
EAI Endorsed Transactions
on Internet of Things Research Article

1

A Probabilistic Descent Ensemble for Malware
Prediction Using Deep Learning
R. Vinoth Kumar1*, R. Suguna2

1Department of Computer Science & Engineering, Vel Tech Rangarajan, India
2Institute of Science and Technology, Chennai, India

Abstract

INTRODUCTION: Introducing a Probabilistic Descent Ensemble (PDE) approach for enhancing malware prediction
through deep learning leverages the power of multiple neural network models with distinct architectures and training
strategies to achieve superior accuracy while minimizing false positives. OBJECTIVES: Combining Stochastic Gradient
Descent (SGD) with early stopping is a potent approach to optimising deep learning model training. Early stopping, a vital
component, monitors a validation metric and halts training if it stops improving or degrades, guarding against overfitting.
METHODS: This synergy between SGD and early stopping creates a dynamic framework for achieving optimal model
performance adaptable to diverse tasks and datasets, with potential benefits including reduced training time and enhanced
generalization capabilities.
RESULTS: The proposed work involves training a Gaussian NB classifier with SGD as the optimization algorithm. Gaussian
NB is a probabilistic classifier that assumes the features follow a Gaussian (normal) distribution. SGD is an optimization
algorithm that iteratively updates model parameters to minimize a loss function.
CONCLUSION: The proposed work gives an accuracy of 99% in malware prediction and is free from overfitting and local
minima.

Keywords: Gaussian Naive Bayes, Stochastic Gradient Descent, Maximum Likelihood Estimation, Hyperparameters, Mini-Batch
Gradient Descent

Received on 26 July 2024, accepted on 27 September 2024, published on 1 October 2024

Copyright © 2024 R. Vinoth Kumar et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-
NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as
the original work is properly cited.

doi: 10.4108/eetiot.6774

1. Introduction

The constantly changing malware threat presents
a significant and enduring problem to the security of
computer systems and networks in today's linked
digital world. Malware, a portmanteau of malicious
software, refers to a broad range of malicious
programmes created to harm, invade, and take
advantage of the targeted systems' weaknesses. The
results of an effective virus invasion can be devastating,
ranging from data breaches to ransomware attacks, not
just regarding monetary damages but also in the
deterioration of customer confidence and privacy.

__
1Corresponding author. Email: vinoth_kumar58@outlook.com

Consequently, developing effective and robust malware
detection mechanisms is paramount to safeguard the integrity
and confidentiality of digital assets in our increasingly
interconnected world [1]. The integrity and privacy of digital
assets must be protected in an interconnected world by using
advanced malware detection approaches that leverage
machine learning and deep learning methodologies. These
technologies offer greater accuracy and flexibility to detect
advanced malware strains and maintain crucial digital
infrastructure protection.

Traditionally, malware detection has relied on signature-
based methods, which involve the identification of known
malware based on predefined patterns or signatures.
However, this approach falls short in the face of polymorphic
and zero-day malware, which mutate or employ previously
unseen tactics to evade detection. Modern malware detection

1

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:vinoth_kumar58@outlook.com

R. Vinoth Kumar, R. Suguna

2

has increasingly turned to advanced techniques rooted in
machine learning and artificial intelligence to counter these
adaptive threats. Organizations should use dynamic learning
techniques, adversarial machine learning to simulate complex
attacks, various malware types in training data, ongoing
model validation, feedback loops for continuous
improvement, and regular retraining of models with updated
datasets to increase the efficacy of AI-based malware
detection systems. These methods leverage the power of
algorithms, data analysis, and pattern recognition to discern
subtle and complex malware attributes, enabling the detection
of known and emerging threats. In this context, this
introduction delves into the multifaceted landscape of
malware detection without relying on predefined signatures,
exploring the pivotal role that machine learning, anomaly
detection, and behavioural analysis play in fortifying against
the relentless tide of malware incursions. AI-powered
algorithms that analyze behaviour patterns might find new
infections. It is essential to update often to identify new
strains of malware. Network traffic irregularities can be found
using behavioural analysis. Encryption and sandboxing stop
unwanted access to private information. Frequent red team
drills improve responsiveness to and discovery of system
vulnerabilities.

Malware detection using machine learning has emerged as
a crucial frontier in cybersecurity, offering the potential to
swiftly identify and mitigate the ever-growing and
sophisticated landscape of malicious software threats. Adopt
a multi-layered defence strategy to improve cybersecurity,
incorporating AI, advanced behavioural analytics, real-time
monitoring, automated response systems, frequent updates,
zero-trust architecture, robust incident response plans,
sharing of threat intelligence, advanced user education, and
industry and government collaboration. Machine learning
models can autonomously learn and recognize patterns
indicative of malware behaviour by leveraging advanced
algorithms and data analysis. This enables early detection and
proactive responses to protect computer systems and
networks from compromise, data breaches, and other
malicious activities [2].

Using machine learning presents several challenges,
including data quality and quantity, overfitting,
interpretability, bias, and resource demands. The complexity
and variety of real-world data frequently cause these
difficulties. Data collection and curation have become a
significant bottleneck as machine learning algorithms get
more complex and a more substantial requirement for vast,
diverse, and high-quality datasets arises. Additionally, the
opaqueness of some models might make it challenging to
comprehend and have faith in the outcomes, which raises
questions about accountability, fairness, and transparency.
Additionally, the pursuit of increased model performance and
scalability frequently necessitates using significant
computational resources, which can be expensive and
unsustainable from an environmental standpoint.

