
EAI Endorsed Transactions
on Internet of Things Research Article

Massively Parallel Evasion Attacks and the Pitfalls of
Adversarial Retraining
Charles Meyers1∗, Tommy Löfstedt1 Erik Elmroth1

1Department of Computing Science, Umeå University, Umeå, Sweden

Abstract

Even with widespread adoption of automated anomaly detection in safety-critical areas, both classical and
advanced machine learning models are susceptible to first-order evasion attacks that fool models at run-time
(e.g. an automated firewall or an anti-virus application). Kernelized support vector machines (KSVMs) are an
especially useful model because they combine a complex geometry with low run-time requirements (e.g. when
compared to neural networks), acting as a run-time lower bound when compared to contemporary models (e.g.
deep neural networks), to provide a cost-efficient way to measure model and attack run-time costs. To properly
measure and combat adversaries, we propose a massively parallel projected gradient descent (PGD) evasion
attack framework. Through theoretical examinations and experiments carried out using linearly-separable
Gaussian normal data, we present (i) a massively parallel naive attack, we show that adversarial retraining
is unlikely to be an effective means to combat an attacker even on linearly separable datasets, (ii) a cost
effective way of evaluating models defences and attacks, and an extensible code base for doing so, (iii) an
inverse relationship between adversarial robustness and benign accuracy, (iv) the lack of a general relationship
between attack time and efficacy, and (v) that adversarial retraining increases compute time exponentially
while failing to reliably prevent highly-confident false classifications.

Received on 09 Septembr 2023; accepted on 18 October 2023; published on 17 July 2024

Keywords: Machine Learning, Support Vector Machines, Trustworthy AI, Anomaly Detection, AI for Cybersecurity, EAI
Endorsed Transactions

Copyright © 2024 C. Meyers et al., licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any
medium so long as the original work is properly cited.

doi:10.4108/eetiot.6652

1. Introduction
There are several types of attacks that target machine
learning models or data at different phases. Below
we examine attacks where an attacker seeks to evade
a classifier by confusing the model at run-time (e.g.
a penetrated network or a malicious application
being detected as benign). Robustness—the ability to
withstand attacks—is usually measured by the accuracy
gap before and after being attacked (benign and
adversarial accuracy, respectively). While much work
has gone into evaluating the robustness for neural
networks [1–3] and regression algorithms [4], Machine
learning using support vector machines have proven
to be useful in compute constrained applications
like system intrusion detection [5], network anomaly
detection [6], and image recognition [7].

∗Corresponding author. Email: cmeyers@cs.umu.se

Researchers cite concerns about evaluating against
weak attacks [8, 9], the hard problem of step-
size optimization [10], the weakness of defense
generalization [11], and the transferability of attacks
[12], which contributes to a body of work that
consistently fails to be reproducible [3] while relying
on increasingly massive computational resources for
increasingly marginal gains [13]. In short, there is
a strong need for generalized testing against strong
adversaries [9].

Since a theory of robust generalization remains
evasive, it is necessary to evaluate the robustness
of defenses across the broadest-possible number of
hyperparameters with the understanding that they are
drawn from a continuous and infinite space. Without a
strong theory of generalization, currently, the only way
to evaluate attacks is through brute force. Because this
process is computationally expensive for large hyper-
parameter sets, we propose a scalable framework for

1
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<cmeyers@cs.umu.se>

C. Meyers, T Löfstedt, and E. Elmroth

attack generation, useful both for defense evaluation
and distributed adversarial attacks.

1.1. Contributions
We present a novel parallel attack generation frame-
work allows for massively generating adversarial exam-
ples across multiple cores or multiple machines, of
particular use in scenarios that demand exploring a
large hyperparameter space.

• We provide an extensible and scalable code base
for finding optimal attack configurations for a
variety of attacks and defences.

• We provide a method for faster attack generation
for both benign (re-training) and adversarial
circumstances, with easy extensibility to a variety
of algorithms with large hyperparameter spaces
including models, defences, and attacks.

• We show that attack efficacy is uncorrelated with
attack time and more dependent on the total
perturbation distance and the step size at each
iteration.

• We show that, the relationship between step size,
perturbation size, and false confidence is highly
complex, has a large hyperparameter space, and
a product of both the model and the data set and
that characterizing the feasible space is critical to
generalized robustness.

• Using a strong adversary as determined by
massively parallel tests, we found that adversarial
retraining was impractical in terms of both
compute time and benign model accuracy against
a strong adversary on a variety of binary datasets.

2. Related Work
Prior research has shown the inverse relationship
between model robustness and model accuracy empiri-
cally [10, 14]. Tsipras et al. [14] highlighted this trade-
off while examining neural nets on several image data-
sets. Other experiments have shown a strong inverse
relationship between model robustness and model
accuracy for a large number of samples and accurate
models [15] more generally. Raghunathan et al. [15]
offer a theoretical explanation, suggesting that this
trade-off is an artifact of imperfect sampling. Even
after explicitly minimizing the gap between benign
and adversarial accuracy, the adversarial model had a
nearly 6 times increase in adversarial error relative to
the benign case. In addition, it was recently proven
that all classifiers are vulnerable to attacks from an
adversary [16], which raises issues for safety-critical
and real-time systems. Since all classifiers are doomed

to fail against such attacks, then, at the very least, it is
critical to quantify classification robustness.

Current research suggests adopting only strong
attacks in these evaluations [9], but the strength of an
attack is unknown prior to evaluation, and is context-
dependent. Furthermore, Croce et al. [3] showed fifty
cases where modern, published research failed to have
reproducible robustness. Other research has shown
that randomized smoothing, obfuscated gradients, and
even non-differentiable models fail to produce strong
defenses against the proposed attacker [8, 17, 18]. This
is intuitive—creating a boundary condition sensitive to
a particular attack does not remove the existence of a
new gradient to be exploited.

3. Background
In this section, we briefly discuss our choice in models,
attacks, and defences.

3.1. Support Vector Machines
Support vector machines [19] can be used for both
classification and regression. The kernelized versions
include arbitrary data transformations (through ker-
nels) that casts a data-set into a higher-dimensional
space, where the classes are linearly separable. The
resulting models are determined by solving convex
optimization problems, as detailed below. Trafalis et
al. [20] show that under benign perturbations, these
models are robust and numerically stable, but little is
known about their robustness against an adversarial
attacker.

A support vector machine is trained by solving the
Lagrange dual problem [19],

maxc1,...,cn

n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

yici⟨xi , xj⟩yjcj (1)

subject to
n∑
i=1

ciyi = 0 and 0 ≤ ci ≤
1

2nλ
,∀i,

where x1, . . . , xn is the set of training examples,
y1, . . . , yn are the training labels for the n samples,
the ci are the dual variables found during training,
and λ is a regularization parameter that controls the
complexity of the decision boundary by penalizing
wrong classifications. Solving this quadratic problem
requires at least O(n2) dot products, making it
computationally expensive for large data-sets.

