity and the
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Figure 7. Assignments of images from a specific source camera to a cluster for IMAGINE.

percentage of images
with removed Exif

median
REJR

median
ARI

median
HOM

median
COMP

0% 0.0829 0.6353 0.9166 0.9206
5% 0.0534 0.3245 0.7179 0.9547
10% 0.0253 0.3246 0.7184 0.9594
100% 0.0102 0.2755 0.7133 0.9909

Table 4. Median metrics achieved across all test sets.

ARI. The median ARI drops from 0.63 to less than
0.33, while the median Homogeneity drops from 0.92 to
less than 0.73. In particular, the achieved ARI is really
bad, indicating that the clustering is no longer able to
distinguish between the different devices.

However, this means that our clustering will group
images from devices that could be the source of images
with removed Exif information, which is exactly what
we want. In Figure 8 we illustrate this effect using two
clusters of the SOCRatES test set with 10% of images

Figure 8. Section of the low-dim. embedding of SOCRatES.
Native images are marked by an asterisk, images with
removed Exif are marked by a circle.

with removed Exif information as an example. The left
cluster contains images from six devices and the right
cluster contains images from three devices.

Let us assume that all images with Exif information
removed from Device 173 (magenta in Fig. 8) are self-
produced CSAM. In this case, knowing that these
images are related, an investigator would carefully
review all 500 images from the left cluster and would be
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presented with every image from Device 173, including
every image with removed Exif information. This is
a significant improvement, as an investigator would
normally have to review all 9, 745 images or rely on
the Make and Model fields and miss the self-produced
CSAM altogether.

6.5. Source Software Stack Clustering
We now evaluate images from FODB and VISION that
were post-processed by social media for the source
device and the social media type, which is effectively
the software stack that generated the image. The results
obtained are shown in Table 5.

Table 5. Results of the clustering evalu-
ated by social media type and to the source
camera of an image.

social media
type REJR ARI HOM COMP

FODB
telegram 0.0000 0.0483 0.2779 0.9668
instagram 0.0000 0.0330 0.1839 0.9303
whatsapp 0.0000 0.0572 0.2770 0.9683
twitter 0.0000 0.1401 0.4353 0.9834
facebook8 0.0000 0.0288 0.1879 0.9623
median 0.0000 0.0483 0.2770 0.9668

VISION
facebook high 0.0000 0.0545 0.3089 1.0000
facebook 0.0000 0.2706 0.6178 1.0000
whatsapp 0.0000 0.0543 0.2993 1.0000
median 0.0000 0.0543 0.2779 0.9683

Obviously,
the clus-
tering is
unable to
distinguish
the differ-
ent source
devices, as
indicated
by the ex-
tremely low
ARI across
all test sets,
which was
expected
due to the detrimental effect of social media on
metadata (see Table 2). However, the images from a
source camera that were post-processed with a specific
type of social media are reliably clustered, as indicated
by a COMP of above 0.93 across all software stacks.

On the other hand, the medium HOM indicates
that the clusters contain images from several source
devices that were post-processed with the same social
media, which we illustrate with a section of the low-
dimensional embedding of the FODB in Figure 9.
The large cluster in the lower left corner shows
concentrated images of Facebook from different source
devices. Interestingly, the images of some devices
are distinguishable by our clustering approach (small
clusters on the top and right) because some metadata
survived the social media post-processing. Therefore,
even if the remaining metadata is insufficient to
cluster the images by their source devices, they can
be successfully clustered by social media type with
respect to the source device and, therefore, be reviewed
together.

6.6. Summary of Limitations
As discussed in the preceding subsections, there are
several limitations to our approach at the moment. Of
course, if there is only a limited number of metadata
available, the clusters will be undifferentiated, as

Figure 9. Section of the low-dimensional embedding of
FODB’s social media images. Colors indicate belonging to a
device and the shape the social media type.

observed for the old cameras of the DIDB, for images
that have been post-processed by social media or images
with removed Exif data. Furthermore, the metadata
extraction at the moment is based on the output of
ExifTool which may not provide all metadata available
in the images, and the used string equality is only a
coarse abstraction of the similarity it measures. Despite
these limitations, the biggest challenge is the proper
determination of the clustering parameters.

7. Related Work
In 2011, image metadata was used by Kee et al. [23] for
image authentication and source model identification
in traditional digital cameras. Kee et al. focused on
the EXIF headers and other technical metadata, such
as Huffman coding and quantization tables. They
quantified the number of fields set in certain areas of
theExifheaders, rather than analyzing the actual data
stored. Kee et al. showed that 62% of cameras and 99%
of brands had a unique signature in their experiments
based on 2.2 million images downloaded from Flickr,
demonstrating for the first time the efficiency and
effectiveness of metadata-based approaches.

This approach was applied to Apple smartphones
by Mullan et al. [33], who assumed that the widely
varying software stacks of smartphones posed a
challenge to identify the source camera based on
metadata. Mullan et al. omitted the Huffman coding
and used the quantization tables and the signature
of theExifheader to show that the approach actually
identifies the software stack rather than the smartphone
model. Since we are not primarily interested in the
exact identification of a specific source device, model,
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or brand, we value the identification of the software
stack as it is also a meaningful relationship of the
images. Mullan et al. achieved an accuracy of 0.82 for
the classification of the iOS version and 0.65 for the
classification of the smartphone model. Mullan et al.
[34] also used this approach to classify the make of a
previously unseen camera model.