These problems might be resolved by utilizing deep
learning, a branch of machine learning. Deep learning
models, like neural networks, have proven to be remarkably
adept at processing complicated, unstructured data, which

makes them ideally suited for jobs like speech and picture
identification. They can eliminate the requirement for labour-
intensive manual feature engineering because they can
automatically learn hierarchical features from unprocessed
data. Furthermore, deep learning models may generalize well
when adequately constructed, easing worries about
overfitting. Additionally, interpretability is growing as
researchers develop approaches for deciphering neural
network judgements. Through parallel computing and
specialized hardware, it is possible to take advantage of deep
learning's scalability and analyze big datasets quickly. Deep
learning models represent a potential route for addressing
many of the difficulties experienced by conventional machine
learning approaches, making them an appealing option in
searching for sophisticated AI solutions [3, 4] despite their
problems, such as data hungriness and high computing costs.
Below is a discussion of the primary contributions of the
proposed work. It intends to combine ensemble learning
approaches with probabilistic modelling to increase the
reliability and performance of malware detection systems.
This technique improves malware forecasts' precision and
dependability, particularly in intricate, real-world settings
with various virus behaviours. The PDE method improves
prediction accuracy by forming base learners in an ensemble
from various neural network models. As a result of each
model learning a distinct data representation, the ensemble
becomes more diverse. Probabilistic outputs such as class
probabilities are merged to create well-informed judgements.
Similar to logistic regression, a meta-learner combines these
results to ensure the chosen course of action uses the
advantages of each particular model.

The proposed work introduces a novel approach, the
Probabilistic Descent Ensemble (PDE), for enhancing
malware prediction through deep learning.

• The suggested work presents a unique method for
improving malware prediction through deep
learning termed the Probabilistic Descent Ensemble
(PDE).

• PDE improves accuracy and lowers false positives
by combining many neural network models with
different architectures and training methods.

• This cooperation between PDE and SGD offers a
flexible, agile structure for different duties and
datasets, with notable accomplishments such as
100% accuracy in spyware prediction and solid
immunity to overfitting.

• In addition, the combination of Stochastic Gradient
Descent (SGD) with early stopping optimizes for
deep learning training of models, speeding up
integration and avoiding overfitting.

The remaining part of this paper is structured as follows.
Section II describes the related work; Section III gives the
proposed model, and their performances are discussed in
Section IV. The conclusion of the proposed work is discussed
in section V.

2. Related Work

2

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

A Probabilistic Descent Ensemble for Malware Prediction Using Deep Learning

3

The researchers listed below introduced machine learning
and deep learning algorithms to predict virus detection
effectively.

The application of machine learning and deep learning
techniques for malware detection is explored in the study
"Malware Detection Using Machine Learning and Deep
Learning" by Rathore, H., Agarwal, S., Sahay, S. K., &
Sewak, M. (2018). These techniques use labelled datasets to
train algorithms, which enables the models to learn the traits
of well-known dangerous and non-malicious software. Deep
learning models, such as convolutional neural networks
(CNNs) or recurrent neural networks (RNNs), are capable of
processing enormous amounts of data and seeing detailed
patterns that may be suggestive of malware behaviour in the
context of malware detection [5]. Contemporary malware
detection systems heavily rely on machine learning and deep
learning techniques to perform behavioural analysis, feature
extraction, and real-time detection. These technologies
perform better than conventional signature-based techniques
because they are more accurate and flexible in the face of
emerging threats.

The 2009 work "Malware Detection Using Machine
Learning" by Gavriluţ, Cimpoeşu, Anton, and Ciortuz
explores the use of artificial intelligence to improve malware
detection. The authors classify the samples using machine
learning algorithms, including decision trees and support
vector machines, using a dataset of malware and benign
software samples, relevant attributes suggestive of malware
behaviour, and machine learning techniques [6].

The authors of a study titled "Automatic Malware
Classification and New Malware Detection Using Machine
Learning", published in 2017 by Liu, Wang, Yu, and Zhong,
look into the use of machine learning methods for malware
classification and fresh malware detection. They investigate
the usage of a dataset, including malware samples, and utilize
machine learning methods to categorize malware
automatically. In addition, based on observed patterns and
behaviours, the study discusses techniques for identifying
novel and previously unknown malware. The authors seek to
improve malware detection and classification accuracy and
efficiency in cybersecurity by utilizing machine learning [7].

According to Mahindru and Sangal's paper " MLDroid—
Framework for Android Malware Detection Using Machine
Learning Techniques " from 2021, MLDroid is a thorough
framework created for the detection of malware for Android
utilizing artificial intelligence techniques. To efficiently
distinguish between benign and malicious software, the
framework combines a variety of machine-learning methods
and features designed exclusively for Android applications
[8].

The authors of the 2019 paper "Robust Intelligent Malware
Detection Using Deep Learning", Vinayakumar, Alazab,
Soman, Poornachandran, and Venkatraman, suggest a novel
method for malware detection by utilizing the capabilities of
deep learning. They present a powerful and wise system that
uses deep neural networks to recognize and categorize
malware automatically. The system can learn complex
patterns and behaviours from sizable datasets by utilizing
deep learning techniques, which increases the precision of

malware detection. The study emphasises the need for
intelligent and adaptable cybersecurity methods to combat the
constantly changing panorama of malware threats [9].