In addition to the non-kernelized linear model above,
we also evaluated the kernelized version of this model
for transformed features, φ(xi). Inner products of the
transformed features can be computed using the kernel
trick [19],

K(xi , xj) = ⟨φ(xi), φ(xj)⟩,

2
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

which gives a closed form expression of the inner
product of the transformed features. New data points,
x, are predicted using

ŷ =
n∑
i=1

ciyiK(xi , x),

where the ci , for i = 1, . . . , n are obtained by solving the
maximization problem in Equation 1, but using a kernel
function,

n∑
i=1

ci −
1
2

n∑
i=1

n∑
j=1

yiciK(xi , xj)yjcj .

The nominative support vectors are denoted

S =
{
ci
∣∣∣ 0 < ci <

1
2nλ

, i = 1, . . . , n
}
.

Computing the values of ci in this set is equivalent
to inverting a matrix naively, which has complexity
O(|S |3) [21], where |S | is the number of support vectors
for which 0 < ci <

1
2nλ . However, the actual run-time

varies wildly between kernel choice, data-set, and
parameter choice. Merely verifying that a vector ci
is a solution to the quadratic programming problem
requires computations that scale with the number of
support vectors, |S |, and the number of samples, n,
giving a complexity of O(n|S |) [6]. Furthermore, with a
non-zero error rate, E, it has been shown [22] that |S | is
asymptotically equivalent to 2nE, giving a complexity
of

O(pn2E).

The kernelized version has a complexity associated
with the cost, κ, that varies significantly with the kernel
and has the same as the non-kernelized version such
that

O(pn2E) + O(κ).

This kernelization step can itself be quite costly in
terms of compute time and it’s complexity is examined
below.

Radial Basis Function Kernel. Kernel functions can be
used to cast a problem from a feature space of p
dimensions into an infinite-dimensional space using the
kernel function as a similarity measure between each
pair of samples. The radial basis function kernel is
given by

K(xi , xj) = e−γd(xi ,xj),

where γ = (2σ2)−1, and d is any suitable distance
metric. The gradient is given by

∇K(xi , xj) = −γe−γd(xi ,xj)∇d(xi , xj),

with a distance metric that scales with p (e.g., an inner
product), and with n2 such computations, the total
complexity becomes O(pn2).

Polynomial Kernel. The polynomial kernel is given by

K(xi , xj) =
(
⟨xi , xj⟩ + r

)D
,

where r is a tune-able parameter and D describes the
degree of the polynomial (also tune-able). Its gradient
is given by

∇K(xi , xj) = ∆D(⟨xi , xj⟩ + r)D−1,

where ∆ is a diagonal matrix with the inputs,
xi,1, . . . , xi,p, xj,1, . . . , xj,p, on the diagonal. Computing
the gradient means an inner product that scales with
p (the dimension of xi), D multiplications of the inner
product value, and n2 such computations, giving a total
complexity of O(pDn2).

The lower bound of complexity is given by
the number of dot products in the Lagrangian in
Equation 1, which has an overall complexity of O(pn2),
showing that the attack time will be dominated by the
number of attacked samples rather than kernel choice.

SVMs: cost-effective attack and defence analysis. We
demonstrate the experiments using kernelized SVMs,
but note that the metrics and analyses generalize to
more elaborate models. Firstly, we focus on the training-
time complexity of these models, which is already
known to be significantly smaller than popular neural
network architectures [23]. Secondly, our goal is not
to chase state-of-the-art results, but to unequivocally
demonstrate that retraining methods (dictated by NIST
[24]) increase the accuracy against a given set of
adversarial attacks at the cost of confidence in the
unperturbed case will be unlikely to meet the risk-
reduction standards outlined in ISO 26262 [25]. By
using SVMs instead of more costly models, we were able
to evaluate a larger number of hyperparameters on a
fixed computational budget, a necessity for large and
complex hyperparameters spaces. Furthermore, since
the generated data was defined to be linearly separable
in a p-dimensional space, any and all of these models
should work quite well.

3.2. Projected Gradient Descent Attacks
Projected gradient descent (PGD) has become a
standard measure for model robustness. Carlini and
Wagner [17] proved that any boundary condition can
be shifted by a relatively small number of points by
optimizing under two constraints—one that maximizes
the classification error, and one that minimizes the
adversarial perturbation. This ‘fast-gradient’ attack was
extended with PGD, a ‘universal’ first-order white-box
attack and numerical optimization algorithm [2]. It has
since become the standard way to measure robustness
of a particular model or defense due to its universality.
The iteration scheme is

x(k+1) = P
(
x(k) + η(k)∇f (x(k))

)
,

3
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

C. Meyers, T Löfstedt, and E. Elmroth

where x(k) is the adversarial example at iteration k =
1, . . . , N , the N is the number of iterations, P (x) is a
projection of x onto a convex set (e.g., a norm ball
in the feature space) with radius dmax (chosen by the
experimenter), η(k) is the step size in each iteration,
and f (x(k)) is the original model function at iteration
k. An attack thus takes ascent steps in the direction of
the loss gradient, attempting to maximize the loss of
the attacked model, with the projection step used as a
means to adhere to any other constraints.

3.3. On Attack Choice

Most importantly, we note that any attacks that rely
on this kind of secondary optimization of a large
hyperparameter space (see Figure 3 and references [3,
17, 26–34]) will necessarily run no faster than a naive
implementation in parallel, particularly if we tune the
batch-size, step-size, and iterations to minimize the
run-time and maximize the loss for some ideal by
using a hyperband [35] or multi-objective search [36,
37]. While those methods are outside the scope of
this paper, the source code we provide, allows for
such searches on many different frameworks, defences,
and attacks by merely changing the contents of a
single configuration file1, meaning that finding an
optimal attack for any model using frameworks such as
Scikitlearn, Tensorflow, Pytorch, and MXNET would be
trivial.

3.4. Adversarial Retraining

Adversarial retraining inherits the time complexity of
both the model and the attack above such that the
complexity is

O(n2p),

before actually creating the retrained model, which has
2n samples, giving us the complexity

O(n2p) + O
(
(2n)2

)
= O(n2p)

which will add significant training time to the
model (already measured in hours or days) with the
unintended side effect of reducing benign accuracy [11].

Adversarial retraining has been proposed as a general
solution to this problem [10, 11]. In the naive version,
the final iterate from the PGD, x∗, is appended to the
training set, labelled as malicious, and the training and
attack cycle is repeated until accuracy converges or no
novel samples can be generated [10].

1https://hydra.cc/docs/plugins/optuna_sweeper

4. Massively Parallel Evasion Attacks
Generating parallel attacks allows for a larger robust-
ness evaluation while simultaneously allowing for a
faster generation of adversarial examples for adversar-
ial re-training. The massively parallel attack generation
framework is shown in Figure 1.

Given that model attack parameters are drawn from
an infinite space and that published model robustness
tends to be over-reported [3], we propose a massively
parallel attack generation framework that reliably
evaluates a much larger set of attacks than is common
practice. Furthermore, attacks should be examined
not only in the context of raw accuracy numbers,
but also their ability to prevent highly-confident false
classifications as well as the time needed to break a
model.