Unlike these previous works, our approach uses the
actual content of the metadata, since counting the
number of set fields fails in the presence of anti-forensic
measures characterized by metadata deletion. Mullan
et al. [34] also point out that image metadata has
received little attention so far because it is often claimed
to be easily manipulated. In this paper, we show that,
while the complete removal ofExifinformation makes
the identification of a specific source camera precarious,
it still allows the identification of related images.

In addition, Mullan et al. [34] highlights the open
set problem, as it is impossible to have a generic, up-
to-date, or even case-specific database of devices and
models at hand. This is a reality that was also noted
by Gloe [14] and picked up by Lorch et al. [28], who
proposed an approach to prevent silent classification
failures. Since we do clustering instead of classification,
we completely avoid this problem, which is also pointed
out by Marra et al. [30].

Marra et al. [30] clustered a subset of images from the
DIDB based on their SPN. SPN based approaches have
been established by Lukas et al. [29] and receive the
most attention in the digital forensics community for
identifying an image source due to their accuracy. But
fingerprint extraction is computationally expensive, as
we show in Section 4.2, making it an inappropriate
choice for a screening approach. Consequently, Marra et
al. clustered a relatively small image set, which totaled
9, 538, and estimated that the scaling of their clustering
runtime efficiency is quadratic (O(|I |2)) which makes
the application in a real case impractical.

However, they report an ARI of 0.821 for their
largest test set, which is based on the DIDB with
39 devices from ten models, which is significantly
higher than the ARI achieved by our metadata-based
approach for the DIDB (i.e. 0.3065). Unfortunately,
other performance metrics are not available for
comparison. Recent studies [2, 4, 20] have shown
that SPN-based approaches are generally not suitable
for images captured by modern smartphones, as they
may be subject to extensive and instantaneous post-
processing, such as background blurring, putting doubt
on their accuracy today.

8. Conclusion and Future Work
No one knows how much of the CSAM encountered
in investigations is self-produced and therefore doc-
uments sexual abuse of children by the suspect; we

only know how much we find. The digital forensics
research community focuses on identifying source de-
vices or models with high accuracy, while sophisticated
approaches to screen large data sets are also desperately
needed. While there is value in accuracy, it is not
the most important metric for a screening approach.
Most important is the scalability to enormous data sets
while keeping related evidence together, as measured
by Completeness.

Therefore, we propose a clustering approach that
utilizes cost-effective metadata, as a first step toward
truly scalable screening for self-produced CSAM among
acquired CSAM. Although this is only a first step,
our approach is able to successfully cluster more than
130,000 images in less than an hour on a regular laptop
while keeping related images together even in the
presence of anti-forensic measures. Thus, our approach
is a major improvement over the basic Make/Model-
based search used by investigators today.

In our future work, we will address that currently,
the quality of the clustering is dependent on the fit
of the clustering parameters to the problem. Since our
boundary conditions necessitate that a case is a black
box, we must tune the parameters at runtime based on
internal clustering metrics that do not rely on a known
ground truth, such as the Silhouette Coefficient. This
implies that the clustering must be repeated multiple
times to adjust parameters, which is computationally
expensive and may require a surrogate optimization
approach [35].

Despite that, after the first successful evaluation of
our clustering approach we will target more realistic
data sets and also intend to include movies. We are
confident that a metadata-based clustering will serve as
an ideal foundation for the next step in our screening
process, prioritization.
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I. Effectiveness results in presence of anti-forensic
measures

In Table I.1 we present our detailed results of the
effectiveness of our approach, if anti-forensic activities
are used. The discussion of the results is given in
Section 6.4.

Test Set REJR ARI HOM COMP
5% of images with removedExifvalues

IMAGINE 0.0832 0.3394 0.6920 0.9951
PrnuMD 0.1364 0.3095 0.5052 0.9333
FODB 0.0052 0.5447 0.7892 0.9724
SOCRatES 0.0503 0.3870 0.7640 0.9880
HDR 0.0467 0.6859 0.8902 0.9188
VISION 0.0291 0.2643 0.7087 0.9273
DIDB 0.0646 0.1857 0.5181 0.9448
ALL 0.0565 0.2237 0.7271 0.9645
median 0.0534 0.3245 0.7179 0.9547

10% of images with removedExifvalues
IMAGINE 0.0592 0.3927 0.7144 0.9990
PrnuMD 0.1000 0.3586 0.5563 0.9428
FODB 0.0254 0.5500 0.8040 0.9622
SOCRatES 0.0000 0.2905 0.7331 0.9909
HDR 0.0124 0.7422 0.9131 0.9348
VISION 0.0165 0.2644 0.6988 0.9329
DIDB 0.0252 0.1669 0.5064 0.9565
ALL 0.0405 0.2221 0.7224 0.9653
median 0.0253 0.3246 0.7184 0.9594

100% of images with removedExifvalues
IMAGINE 0.0637 0.3632 0.7056 0.9982
PrnuMD 0.1073 0.1555 0.3811 0.9659
FODB 0.0086 0.7092 0.8665 0.9740
SOCRatES 0.0118 0.2972 0.7440 0.9916
HDR 0.0205 0.7457 0.9021 0.9474
VISION 0.0000 0.2537 0.6615 0.9902
DIDB 0.0000 0.1806 0.5071 0.9947
ALL 0.0084 0.2441 0.7210 0.9922
median 0.0102 0.2755 0.7133 0.9909

Table I.1. Results of the clustering evaluated to the source
camera of an image with anti-forensic measures applied.
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