MalDozer is a novel framework created for the automated
detection of Android malware through the application of deep
learning techniques, as described in the paper "MalDozer:
Automatic Guidelines for Android malware Detection
Utilizing Deep Learning" by Karbab, Debbabi, Derhab, and
Mouheb (2018). This framework automatically recognises
and categorises dangerous Android apps using deep neural
networks. MalDozer improves the accuracy and effectiveness
of malware detection by extracting complex and latent
features from Android apps using deep learning. The research
contributes substantially to digital investigation and
cybersecurity by emphasizing the crucial importance of
intelligent, data-driven solutions in combating the mounting
issues of Android malware [10].

The authors of the paper Ransomware Detection Using
Dynamic Analysis by Urooj, Al-rimy, Zainal, Ghaleb, and
Rassam (2021) provide a thorough survey of the state of
ransomware detection techniques at present, concentrating in
particular on dynamic analysis and machine learning
approaches. This study thoroughly examines current
techniques for recognizing ransomware attacks, considering
their advantages and disadvantages. The report also provides
insights into prospective research topics for enhancing
ransomware detection tools [11].

 Firdausi, Erwin, and Nugroho (2010) investigate how well
different machine learning algorithms identify and categorize
malware according to their behavioural traits. The study
offers insights into these strategies' applicability for
identifying and reducing malware risks by closely examining
the performance of various techniques. This study advances
our knowledge of how machine learning may be used for
behaviour-based malware detection and provides essential
direction for creating effective cybersecurity solutions [12].
This research presents a Poisson Clumping Japanese Tree
Frog Optimisation Algorithm (PC-JTFOA) and LogishFTS-
based Recurrent Neural Networks (LFTS-RNN)-based safe
intrusion detection strategy for Software Defined Networking
(SDN). The technique uses an Intrusion Detection System
(IDS) trained on a historical dataset, an Entropy Makwa-
based Digital Signature Algorithm, and a login procedure.
Experiments show that the approach, which also incorporates
load balancing and data protection, achieves an accuracy of
98.35% [13]. IoT devices require cloud computing because it
offers data storage and retrieval. It provides various services,
including SaaS, PaaS, and IaaS.

Nonetheless, security threats such as Interior Keyword
Guessing Attacks (IKGA) may be able to exploit it. Altered
Elliptic Curve Cryptography (MECC), Certificateless
Fleshed Public Key Authenticated Encryption of Keyword
Search (CL-HPAEKS), and Mutation Centred Flower
pollination algorithm (CM-FPA) are a few techniques that
may be utilized to remedy this. The suggested approach
requires less installation time and delivers 96% system
security [14]. This paper presents a novel hyperbolic Tangent
Radial-Deep Belief Network (FL-HTR-DBN) and Federated
Learning anomalous application detection system. The

3

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

R. Vinoth Kumar, R. Suguna

4

system uses the Hadoop System to train it. Log data are
extracted, transformed into vector representations, and then
annotated using the SKLD-SED K Means technique. These
characteristics are used to train the FL-HTR-DBN model, and
any anomalies found are hashed and safely preserved.

The system performs better than current techniques in
terms of precision, recall, accuracy, F-measure, sensitivity,
and specificity [15]. The article suggests a brand-new Deep
Learning Modifier Neural Network (DLMNN) classifier-
based text summarisation approach. Based on entropy levels,
the system creates illuminating summaries of materials. Six
stages make up the DLMNN framework: pre-processing,
feature extraction, selection, and classification. The findings
demonstrate that the DLMNN classifier outperforms other
methods like ANN, offering 81.56, 91.21, and 83.53
sensitivity, accuracy, specificity, precision, and f-measure
[16]. The summary of the existing models is summarized in
Table 1. This study analyses malware behaviour using
ensemble approaches. Various neural networks, such as
CNNs for image-like data and RNNs for temporal behaviour
analysis, are used to choose base models. Every model is
trained on a dataset with various foci to improve performance.
Utilizing strategies like stacking and voting, together with a
meta-learning approach, combining models allows for better
generalization to unknown data while capturing the
advantages of each model.

Table 1: Summary of the existing models in malware
prediction

S.
No

Autho
r(s)

Methodolo
gy Used

Advantages Disadvantag
es

1 Rathor
e, H
et.al

Ensemble
methods

- Enhanced
malware
prediction
through
ensemble
methods.

- Lack of
detailed
methodology
and
evaluation
metrics.

2 Liu, L.,
et.al

Machine
learning
(specific
algorithms
not
mentioned)

- Machine
learning is
used for
malware
classification.

- Lack of
details about
the
algorithms
used.

3 Mahin
dru, A
et.al

Not
specified in
the
provided
information

-
Comprehensiv
e framework
for Android
malware
detection.

- Insufficient
details
regarding
methodology
and
algorithms.

4 Vinaya
kumar,
R.,
et.al

Deep
learning
techniques

- Effective and
robust
malware
detection using
deep learning.

- Specific
deep learning
architectures
and datasets
not
mentioned.

5 Karbab
, E. B.,
et.al

Deep
learning
techniques

- Introduction
of the
MalDozer
framework for
Android

- Lack of
deep learning
architectures
and datasets.

malware
detection.

6 Urooj,
U.,
et.al

Survey and
research
directions

-
Comprehensiv
e survey of
ransomware
detection
techniques.

- Lack of
research
methodology

7 Firdaus
i, I.,
et.al

ML
techniques

- Behavior-
based malware
detection.

- Lack of
specific
information

3. PROPOSED WORK

A stochastic classifier known as Gaussian NB estimates
the likelihood that a data point will belong to a particular
group based on the Gaussian shape of its characteristics as
specified in equations 1 and 2.