Attacker’s Goal: We consider a classification algo-
rithm f : X → Y for samples in some feature space x ∈
X to a label in the set of classes y ∈ Y = {−1, 1} where
1 represents the malicious class. Since the estimator
returns a probability in [0, 1] for each one-hot label
[38], we assign the label with the highest probability for
evaluation purposes. Our attacker’s goal is to shift the
classification of at least one input example such that
the confidence of a false classification is > 99%. The
feasibility of such attacks is examined below.

Attacker’s Capability: In the case of evasion attacks,
the adversary can only modify data at test time. Prior
attacks have allowed arbitrary and significant change to
the original feature space. However, this is not feasible
in many real-world scenarios [39]. We also assume that
the attacker is relatively resource-constrained, ruling
out attacks that require specialized hardware (like
deep-learning). A more likely massive attack scenario
involves a malicious advertisement [40] or an insecure
network-connected, low-power device [41]. We also
assume a single model input/output stream shared
among all attacks which reduces the detection surface
relative to attacks probing the model separately. To
meet this goal, we supplied 100 samples to the attacker,
but, as we show below (Figure 5c), attacks can be
successful when supplied with only a single example.
Despite this constraint, the attacker can still reliably
generate false classifications.

4.1. Attacker’s Knowledge
In order to measure robustness of a given model, it is
assumed that the attacker knows most things about the
model, including the distribution, shape, and feature
space of the training set; the type of model used and
it’s parameter space; the gradients with respect to the
optimization criteria; and feedback from the model in

4
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

https://hydra.cc/docs/plugins/optuna_sweeper/

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

Figure 1. Massively Parallel Attack and Re-training Framework. This depicts our experimental pipeline wherein we build KSVMs with
various kernels, run several attacks in parallel, and then evaluate the attacked samples on the models. Optionally, we collect highly
confident false examples for adversarial retraining.

the form of model probability output. While it may
seem like a prohibitively large set of assumptions, we
outline possible attack vectors below. In our case, the
attacker queries the model with an adversarial sample
and is given the ℓ∞ norm which returns the largest
deviation of a single feature for a given sample rather
than the more granular information provided by other
standard distance metrics, like the ℓ2 or ℓ1 norms. It
also ensures that no single feature is perturbed by more
than dmax. As an added benefit, it marginally reduces
run-time and memory requirements, with the savings
scaling with the number of features. Below we examine
both the ideal and realistic scenarios for these attacks.

Perfect Knowledge: While assumed the adversary has
access to the model gradients with respect to the loss
function, it can be approximated through Monte Carlo
methods or via other attacks [42, 43]. It is not necessary
to know all of the model parameters, just the weights
and biases that compose the fitted model. Although
even this constraint is broken by other attacks [42,
43]. The adversary can transform sample data, but
must remain within a maximum distance dmax for each
feature. For our purposes, we chose this distance to be
one standard deviation for a given feature, ensuring
transformed data does not stray too far from the benign
data and decrease the separability for the retrained

classifier. Other works [10, 11, 44] try to minimize
the requisite perturbation distance, but because we
are dealing with numeric data and not image data,
data that falls within the the first standard deviation
would likely not look adversarial to a human observer.
The same cannot necessarily be said for image data in
which it is natural to have highly variant data and a
large contrast between different regions. In many cases,
perfect knowledge is provided normally by the peer-
review process and published model weights. However,
many models are proprietary and can only be accessed
through an API that returns only the classification,
either as a probability distribution or the argmax of that
distribution [45].

Limited Knowledge: Even though our attack scenario
only includes perfect knowledge, prior research [39,
42, 43, 46, 47] has shown that a surrogate model and
data-set can be used to approximate f (x) by f̂ (x) and
build a model using the class labels provided by the
attacked model at test-time. Tramèr et al. [45] examined
popular machine learning as a service platforms that
return confidence values as well as class labels, showing
that an attacker can build a proxy model by querying
p + 1 random p−dimensional inputs for unknown p +
1 parameters. Further researchers [46] were able to

5
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

C. Meyers, T Löfstedt, and E. Elmroth

reverse engineer the training data-set through black-
box attacks against a model that returns confidence
levels, with the caveat that the inferred data might be
a meta-prototypical example that does not appear in
the original data-set. Fortunately for our attacker, such
examples are still useful for determining the underlying
data distributions even if they manage to preserve
some of the privacy of the original data-set. Shokri et
al. [48] presented a membership inference attack that
determines whether a given data point belongs to the
same distribution as the original training data using
a set of proxy models. Although we tested only the
perfect knowledge scenario, there are myriad ways for
an attacker to get access to otherwise private data using
nothing but standard machine learning APIs.

4.2. Attack Generation Algorithm
Under the above assumptions, the optimal attack
strategy seeks to find a set of feature values for a sample,
x(0), such that x∗ = arg minx f̂ (x) and d(x∗, x(0)) ≤ dmax =
1 since we centered and scaled the data to ensure each
feature had the same variance (σ2 = 1). The algorithm
is outlined in Algorithm 1.

Algorithm 1: Parallel PGD

Input: A set of step sizes {η}; {dmax > 0}, a set of
maximum perturbation constants; a set of
batch sizes, {m}; a trained model f (x);
X = {(x̄(0), ȳ)} a set of unperturbed samples
and their corresponding labels; {I}, a set of
maximum iterations; and a projection
operator

Pdmax
(X) =

{
argminx∗, d(x∗,x)≤dmax

∥x∗ − x∥
}
x∈X

Output: x∗, a sample with perturbation no
greater than dmax

Generate a grid to search over from the supplied
parameters:

G = AllCombinations
(
{η}, {m}, {I}, {dmax}

)
foreach (η,m, I, dmax) = g ∈ G in parallel do

i ← 0
while i ≤ I do

foreach X
(i)
m ⊆ X do

X
(i+1)
m ← Pdmax

(
X

(i)
m + η∇f

(
X

(i)
m

))
end
i ← i + 1

end
end

4.3. Attack Complexity
If we assume perfect parallelism in the outermost
while loop (in Algorithm 1) under the possible attack
scenarios outlined above, then our attack complexity
scales with the number of iterations, I , the number of
batches, b, and the number of samples per batch, nbatch.
With m = nbatch · b, this gives us a complexity of

O(I ·m).

Our own experiments (Figure 3) show that iterations
do little to change attack efficacy in themselves. So,
if we assume that N ≪ m, this model scales linearly
with the number of perturbed samples, giving a
fundamental advantage over the model which is trained
in polynomial time. Furthermore, this m can be several
orders of magnitude smaller than the training database
size n, with successful attacks occurring even when a
single data point is supplied to the attack at a time
(see Figure 5c). So, it’s possible that a ‘good’ attack can
operate in linear time. Figures 2a and 5c confirm the
existence of such attacks. If we assume that the API can
correctly identify and mitigate some adversarial queries
with some error rate, E ∈ [0, 1), then the actual number
of real-world API queries, Q, needed by an attacker
would be

Q = Im(1 − E).

That is to say, as the error rate increases, an attack
becomes easier in real world circumstances. This is a
particular detriment to the model builder who relies on
adversarial retraining (see: Fig. 5d).

5. Evaluations
Our experimental methods are outlined in detail below.

5.1. Data-set
To show that these problems hold for ‘nice’ data,
we generated many numeric datasets. We sampled
n Gaussian distributed points near opposing corners
of a hybercube in p dimensions, separated by an ℓ2
distance of ten. We generated twenty unique datasets
with the combinations of p ∈ [10, 102, 103, 104] and n ∈
[102, 103, 104, 105, 106]. We also ran the framework
on the the intrusion-detection KDD-NSL dataset[49],
selected in such a way as to avoid duplicate rows,
a common critique of the original [50] as well as
the Truthseeker dataset[51] that divides malicious and
benign twitter users based on a variety of usage data
(see: Appendices A and B). For adversarial retraining,
the positive label was used for new data, classifying it as
‘malicious’ and of the same class as a variety of network-
based attacks included in the original data set. For our
evaluations, we used 100,000 training samples, and one
hundred consistent samples in the test set.

6
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

5.2. Experimental Setup
In our parallel implementation, we dedicated one
core to each attack and tested a large number of
hyperparameters at the same time using ‘joblib’2.
We used the optuna [52] framework for handling
scheduling3, hydra4 for hyperaparamater configuration
management, and dvc5 to track results and guarantee
reproducibility. We also provide source code6, designed
to be extensible to other machine learning frameworks
(e.g., Keras, Tensorflow, Pytorch, MXnet, etc.), defences,
and attacks while scaling to diverse and distributed
systems. In addition to running the model selection
in parallel, we split the attack parameter space to run
in parallel, each attack operating on the same set of
test data. For our experiments, we used a 2.15Ghz
AMD EPYC 7702P processor with 128 cores. We used
scikit-learn7 and libsvm [53] to build the models
and IBM’s Adversarial Robustness Toolbox (art)8 to
generate attacks. Although we restricted our tests to a
single machine to make the time-complexity analysis
more straight-forward, optuna is capable of scaling to
multiple machines in a cluster. The scheduler spends
around a hundred microseconds on every task, but
this is negligible compared to the training times on a
reasonably sized database and comparable to a well-
chosen attack (Figure 2a). Although we parallelized
model fitting and attack creation in the same way,
our parallel attack paradigm means that each attack
time was measured individually while model building
times were measured as a whole and normalized by the
number of tested models since increasing the model
hyper-parameter search space will obviously increase
the run-time requirements. In this way, we attempt to
compare the average model building time for a given
set of parameters with a single attack.

For model building purposes, we evaluated every
order of magnitude in [10−5, 105] for both c and λ
(Equation 1) for each of the linear, polynomial, and RBF
kernels. We also tested balanced class weight and naive
class weight as well as one vs. one and one vs. rest
classifiers for each kernel. For the polynomial kernel,
we evaluated degrees D ∈ {1, 2, 3, 4, 5} in addition to
the parameters above. Because SVMs require a large
hyper-parameter search, we parallelized the search and
normalized the reported time for each kernel by the
cardinality of the grid search. Reported times are the
average model fitting wall time on a single core. Attack

2https://joblib.readthedocs.io
3https://optuna.readthedocs.io
4https://hydra.cc
5https://dvc.org
6Our repository
7https://scikit-learn.org
8https://adversarial-robustness-toolbox.readthedocs.io

times are reported as wall time per attack. We examined
the attack efficacy in the case of perfect knowledge as
outlined above.

When controlling for the training set size, we
evaluated the number of samples for several multiples
of ten in [10, 106], with the largest model being
used for all subsequent experiments. In addition to
tracking the attack time for the entire attack space.
For the attack phase, we tested maximum perturbations
in {0.001, 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0} but varied the
step size for each power of ten in [10−4, 1]. We
tested iterations in {1, 10, 102, 103} and batch sizes in
{1, 10, 102, 103}. For all tests but AT, we withheld 1000
benign samples to test the models and to generate the
attacks. For AT, we reduced the size of the training
database to ten-thousand (from one-hundred thousand)
and evaluated the adversarial and benign accuracies on
1000 samples to make the AT process computationally
feasible. We also examined the efficacy of AT and its
ability to defend against a new set of attacks when
applied to all three kernels.

6. Results and Discussion
In the section below, we examine the performance,
the robustness, the attack time, the efficacy of attack
hyperparameter tuning, and the pitfalls of adversarial
retraining.

6.1. Performance:
By using a massively parallel optuna [52] implemen-
tation, we were able to generate tens of thousands of
strong examples from one-thousand input-output pairs
in a way that extends to other attacks, frameworks
(e.g. MXNet, Pytorch, Keras, Tensorflow), and defences
(e.g. ART). Our implementation9 allocates one core
per process and runs them in series if there are more
processes queued than available cores. All generated
models, data, and results are stored to disk, as well as in
an sqlite database, all specified in a single configuration
file, allowing for arbitrary divisions of the evaluation
pipeline across any number of diverse and distributed
machines. As we see from the experiment (Figure 2c),
the lower bound of these calculations is a few hundred
milliseconds, given that is how long they take when
executed on a single core in series, so the scheduler over-
head appears to be minor even though it’s statistically
significant.

6.2. Accuracy and Robustness:
Much research has been devoted to the apparent
trade-off between robustness and benign accuracy (see

9Our Github Repository

7
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

https://joblib.readthedocs.io
https://optuna.readthedocs.io
https://hydra.cc
https://dvc.org
https://github.com/simplymathematics/deckard/
https://scikit-learn.org/
https://adversarial-robustness-toolbox.readthedocs.io/
https://github.com/simplymathematics/deckard/tree/main/examples/security

C. Meyers, T Löfstedt, and E. Elmroth

101 102 103 104 105 106
Number of Samples

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy Kernel

rbf
poly
linear

(a) Model Performance vs Database Size: This depicts the benign
performance of a model (e.g. accuracy on unperturbed data) when
trained on databases of difference sizes for each tested kernel.

101 102 103
Number of Features

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy Kernel

rbf
poly
linear

(b) Model Performance vs Feature Space: This depicts the benign
performance of a model (e.g. accuracy on unperturbed data) when
trained on a differing number of features. In addition, marginal
features are less correlated with the label than earlier features,
simulating the addition of a large number of noisy features, leading
to increasingly inaccurate models.

101 102 103 104 105 106
Number of Samples

10−3

10−2

10−1

100

101

Tr
ai
ni
ng

 T
im

e

Kernel
rbf
poly
linear

(c) Training and Attack Times vs Database Size: This shows the time
requirements to build models and attacks on databases of different
sizes.

101 102 103
Number of Features

100

101

102

Tr
ai
ni
ng

 T
im

e

Kernel
rbf
poly
linear

(d) Training and Attack Times vs Feature Space Size: This shows
the time requirements to build models and attacks on feature space
of different sizes.