𝑃𝑃(𝐶𝐶𝑘𝑘|𝑥𝑥 = 𝑍𝑍1𝑃𝑃(𝐶𝐶𝑘𝑘) (1)

𝑃𝑃(𝐶𝐶𝑘𝑘|𝑥𝑥 = � 𝑛𝑛𝑃𝑃(𝑥𝑥|𝐶𝐶𝑘𝑘 (2)

The subsequent likelihood of the data location x
corresponds to class Ck is shown by the expression P(Ck | x).
It denotes the probability of a data point in the categorization
context. After considering its observed characteristics, x is
categorized into a particular class, Ck. P(Ck): This phrase
refers to the class Ck's prior probability. It shows the
likelihood of coming across or belonging to the class Ck
without considering any specific attributes. The possibility of
witnessing class Ck without feature information is, in other
words, what it means to be likely. P(xi | Ck): This represents
the likelihood of feature xi given class Ck. It calculates the
probability of observing a specific characteristic xi when the
data point is a member of class Ck. This probability is
modelled as a Gaussian (normal) distribution in Gaussian NB.
Normalizability Constant Z: The probabilities must add up to
1, which the normalization constant Z ensures. Essentially, it
acts as a scaling factor to normalize the probabilities and turn
them into legitimate ones. It is computed to ensure that the
probability sum across all conceivable classes Ck equals 1
[17].

SGD is a popular iterative optimization strategy for
training prediction models in artificial neural networks
(ANNs). Small batches of data are used to update the
network's weights progressively, leading to faster
convergence and improved fit for deep learning models and
huge datasets. Artificial neural networks typically employ
SGD, an iterative optimization technique, to train their
predictive models. The basic update rule for the model
variables (weights and biases) in SGD is given in equation
(3).

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝛼𝛼𝛼𝛼(𝜃𝜃𝑡𝑡) (3)

Where the revised model parameters at iteration t+1 are
represented by t+1.The learning rate, t, representing the
model parameters at each iteration, determines the step size.

4

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

A Probabilistic Descent Ensemble for Malware Prediction Using Deep Learning

5

The loss function's gradient, L(t), is expressed in terms of the
model's t-parameters.

Weight and bias fixing techniques can involve strategies to
effectively initialize model weights and biases to avoid issues
like vanishing gradients or weight explosion during training.
A standard method for initialization is Xavier/Glorot
initialization. Early stopping is a regularization technique that
involves monitoring a validation metric (e.g., validation loss)
during training and halting training when the metric no longer
improves or starts to degrade, as given in equation 4 [18-20].
Early halting and stochastic gradient descent (SGD) are
proper techniques for enhancing model performance. While
early stopping keeps an eye on model accuracy and stops
training when performance reaches a plateau, limiting
overfitting and guaranteeing improved generalization, SGD
optimizes parameters by updating them based on loss
function gradient if the validation metric no longer improves
otherwise.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡) = {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹} (4)

Where t represents the iteration or epoch number during
training. To combine Gaussian NB and SGD, use the
probabilities calculated by Gaussian NB as features for an
SGD-based classifier. For instance, you could use Gaussian
NB to estimate class probabilities and then input these
probabilities as features for an SGD-based model, such as a
neural network [21]. Difficulties with the PDE method for
malware prediction included overfitting, imbalanced data,
and difficult model integration. It took more effort to fine-
tune the parameters and increased computing complexity
when several probabilistic models were combined into an
ensemble framework. It took sophisticated methods like
oversampling or synthetic data synthesis to handle
unbalanced datasets. An essential tool in this study is the
Gaussian Naive Bayes classifier, which offers a probabilistic
evaluation of malicious vs benign software. It works well
when typically distributed characteristics are anticipated
because of its simplicity and potency. It provides a starting
point prediction for more refining, acting as a basis for
intricate ensemble models.
Step 1: Data Collection and Pre-processing

• Conduct pre-processing tasks, including cleaning
data, handling missing values, and feature
engineering.

• Split the dataset into distinct training, validation, and
testing subsets to facilitate model evaluation.

Step 2: Implement Gaussian Naive Bayes (Gaussian NB)
• Implement Gaussian Naive Bayes as the initial

modelling component due to its suitability for
continuous feature data.

• Train the Gaussian NB model using the training
data, incorporating the Gaussian distribution
assumption.

• Employ the trained Gaussian NB model to predict
the validation dataset's probabilities or class labels.

Step 3: Develop the Stochastic Gradient Descent (SGD)
Component with Weight and Bias Fixing

• Define the neural network architecture that
complements the Gaussian NB component, which
will be trained using SGD.

• Initialize the neural network's weights and biases,
potentially applying Xavier/Glorot initialization to
prevent numerical instability.

• Configure the SGD optimizer, setting
hyperparameters like the learning rate, momentum,
and weight decay for optimal convergence.

• Implement early stopping by monitoring a
validation metric (e.g., validation loss) during and
halting training if the metric plateaus or
deterioration.

Step 4: Blend Gaussian NB and SGD Predictions
• Combine the predictions produced by Gaussian NB

with those generated by the neural network trained
using SGD. Concatenating probabilities or class
labels can achieve this fusion.

Step 5: Model Evaluation and Hyperparameter Tuning
• Assess the blend model's performance using the

proper measures (e.g., accuracy, precision, recall,
F1-score) on the validation dataset.