Figure 2. This depicts the benign accuracy (top) and training times (bottom) across all three kernels, varying the number of samples
(left) and the number of features (right). The bars reflect the 95% confidence interval for all tested configurations.

Related Work) and we see signs of it across all of
our experiments. The second experiment (Figure 2a)
confirmed an inverse relationship between robustness
and model accuracy. Even when AT is able to perfectly
classify adversarial examples in the new training set
(Figure 5d), average error in the benign circumstance
increased from 0.02% to roughly 50%. The adversarial
accuracy against strong attacks increased, but at a
substantial cost to adversarial accuracy. This would be
catastrophic in safety- or security-critical settings. In
Figure 2a we can see that model accuracy converges
to a perfect level with a sufficient number of samples,
around 103 across kernels for this data. However, it

is more complicated with the adversarial loss, varying
greatly by kernel and number of samples, even when
the attack size is fixed at one standard deviation of a
given feature. Regardless of the number of samples, we
see divergent time scales around 103 samples across all
kernels.

6.3. Attack Time and Efficacy
Since PGD is iterative, we examined how increasing
the raw compute time changes attack efficacy (Figure 4,
Figure 3). It shows that there is no general relationship
between attack time and induced error when we
examine the entire attack space. The attacks that

8
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

10−2 100
Perturbation Distance

0.60

0.65
Ac
c
ra
cy

10−2 100
Pert rbation Step

0.60

0.65

Ac
c
ra
cy Kernel

rbf
poly
linear

101 103
Maxim m Iterations

0.60

0.65

Ac
c
ra
cy

100 101 102
Batch Size

0.60

0.65
Ac
c
ra
cy

Figure 3. Attack Parameters vs Accuracy: This depicts how various attack hyperparameters change the accuracy.

10−2 100
Perturbation Distance

0

10

20

30

At
ta
ck
 T
im
e

10−2 100
Pert rbation Step

0

20

At
ta
ck
 T
im
e Kernel

rbf
poly
linear

101 103
Maxim m Iterations

0

10

20

30

At
ta
ck
 T
im
e

100 101 102
Batch Size

0

20

40

At
ta
ck
 T
im
e

Figure 4. Attack Parameters vs Time: This depicts how various attack hyperparametrs change the run-time. The bars reflect the 95%
confidence interval for all tested configurations.

9
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

C. Meyers, T Löfstedt, and E. Elmroth

produce the largest errors are more dependent on
hyper-parameter choice than raw processing time
(measured in iterations). This is highlighted further
in (Figure 3), where we controlled for both step size
and perturbation size, showing many examples where
attack error was maximized with a small number of
iterations. That is, a ‘good’ attack converges on strong
adversarial examples quickly. Both plots illustrate that
the polynomial kernel has a maximum error near
0.9, we see 0.95 for the RBF kernel, and perfect loss
against the linear kernel. In general, we can verify that
iterations have little to no effect (Figure 3) and that
increasing batch size increases loss (Figure 3) to the
detriment of false confidence (Figure 5c).

6.4. Critical Space:
To reliably evaluate a model, we must look at how it
performs across many attacks, so we measured both
error (Figure 3) and false confidence (Figure 5c) for
the entire attack space. We see that increasing either
step size or perturbations tends to increase loss with a
minimal perturbation size required by a given model
and data-set. In addition, we found that there is
a minimum perturbation value for effective attacks
(around 0.1 for linear and polynomial kernels, and 0.5
for RBF), dependent on model and data (Figure 3). The
effect of step size is much more variant, presumably
dependent on the the other parameters. We also see
that the RBF kernel is consistently the most robust
against error (Figure 3), but this does little to stop false
confidence (Figure 5c).

Attack time and error had a correlation of 0.18
suggesting that a clever choice of attack parameter
is far more effective than adding raw processor time.
This is further supported by the fact that step size
has a correlation of 0.54 and perturbation distance
has a correlation of 0.34. Even low-resolution, fast
attacks can lead to maximized loss (Figure 3) raising
further questions about the possibility of a truly reliable
defense. The individual confidence for an example is
inversely related to the size of the batch provided
to the attacker, but only marginally (Figure 5c). Step
size and total perturbation change confidence levels in
complex ways beyond some critical point for either, but
tend to converge. However, we can see that maximum
confidence occurs when both step size and total
perturbation are very small, creating a tension between
highly confident attacks and attacks that produce
maximum loss. This is intuitive—the loss is maximized
by ensuring every sample crosses the decision boundary
(even if only slightly) whereas confidence is maximized
when perturbations put a sample in the center of the
opposite class, usually far from the decision boundary.
Adversarial retraining is an attempt defend against
such perturbations.

6.5. Adversarial Retraining

Adversarial Retraining. Adversarial retraining is a
defense proposed by Li et al. [10], that appends
adversarial examples to the training set, labels them
‘malicious’ and trains a classifier on a new set. This can
be conducted iteratively, in ‘epochs’. Figures 5a, and
5b depict this method conducted over 20 epochs on
the RBF, polynomial, and linear kernels respectively.
We can see that this process increases training time
linearly, even when we exclude the attack generation
time. The RBF and polynomial kernels do become
more robust with successive epochs; however, this
comes at the cost of benign accuracy. The linear kernel
retains its benign accuracy with marginally improved
robustness, but would still not reliably prevent
false classifications. Unfortunately, as adversarial
attacks blur the boundary between the ‘benign’ and
‘malicious’ sets, the number of support vectors tends
to increase, leading to growth in time complexity
beyond the time required by the larger number of
samples while doing little to make reliable models.
A related method, confidence calibrated retraining,
attempts to solve this problem [3] but requires an
additional iterative calculation that is guaranteed to
increase run-time anyway. However, using the naive
version, we found that the new classifier is susceptible
to old attacks (compare the results Figure 5c and
Figure 5d) despite reducing the efficacy of a given
attack over many retraining cycles (see Figure 5a).
In addition, we found that the models have nearly
identical false confidence Figure 5d) on the attacks
generated on the un-defended models (see Figure 5c),
suggesting that the transferability of attacks has been
under-estimated. This figure (Figure 5d) depicts all
attacks that induce false classifications below the 99%
true, benign detection threshold dictated by AT, even
when this threshold is minimized. While the defended
model (Figure 5d) has a better response against the
strongest attack than the undefended models (Figure
3), this defense leads to a generalized failure on attacks
(Figure 5d) relative to the benign model (Figure 3).
Furthermore, strong attacks are possible across the
entire attack space and work on nearly half of all
examples. Even after the increased training time of AT,
a strong attack (Figure 5d) was found in milliseconds.

Furthermore, theoretical analysis shows that strong
attacks will only cost more than model building for
very large numbers of adversarial examples, which
we’ve shown to be unnecessary when controlling for
batch size. Since every model query has the potential
to expose the attacker, a small number of queries is
preferable anyway. Assuming the benign accuracy of
85% reflects the real-world behavior of the model, more
40% of queries will evade the classifier, suggesting that

10
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

0 5 10 15
Retraining Epochs

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy Kernel

rbf
poly
linear

(a) Adversarial Retraining: Accuracy over several retraining cycles.
The blue indicates the performance on unpertured data and the red
indicates performance on the adversarial data.

0 5 10 15
Retraining Epochs

10−1

100

Ti
m
e

Kernel
rbf
poly
linear

(b) Adversarial Retraining: Training and attack times (blue or red
respectively) over several retraining cycles with dmax = 1

10−2 100

Perturbation Di tance

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

10−2 100

Perturbation Step

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

Kernel
rbf
poly
linear

101 103

Maximum Iteration

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

100 101 102

Batch Size

−0.075

−0.050

−0.025

0.000

Fa
l
e
C
on

fid
en

ce

(c) False Negative Classifications Before Retraining

10−2 100

Perturbation Di tance

−0.10

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

10−2 100

Perturbation Step

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

Kernel
rbf
poly
linear

101 103

Maximum Iteration

−0.05

0.00

Fa
l
e
C
on

fid
en

ce

100 101 102

Batch Size

−0.075

−0.050

−0.025

0.000
Fa

l
e
C
on

fid
en

ce

(d) False Negative Classifications after Retraining

Figure 5. This figure depicts the benign and adversarial accuracy (a), the training and attack times (b) and the false confidence across
all attacks before (c) and after (d) adversarial retraining. The bars reflect the 95% confidence interval for all tested configurations.

an attacker armed with a large database of attacks will
easily circumvent AT counter measures.

6.6. Limitations
Modern databases are measured in the millions and our
evaluations fall below that by an order of magnitude.
However, as we found that increasing the database size
has an inconsistent effect on both benign or adversarial
accuracy (Figure 2a) while substantially increasing run-
time (Figure 2c). In order to conduct the wide number
of experiments presented in a reasonable time, we used
the smaller database size.

Section 3.1 demonstrates how this analysis extends
to more complex models. Other machine learning
methods could of course also be used (e.g. neural
networks), but the main goal here was to examine
the relative speed of attacks against polynomial time
models more generally. Because our support vector

machines require access to the entire data-set and create
a set of support vectors that must be stored together
in memory, we limited our tests to a single machine
in order to minimize the complexities of network
overhead.

While our analysis focuses on support vector
machines, the increased run-time complexity of neural
networks suggests that the cost-gap issue is even worse
with modern models though other research [3, 54]
has already noted this. While there is some remaining
evidence for more effective model defences, for instance
by using different forms of regularization [55, 56] or
by modifying a neural network [57], both methods add
run-time cost and do not necessarily offset the efficacy
of an attacker, particularly if the step-size, batch-size,
and number of iterations are well-tuned.

The parallel methodology could be extended to
more sophisticated attacks without loss of generality.

11
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

C. Meyers, T Löfstedt, and E. Elmroth

Additionally, since ‘good’ attacks tend to work on
most samples, further search optimizations that quickly
eliminate bad attack candidates are possible. In
addition, running the attack on multiple machines
would reduce the load on the operating system relative
to our single-machine scenario, but still favoring a
relatively simple attacker over a large, complex, and
centralized model generation process.

Despite any experimental limitations, both optuna

and our code base support scaling across multiple
machines and can easily be made to be ‘massive’ in a
more traditional sense. However, it is clear that proper
robustness evaluations require not only quantifying
accuracy, but also require measuring feasible attack
times and the confidence level of false classifications.
In addition, models should be tested across the widest
possible number of attack parameters since a given
defense and data-set will change the efficacy of a given
attack.

7. Conclusion
In this work, we propose a naive parallel implementa-
tion for evading classifiers in which the model gradients
of SVMs and training data distributions are known to
the attacker. While this level of information is hard
to obtain in real-world scenarios, we highlight other
research that proposes methods for obtaining this infor-
mation from an otherwise obscured model or data-
set. We demonstrated that a well-chosen step size will
add more strength to an attack than raw processing
time. We confirmed earlier observations that accuracy
and robustness are inversely related. We also show
that model-building is computationally more expensive
than attacks, especially in the context of adversarial
retraining. Despite the optimistic results in published
work, we find that perturbing a sample’s features by
only a single standard deviation is sufficient to reliably
break classifiers while adversarial retraining as dictated
by NIST standards[24]. While this degree of pertur-
bation may create obvious adversaries to humans, our
best attempts to automatically detect them still resulted
in decreased benign accuracy, higher training times,
and a failure to prevent false classifications. Finally,
we provide an easily extensible code-base for manag-
ing massive, parallel, and distributed experiments on
various attacks and defences. Thus, we find adversarial
retraining to be unsuitable for real-time, safety-critical,
or security-sensitive applications of KSVMs. Simultane-
ously, through a run-time analysis of low-cost model
(KSVMs), we raise serious concerns about the hope of
any polynomial-time model builder to defend against
an adversary that consistently succeeds in more-or-
less constant time, despite many rounds of adversarial
retraining. Furthermore, we show this to be true on
generated data, system process data [49], and social

media data [51] (see: Section 6 and Appendices A & B
for each dataset, respectively) .

8. Acknowledgements
Financial support has been provided in part by the
Knut and Alice Wallenberg Foundation grant number
2019.0352 and by the eSSENCE Programme under the
Swedish Government’s Research Initiative.

References
[1] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,

Erhan, D., Goodfellow, I. and Fergus, R. (2013)
Intriguing properties of neural networks. International
Conference on Learning Representations .

[2] Madry, A., Makelov, A., Schmidt, L., Tsipras, D.

and Vladu, A. (2017) Towards deep learning models
resistant to adversarial attacks. International Conference
on Machine Learning .

[3] Croce, F. and Hein, M. (2020) Reliable evalua-
tion of adversarial robustness with an ensemble of
diverse parameter-free attacks. International Conference
on Machine Learning .

[4] Deka, P.K., Bhuyan, M.H., Kadobayashi, Y. and
Elmroth, E. (2019) Adversarial impact on anomaly
detection in cloud datacenters. In 2019 IEEE 24th Pacific
Rim International Symposium on Dependable Computing
(PRDC) (IEEE): 188–18809.

[5] Kim, D.S. and Park, J.S. (2003) Network-based intrusion
detection with support vector machines. In International
Conference on Information Networking (Springer): 747–
756.

[6] Mehmood, T. and Rais, H.B.M. (2015) Svm for network
anomaly detection using aco feature subset. In 2015
International symposium on mathematical sciences and
computing research (iSMSC) (IEEE): 121–126.

[7] Tzotsos, A. and Argialas, D. (2008) Support vector
machine classification for object-based image analysis. In
Object-Based Image Analysis (Springer), 663–677.

[8] Uesato, J., O’Donoghue, B., Oord, A.v.d. and Kohli, P.

(2018) Adversarial risk and the dangers of evaluating
against weak attacks. Proceedings of Machine Learning
Research .

[9] Carlini, N., Athalye, A., Papernot, N., Brendel, W.,
Rauber, J., Tsipras, D., Goodfellow, I. et al. (2019) On
evaluating adversarial robustness. arXiv:1902.06705 .