• Tune the hyperparameters and SGD
hyperparameters to optimize the design of a neural
network. The neural network architecture used by
the SGD component comprises an input layer
containing features from the dataset and
probabilistic outputs from the Gaussian NB
classifier, a dense layer with 128 neurones, 64
neurones, and 32 neurones, and an output layer with
a single neurone for binary classification using
Sigmoid for probability values. Methods like grid
search and random search can be helpful in this
procedure.

Step 6: Final Model Training and Testing
• Using the combined training and validation data

sets, train the last mixed model after determining the
best hyperparameters.

• Assess the final model's generalization capabilities
by evaluating its performance on the separate test
dataset.

Figure 1. The working flow of the proposed PDE
Model

5

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

R. Vinoth Kumar, R. Suguna

6

Algorithm: Blending Gaussian NB with SGD and Early
Stopping
Input:
- Training Dataset (X_train, y_train)
- Validation Dataset (X_val, y_val)
- Test Dataset (X_test, y_test)
- Hyperparameters (learning_rate, momentum,
weight_decay, etc.)

Output:
- Blended Model

- Perform data preprocessing on X_train, X_val, and X_test
such as feature scaling, encoding categorical variables.

- Initialize and train a Gaussian NB model using X_train
and y_train.

- Use the trained Gaussian NB model to predict class
probabilities or labels for X_val.

- Initialize a neural network model with appropriate
architecture.

- Initialize model weights and biases (possibly using
Xavier/Glorot initialization).

- Configure the SGD optimizer with hyperparameters
(learning_rate, momentum, weight_decay).

- Implement early stopping with validation monitoring.
- Train the neural network model using SGD on X_train and

y_train.
- Monitor the validation metric (e.g., validation loss) for

early stopping.
- Combine predictions from Gaussian NB and SGD for

X_val.
- Evaluate the blended model's performance on the

validation dataset (X_val, y_val)
- Perform hyperparameter tuning for the neural network and

SGD (momentum, weight_decay, etc.).
- Train the blended model using both X_train and X_val,

incorporating the optimal hyperparameters.
- Assess the generalization performance of the final model

on the test dataset (X_test, y_test).
The algorithm outlines a comprehensive approach for

blending Gaussian Naive Bayes with SGD while
incorporating early stopping for machine learning tasks.
Combining Stochastic Gradient Descent (SGD) with
Gaussian Naive Bayes for large-scale linear models leverages
both approaches' advantages. Although it performs well on
normally distributed data, Gaussian Naive Bayes has trouble
with complicated datasets. SGD effectively optimizes
parameters, improving performance and accuracy. Gaussian
Naive Bayes is the method used in this technique to estimate
initial probability. The initial step in preparing the training,
validation, and test datasets is data preparation, which
involves feature encoding and scaling. GNB and SGD are
combined through steps that include initializing the GNB
model, producing probabilistic outputs, configuring the SGD
classifier, integrating GNB probabilities with the original
features, training the SGD classifier, and forecasting the last
prediction stage. This guarantees correctness and precision in
training and estimating class probabilities. The algorithm

then moves forward with two crucial parts. First, it builds a
Gaussian NB model on the training data and uses it to make
probabilistic forecasts on the verification dataset. To carry out
prompt halting and avoid overfitting, it then creates and trains
a neural network using SGD while monitoring a validation
metric [22].

After these training phases, the programme then integrates
the forecasts from both Gaussian NB and SGD. It assesses the
performance of the blended model on the validation data and
enables hyperparameter adjustment, optimizing both the SGD
and neural network design. A blended model that combines
probabilistic predictions with iterative optimization skills is
enhanced by combining Gaussian Naive Bayes and
Stochastic Gradient Descent (SGD). This method improves
generalization by utilizing the speed and robustness of Naive
Bayes to decrease bias and alter decision boundaries more
precisely. Based on input characteristics, the computer
predicts malware and benign classes using GNB and
stochastic gradient descent (SGD) models. The GNB model
generates probabilistic predictions, while SGD combines raw
characteristics and GNB probabilities to improve prediction
accuracy. The approach ends by training the final blended
model across the entire training dataset and evaluating its
generalization performance across the test dataset. It uses a
structured method to improve classification tasks by
combining probabilistic and deep learning approaches,
emphasising documentation, interpretation, and discussions
about future research paths [23]. Ensemble Learning is a
systematic technique to enhance classification jobs by fusing
deep learning and probabilistic methods. Creating a robust
predictive model entails integrating predictions from several
models, such as deep neural networks and Gaussian Naive
Bayes. This approach uses deep learning's capacity to
recognize intricate patterns and probabilistic reasoning's
advantages.

Gaussian NB, a probabilistic classifier suited for
continuous data, can be a foundational component. SGD, an
optimization algorithm, updates model parameters iteratively
to minimize loss functions. Malware detection systems
require constant upgrading and monitoring to stay updated
with the newest threats. Real-time network traffic, system
behaviour, and user activity analysis are all part of this
process, including machine learning models, patches, and
threat intelligence feeds. Weight and bias fixing methods can
stabilize and optimize the training process, ensuring
convergence without numerical issues. Implement feature
scaling, regularise strategies like L2 regularisation, adjust the
learning rate, pre-process input data, and utilize suitable
initialization approaches for model parameters in SGD to
guarantee the best possible performance for Gaussian NB and
SGD optimization. These procedures ensure a solid
foundation for excellent performance and avoid numerical
problems. Early stopping, a regularization technique,
monitors validation metrics during training and halts the
process if performance plateaus or deteriorates, preventing
overfitting. This combination offers a versatile model capable
of handling mixed data types and efficiently optimizing
training while safeguarding against overfitting [24].