[10] Li, B., Vorobeychik, Y. and Chen, X. (2016) A
general retraining framework for scalable adversarial
classification. Workshop on Adversarial Training, Neural
Information Processing Systems .

[11] Stutz, D., Hein, M. and Schiele, B. (2019) Confidence-
calibrated adversarial training: Towards robust models
generalizing beyond the attack used during training.
International Conference on Machine Learning .

[12] Demontis, A., Melis, M., Pintor, M., Jagielski, M., Big-
gio, B., Oprea, A., Nita-Rotaru, C. et al. (2019) Why do
adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks. In 28th {USENIX} Security
Symposium: 321–338.

12
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

[13] Desislavov, R., Martínez-Plumed, F. and Hernández-

Orallo, J. (2021) Compute and energy consumption
trends in deep learning inference. arXiv:2109.05472 .

[14] Tsipras, D., Santurkar, S., Engstrom, L., Turner, A.

and Madry, A. (2018) Robustness may be at odds with
accuracy. Int’l Conference on Learning Representations .

[15] Raghunathan, A., Xie, S.M., Yang, F., Duchi, J. and
Liang, P. (2020) Understanding and mitigating the
tradeoff between robustness and accuracy. International
Conference on Machine Learning .

[16] Dohmatob, E. (2019) Generalized no free lunch theorem
for adversarial robustness. In International Conference on
Machine Learning (PMLR): 1646–1654.

[17] Carlini, N. and Wagner, D. (2017) Towards evaluating
the robustness of neural networks. In IEEE symposium on
security and privacy (sp) (IEEE): 39–57.

[18] Athalye, A., Carlini, N. and Wagner, D. (2018)
Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. Int.
Conference on Machine Learning .

[19] Cortes, C. and Vapnik, V. (1995) Support-vector
networks. Machine learning 20(3): 273–297.

[20] Trafalis, T.B. and Gilbert, R.C. (2007) Robust support
vector machines for classification and computational
issues. Optimisation Methods and Software 22(1): 187–
198.

[21] Bordes, A., Ertekin, S., Weston, J. and Bottou, L. (2005)
Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research 6(Sep): 1579–1619.

[22] Christmann, A. and Steinwart, I. (2004) On robustness
properties of convex risk minimization methods for
pattern recognition. The Journal of Machine Learning
Research 5: 1007–1034.

[23] Bienstock, D., Muñoz, G. and Pokutta, S. (2018)
Principled deep neural network training through linear
programming. arXiv:1810.03218 .

[24] Falco, J.A., Hurd, S. and Teumim, D. (2006) Using host-
based anti-virus software on industrial control systems:
Integration guidance and a test methodology for assessing
performance impacts (NIST).

[25] Organization, I.S. (2018), ISO 26262-
1:2011, road vehicles — functional safety,
https://www.iso.org/standard/43464.html (visited
2022-04-20).

[26] Su, J., Vargas, D.V. and Sakurai, K. (2019) One
pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation 23(5): 828–
841.

[27] Chen, J., Jordan, M.I. and Wainwright, M.J. (2020)
Hopskipjumpattack: A query-efficient decision-based
attack. In 2020 ieee symposium on security and privacy (sp)
(IEEE): 1277–1294.

[28] Brown, T.B., Mané, D., Roy, A., Abadi, M. and Gilmer, J.

(2017) Adversarial patch. arXiv:1712.09665 .
[29] Brendel, W., Rauber, J. and Bethge, M. (2017) Decision-

based adversarial attacks: Reliable attacks against black-
box machine learning models. arXiv:1712.04248 .

[30] Liu, X., Yang, H., Liu, Z., Song, L., Li, H. and Chen,

Y. (2018) Dpatch: An adversarial patch attack on object
detectors. arXiv:1806.02299 .

[31] Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I. and
Raffel, C. (2019) Imperceptible, robust, and targeted
adversarial examples for automatic speech recognition.
In International conference on machine learning (PMLR):
5231–5240.

[32] Grosse, K., Pfaff, D., Smith, M.T. and Backes, M. (2018)
The limitations of model uncertainty in adversarial
settings. arXiv:1812.02606 .

[33] Kotyan, S. and Vargas, D.V. (2019) Adversarial
robustness assessment: Why both l0 and l∞ attacks are
necessary. arXiv:1906.06026 .

[34] Chen, P.Y., Zhang, H., Sharma, Y., Yi, J. and Hsieh,

C.J. (2017) Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM
workshop on artificial intelligence and security: 15–26.

[35] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. and
Talwalkar, A. (2017) Hyperband: A novel bandit-based
approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1): 6765–6816.

[36] Hansen, N. (2016) The cma evolution strategy: A
tutorial. arXiv:1604.00772 .

[37] Ozaki, Y., Tanigaki, Y., Watanabe, S., Nomura, M. and
Onishi, M. (2022) Multiobjective tree-structured parzen
estimator. Journal of Artificial Intelligence Research 73:
1209–1250.

[38] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M. et al. (2011) Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12: 2825–2830.

[39] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić,
N., Laskov, P., Giacinto, G. et al. (2013) Evasion attacks
against machine learning at test time. In Joint European
conference on machine learning and knowledge discovery in
databases (Springer): 387–402.

[40] Liu, T., Wang, H., Li, L., Luo, X., Dong, F., Guo, Y., Wang,

L. et al. (2020) MadDroid: Characterizing and detecting
devious ad contents for android apps. Proceedings of The
Web Conference 2020 .

[41] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,
Shabtai, A., Breitenbacher, D. and Elovici, Y. (2018)
N-BaIoT—network-based detection of IoT botnet attacks
using deep autoencoders. IEEE Pervasive Computing
17(3): 12–22.

[42] Wang, X., Li, J., Kuang, X., Tan, Y.a. and Li, J. (2019) The
security of machine learning in an adversarial setting: A
survey. Journal of Parallel and Distributed Computing 130:
12–23.

[43] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A.
and Mukhopadhyay, D. (2018) Adversarial attacks and
defences: A survey. arXiv:1810.00069 .

[44] Biggio, B., Nelson, B. and Laskov, P. (2012) Poisoning
attacks against support vector machines. International
Conference on Machine Learning .

[45] Tramèr, F., Zhang, F., Juels, A., Reiter, M.K. and Ris-

tenpart, T. (2016) Stealing machine learning models via
prediction apis. In 25th {USENIX} Security Symposium
Security 16): 601–618.

[46] Fredrikson, M., Jha, S. and Ristenpart, T. (2015) Model
inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd

13
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

https://www.iso.org/standard/43464.html

C. Meyers, T Löfstedt, and E. Elmroth

ACM SIGSAC Conference on Computer and Communica-
tions Security: 1322–1333.

[47] Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A.,
Vitali, D. and Felici, G. (2015) Hacking smart machines
with smarter ones: How to extract meaningful data
from machine learning classifiers. International Journal
of Security and Networks 10(3): 137–150.

[48] Shokri, R., Stronati, M., Song, C. and Shmatikov, V.

(2017) Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security
and Privacy (SP) (IEEE): 3–18.

[49] Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A.A.

(2009) A detailed analysis of the kdd cup 99 data set.
In 2009 IEEE symposium on computational intelligence for
security and defense applications (Ieee): 1–6.

[50] Dua, D. and Graff, C. (2017), UCI machine learning
repository. URL http://archive.ics.uci.edu/ml.

[51] Dadkhah, S., Zhang, X., Weismann, A.G., Firouzi,

A. and Ghorbani, A.A. (2023) TruthSeeker: The
Largest Social Media Ground-Truth Dataset for
Real/Fake Content doi:10.36227/techrxiv.22795130.v1,
URL https://www.techrxiv.org/articles/

preprint/TruthSeeker_The_Largest_Social_Media_

Ground-Truth_Dataset_for_Real_Fake_Content/

22795130.
[52] Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama,

M. (2019) Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery
& data mining: 2623–2631.

[53] Chang, C.C. and Lin, C.J. (2011) Libsvm: a library for
support vector machines. ACM transactions on intelligent
systems and technology (TIST) 2(3): 1–27.

[54] Meyers, C., Löfstedt, T. and Elmroth, E. (2023)
Safety-critical computer vision: an empirical survey of
adversarial evasion attacks and defenses on computer
vision systems. Artificial Intelligence Review : 1–35.

[55] Jakubovitz, D. and Giryes, R. (2018) Improving
dnn robustness to adversarial attacks using jacobian
regularization. In Proceedings of the European Conference
on Computer Vision (ECCV): 514–529.

[56] Ross, A. and Doshi-Velez, F. (2018) Improving the
adversarial robustness and interpretability of deep
neural networks by regularizing their input gradients.
In Proceedings of the AAAI Conference on Artificial
Intelligence, 32.

[57] Colbrook, M.J., Antun, V. and Hansen, A.C. (2021) Can
stable and accurate neural networks be computed. On the
barriers of deep learning and Smale’s 18th problem. arXiv
2101.

14
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

http://archive.ics.uci.edu/ml
https://doi.org/10.36227/techrxiv.22795130.v1
https://www.techrxiv.org/articles/preprint/TruthSeeker_The_Largest_Social_Media_Ground-Truth_Dataset_for_Real_Fake_Content/22795130
https://www.techrxiv.org/articles/preprint/TruthSeeker_The_Largest_Social_Media_Ground-Truth_Dataset_for_Real_Fake_Content/22795130
https://www.techrxiv.org/articles/preprint/TruthSeeker_The_Largest_Social_Media_Ground-Truth_Dataset_for_Real_Fake_Content/22795130
https://www.techrxiv.org/articles/preprint/TruthSeeker_The_Largest_Social_Media_Ground-Truth_Dataset_for_Real_Fake_Content/22795130

Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining

Appendix A. KDD-NSL Dataset

0 5 10 15
Retraining Epochs

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy Kernel

rbf
poly
linear

0 5 10 15
Retraining Epochs

10−1

100

Ti
m
e

Kernel
rbf
poly
linear

10−2 100
Perturbation Distance

0.025

0.050

0.075

Fa
ls
e
C
on
fid

en
ce

10−2 100
Perturbation Ste

0.04

0.06

Fa
ls
e
C
on
fid

en
ce

Kernel
rbf
 oly
linear

101 103
Maximum Iterations

0.04

0.06

Fa
ls
e
C
on
fid

en
ce

100 101 102
Batch Size

0.04

0.06

Fa
ls
e
C
on
fid

en
ce

10−2 100
Perturbation Distance

0.000

0.025

0.050

0.075
Fa
ls
e
C
on
fid

en
ce

10−2 100
Perturbation Ste

0.04

0.06

Fa
ls
e
C
on
fid

en
ce

Kernel
rbf
 oly
linear

101 103
Maximum Iterations

0.04

0.06

Fa
ls
e
C
on
fid

en
ce

100 101 102
Batch Size

0.04

0.06
Fa
ls
e
C
on
fid

en
ce

Figure A.1. Efficacy of Adversarial Retraining on KDD-NSL Dataset. The top left depicts the adversarial and benign accuracy over
a number of retraining epochs. The top right depicts the per epoch training time as the number of training epochs increases. The
bottom row depicts the false confidence before retraining (left) on strong adversarial examples and after (right). The bars reflect the
95% confidence interval for all tested configurations.

15
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

C. Meyers, T Löfstedt, and E. Elmroth

Appendix B. Truthseeker Dataset

0 5 10 15
Retraining Epochs

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy Kernel

rbf
poly
linear

0 5 10 15
Retraining Epochs

10−1

100

Ti
m
e

Kernel
rbf
poly
linear

10−2 100

Perturbation Dis ance

−0.1

0.0

Fa
ls

e
C
on

fid
en

ce

10−2 100

Per urba ion S ep

−0.10

−0.05

0.00

0.05

Fa
ls

e
C
on

fid
en

ce

Kernel
rbf
poly
linear

101 103

Maximum I era ions

−0.05

0.00

Fa
ls

e
C
on

fid
en

ce

100 101 102

Ba ch Size

−0.10

−0.05

0.00

Fa
ls

e
C
on

fid
en

ce

10−2 100

Perturbation Dis ance

−0.1

0.0
Fa

ls
e

C
on

fid
en

ce

10−2 100

Per urba ion S ep

−0.10

−0.05

0.00

0.05

Fa
ls

e
C
on

fid
en

ce

Kernel
rbf
poly
linear

101 103

Maximum I era ions

−0.10

−0.05

0.00

Fa
ls

e
C
on

fid
en

ce

100 101 102

Ba ch Size

−0.10

−0.05

0.00
Fa

ls
e

C
on

fid
en

ce

Figure B.2. Efficacy of Adversarial Retraining on Truthseeker Dataset. The top left depicts the adversarial and benign accuracy over
a number of retraining epochs. The top right depicts the per epoch training time as the number of training epochs increases. The
bottom row depicts the false confidence before retraining (left) on strong adversarial examples and after (right). The bars reflect the
95% confidence interval for all tested configurations.

16
EAI Endorsed Transactions on

Internet of Things
| Volume 10 | 2024 |

	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Background
	3.1 Support Vector Machines
	Radial Basis Function Kernel
	Polynomial Kernel
	SVMs: cost-effective attack and defence analysis

	3.2 Projected Gradient Descent Attacks
	3.3 On Attack Choice
	3.4 Adversarial Retraining

	4 Massively Parallel Evasion Attacks
	4.1 Attacker's Knowledge
	4.2 Attack Generation Algorithm
	4.3 Attack Complexity

	5 Evaluations
	5.1 Data-set
	5.2 Experimental Setup

	6 Results and Discussion
	6.1 Performance:
	6.2 Accuracy and Robustness:
	6.3 Attack Time and Efficacy
	6.4 Critical Space:
	6.5 Adversarial Retraining
	Adversarial Retraining

	6.6 Limitations

	7 Conclusion
	8 Acknowledgements
	A KDD-NSL Dataset
	B Truthseeker Dataset