6

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

A Probabilistic Descent Ensemble for Malware Prediction Using Deep Learning

7

4. RESULTS AND DISCUSSION

4.1 Performance analysis of the proposed
system for the Malware dataset

This balanced dataset has 100,000 samples, split evenly
between malware and benign classifications. It likely
contains hash values, millisecond timestamps, process
classifications, states, usage counters, priorities, and policy
information, reflecting various aspects of system processes.
The balanced distribution suggests an intentional effort to
create a dataset for binary classification tasks, particularly in
the context of malware detection [9, 25]. Reduced bias and
improved learning are two ways a balanced dataset improves
binary classification model performance. Resampling
methods, feature engineering, stratified sampling, and
synthetic data creation are used to attain this equilibrium. In
addition to enhancing generalization and lowering the
possibility of overfitting the dominant class, these approaches
guarantee that all classes receive equal attention.

Figure 2. Correlation Matrix of malware dataset

The StndardScaler optimization procedure ensures that all
features have a comparable scale, which is essential for the
efficiency of many machine learning algorithms.
StandardScaler improves model performance by maintaining
associations between data points within each feature,
especially for algorithms sensitive to feature scales [26]. In
addition to preserving feature associations, optimizing model
performance, lowering bias, and enhancing compatibility
with techniques such as logistic regression, SVMs, and neural
networks, Standard Scaler standardizes features by
eliminating mean and scaling to unit variance. It increases
model accuracy, lessens bias towards features with broader
ranges, and maintains relative distances and relationships
between data points. This processing phase is crucial for
various machine learning applications to produce steady and
reliable forecasts. Figure 2 contains the malware dataset's
correlation matrix. According to Figure 2 [27], each matrix

cell shows a correlation coefficient, which can be between -
0.6 and 1.

Seven distinct layers comprise the model: a single input
layer with 27 units, six hidden levels with fifty elements each,
a single output level with two units, and a SoftMax activation
layer for the classification task. Rectified Linear Unit (ReLU)
is the activation function employed for the buried layers.
Through several hidden layers, this design enables the model
to understand complicated correlations in the data. To make
decisions, each layer's neurone count is decreased, hidden
layers' ReLU is used for effective gradient propagation, and a
sigmoid function in the output layer represents probabilities.
The model summary explains its architecture, including the
number of trainable parameters in each layer, making
evaluating and improving the model architecture easier while
training [28]. Equation 5 is used to calculate the model's
accuracy.

𝐴𝐴 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∧ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (5)

Table 2. Summary of the Dense Layer Architecture

Layer (type) Output Shape Parameter
dense 50 1400.0
dense_1 50 2550.0
dense_2 40 2550.0
dense_3 30 2550.0
dense_4 20 2550.0
dense_5 10 2550.0
dense_6 2 102.0

Figure 3. Accuracy of proposed work without early
stopping

An overview of the neural network algorithm's dense layer
design may be seen in Table 2. The type, input shape, and
number of parameters that can be trained for each layer are

7

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

R. Vinoth Kumar, R. Suguna

8

listed in the table. A total of seven layers make up the model:
the input layer and six layers that are hidden. Each hidden
layer has 50 units (neurons), and the final output layer
consists of 2 units for classification purposes. The total
number of parameters for each hidden layer is 2550, while the
input layer has 1400 parameters. The output layer has 102
parameters. This architecture allows the model to capture
complex patterns and relationships within the data, making it
suitable for various machine-learning tasks [29].

Figure 4. Loss of proposed work without early
stopping

The provided output in Figures 3 and 4 reveals the
evaluation results of a machine learning model, indicating
exceptional performance. The training loss, an indicator of
prediction accuracy on the training data, is impressively low
at 7.6280e-04, accompanied by a training accuracy of
99.99%, signifying accurate predictions on the training
dataset. The model's ability to generalize to previously
unknown data is impressive, as shown by the test's low-test
loss of 0.000763 and its high-test accuracy of 99.989998%.
Although the results are promising, overfitting is an issue.
There are more local minima than elsewhere. While the
findings show excellent accuracy and loss measures, it's
important to note that overfitting may be a risk, mainly if the
model performs considerably better on the training dataset
than the test dataset. Overfitting happens when a model learns
to fit the training data too closely. This captures noise and
particular patterns that might not generalize effectively to
fresh data [30].

Table 3 presents the performance results of a neural
network model under various hyperparameter configurations.
The hyperparameter tuning process includes SGD
hyperparameters like batch size, regularisation term, and
learning rate and Gaussian NB hyperparameters like the
smoothing parameter, which regulates the degree of the prior
probability adjustment. Cross-validation adjusts these
parameters to balance variance and bias, guaranteeing model
correctness and training efficiency. Cross-validation in
conjunction with grid search or random search is used to meet
the selection criterion. Each row corresponds to a specific
setup, featuring different learning rates and optimizers. For
instance, in Row 1, with a learning rate of 0.01 and the SGD
optimizer, the model achieved a training loss of 0.0023,
indicating a solid fit for the training data with a training
accuracy of 99.2%. Similarly, the test loss (0.0031) and test

accuracy (98.7%) suggest good generalization to unseen data.
The table showcases how these hyperparameters influence
the model's ability to learn and generalize, aiding in selecting
the most effective configuration for specific machine-
learning tasks [31].

Figure 5. Training and validation accuracy of proposed
PDE with early stopping

Table 3. The performance analysis of PDE for different
optimizers and learning rate

Learni
ng
Rate

Opti
mize
r

Trainin
g Loss

Training
Accuracy

Test
Los
s

Test
Accura
cy

0.01 SGD 0.0023 99.2% 0.00
31

98.7%

0.001 Ada
m

0.0012 99.5% 0.00
15

99.0%

0.1 RMS
prop

0.0041 98.8% 0.00
53

98.3%

0.005 Ada
m

0.0019 99.3% 0.00
22

99.1%

0.03 SGD 0.0036 98.9% 0.00
42

98.6%

Figure 6. Training and validation loss of proposed
PDE with early stopping

The output in Figures 5 and 6 represents the evaluation
results of a machine learning model, showcasing its
exceptional performance. The training loss, a measure of

8

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

A Probabilistic Descent Ensemble for Malware Prediction Using Deep Learning

9

prediction accuracy on the training data, is shallow at
6.6912e-04, with a training accuracy of 99.98%, indicating
that the model accurately predicts the training dataset. The
model's generalization to new, unseen data is equally
impressive, as reflected in the low-test loss of 0.000669 and
a test accuracy of 99.98%. These results demonstrate the
model's robust training and ability to make accurate
predictions without overfitting and local minima [32]. An
optimization of a model that has several local minima may
result in poor generalization to unknown data, overfitting, and
decreased performance. Stochastic Gradient Descent (SGD),
regularisation methods, early halting, adaptive learning rates,
and merging several models via bagging or boosting are some
strategies to deal with the issue. By using these strategies, bad
local minima may be avoided, and the test data performance
of the model will be enhanced.

4.2 Performance analysis of the proposed
system for the UCI Malware dataset

The dataset comprises 373 samples from Windows
executables, encompassing 301 malicious files and 72 non-
malicious files. Each sample is characterized by 531 features,
which include a combination of binary hexadecimal
representations and Dynamic Link Library function calls. The
label column indicates whether a file is categorized as
malicious or non-malicious, as shown in Figure 7.
Behavioural features like system calls, memory usage, and
network activity are combined with metadata like file origin,
timestamp, and digital signatures, and static features like file
properties like size, type, entropy, and hash values to create
the UCI Malware dataset, a comprehensive tool for malware
detection. These characteristics aid in detecting complex
malware, assist in identifying well-known malware patterns,
and serve as a foundation for machine learning models trained
to discriminate between benign and dangerous software
accurately.

Figure 7. Malicious and non-malicious data

Model Accuracy (%)
RandomForestClassifier 0.893
DecisionTreeClassifier 0.907
KNeighborsClassifier 0.872
AdaBoostClassifier 0.915
SGDClassifier 0.884
ExtraTreesClassifier 0.901
GaussianNB 0.835

Probabilistic descent ensemble 0.99

The classifiers mentioned above encompass a diverse set
of machine-learning algorithms. RandomForestClassifier
utilizes ensemble learning and multiple decision trees to
enhance predictive accuracy. DecisionTreeClassifier
constructs a tree-like structure to make decisions based on
input features. KNeighborsClassifier relies on the majority
class of nearby data points in feature space for classification.
AdaBoostClassifier combines weak learners to form strong
ones, focusing on previously misclassified samples. In
situations involving complicated decision-making,
AdaBoostClassifier performs better than
KNeighborsClassifier. By concentrating on difficult
instances, iteratively modifying misclassified samples
enhances model performance and builds a robust ensemble
model that performs better with various intricate datasets.
AdaBoost is beneficial when model interpretability is less
critical, including outliers or overlapping classes.
SGDClassifier employs Stochastic Gradient Descent for
optimization, commonly used for linear classifiers.
ExtraTreesClassifier is akin to RandomForest but introduces
feature selection randomness. Lastly, GaussianNB, a type of
Naive Bayes classifier, assumes a normal distribution of
features and is often employed in classification, particularly
in text categorization. These classifiers cater to various
machine learning tasks, offering versatility in handling
different datasets and challenges [33].

The accuracy-based performance of different machine
learning models on the UCI-Malware dataset is shown in
Table 4. A variety of classifiers, including RandomForest,
DecisionTree, KNeighbors, AdaBoost, SGD, ExtraTrees, and
GaussianNB, are included in the table. These models'
accuracy scores result from training and testing them on the
dataset. The data in the table show how each model fared on
the challenge, while accuracy is a statistic that shows the
percentage of correctly categorized examples. The
AdaBoostClassifier, which had an accuracy of 0.915, came in
first in the results, closely followed by the
DecisionTreeClassifier and ExtraTreesClassifier, which had
accuracy ratings of 0.907 and 0.901, respectively. The
Probabilistic Descent Ensemble surpasses or is roughly on
par with other sophisticated algorithms in a particular
machine training task, as seen in Figure 8, where it obtains a
precision of 0.99% compared to other cutting-edge models
[33, 34].

Table 4: Performance of machine learning model for
uci-malware dataset

9

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

R. Vinoth Kumar, R. Suguna

10

Figure 8. Performance analysis of proposed work with
other models

5. CONCLUSION

Deep learning's Probabilistic Descent Ensemble (PDE)
technique offers a viable way to enhance virus prediction.
This innovative method harnesses the collective strength of
multiple neural network models with diverse architectures
and training strategies, yielding superior accuracy while
mitigating the risk of false positives. Combining Stochastic
Gradient Descent (SGD) with early stopping is a robust
optimization approach, effectively preventing overfitting by
monitoring validation metrics during training. This synergy
between SGD and early stopping enhances model
performance. It makes it adaptable to various tasks and
datasets, potentially reducing training time and improving
generalization capabilities.

Moreover, incorporating a Gaussian Naive Bayes (NB)
classifier with SGD optimization enriches the model's
probabilistic framework, catering to data distributions that
follow a Gaussian pattern. The achieved 99% accuracy in
malware prediction underscores the effectiveness of this
approach, demonstrating its resilience against overfitting and
local minima. In summary, this research opens the door for
more robust and effective malware detection systems,
potentially advancing cybersecurity significantly.

Declarations
Funding: None of the authors received funds or grants.
Conflict of interest: There is no conflict of interest among
the authors.
Data Availability: All data generated or analyzed during this
study are included in the manuscript.
Code Availability: Not applicable.
Author’s contributions: R. Vinoth Kumar and R. Suguna is
contributed to the design and methodology of this study, the
assessment of the outcomes and the writing of the manuscript.

References

[1] Gavriluţ D, Cimpoeşu M, Anton D, Ciortuz L. Malware
detection using machine learning. 2009 International

multiconference on computer science and information
technology. 2009;735-741.

[2] Xu Z, Ray S, Subramanyan P, Malik S. Malware detection
using machine learning based analysis of virtual memory
access patterns. Des Autom Test Eur Conf Exhib. 2017;169-
174.

[3] Naway A, Li Y. A review on the use of deep learning in
android malware detection. arXiv preprint arXiv:1812.10360.
2018.

[4] Gorment NZ, Selamat A, Cheng LK, Krejcar O. Machine
learning algorithm for malware detection: Taxonomy, current
challenges and future directions. IEEE Access. 2023.

[5] Rathore H, Agarwal S, Sahay SK, Sewak M. Malware
detection using machine learning and deep learning. In: Big
Data Analytics: 6th International Conference, BDA 2018,
Warangal, India, December 18–21, 2018, Proceedings 6.
Springer Int Publ. 2018;402-411.

[6] Gavriluţ D, Cimpoeşu M, Anton D, Ciortuz L. Malware
detection using machine learning. 2009 International
multiconference on computer science and information
technology. 2009;735-741.

[7] Liu L, Wang BS, Yu B, Zhong QX. Automatic malware
classification and new malware detection using machine
learning. Front Inf Technol Electron Eng. 2017;18(9):1336-
1347.

[8] Mahindru A, Sangal AL. MLDroid—a framework for Android
malware detection using machine learning techniques. Neural
Comput Appl. 2021;33(10):5183-5240.

[9] Vinayakumar R, Alazab M, Soman KP, Poornachandran P,
Venkatraman S. Robust intelligent malware detection using
deep learning. IEEE Access. 2019;7:46717-46738.

[10] Karbab EB, Debbabi M, Derhab A, Mouheb D. MalDozer:
Automatic framework for android malware detection using
deep learning. Digit Investig. 2018;24

[11] Urooj U, Al-rimy BAS, Zainal A, Ghaleb FA, Rassam MA.
Ransomware detection using the dynamic analysis and
machine learning: A survey and research directions. Appl Sci.
2021;12(1):172.

[12] Firdausi I, Erwin A, Nugroho AS. Analysis of machine
learning techniques used in behavior-based malware detection.
2010 Second International Conference on Advances in
Computing, Control, and Telecommunication Technologies.
2010;201-203.

[13] Kumar MS, Purusothaman T, Kumar RL. Secure and reliable
intrusion detection scheme for software-defined networking
using LFTS-Rnn and PC-JTFOA. IETE J Res. 2024;1-16.

[14] Punitha P, Kumar L, Revathi S, Premalatha R, Aiswarya RS.
Secured framework with a hash function-enabled keyword
search in cloud storage services. Int J Coop Inf Syst.
2024;2450001.

[15] Lakshmana Kumar R, Jayanthi S, Muthu B, Sivaparthipan CB.
An automatic anomaly application detection system in mobile
devices using FL-HTR-DBN and SKLD-SED K means
algorithms. J Intell Fuzzy Syst. 2023;(Preprint):1-14.

[16] Muthu B, Cb S, Kumar PM, Kadry SN, Hsu CH, Sanjuan O,
Crespo RG. A framework for extractive text summarization
based on deep learning modified neural network classifier.
ACM Trans Asian Low-Resour Lang Inf Process.
2021;20(3):1-20.

[17] Dataset Collection:
https://www.kaggle.com/code/vinesmsuic/malware-detection-
using-deeplearning/input.

[18] Dataset Collection:
https://www.kaggle.com/code/maidaly/malware-detection-
with-machine-learning/input.

10

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

A Probabilistic Descent Ensemble for Malware Prediction Using Deep Learning

11

[19] Mahindru A, Sangal AL. SOMDROID: Android malware
detection by artificial neural network trained using
unsupervised learning. Evol Intell. 2022;15(1):407-437.

[20] Shaukat K, Luo S, Varadharajan V. A novel deep learning-
based approach for malware detection. Eng Appl Artif Intell.
2023; 122:106030.

[21] Venkatraman S, Alazab M, Vinayakumar R. A hybrid deep
learning image-based analysis for effective malware detection.
J Inf Secur Appl. 2019; 47:377-389.

[22] Raymond VJ, Raj RJR, Retna J. Investigation of android
malware with machine learning classifiers using enhanced
PCA algorithm. Comput Syst Sci Eng. 2023;44(3):2147-2163.

[23] Udayakumar N, Saglani VJ, Cupta AV, Subbulakshmi T.
Malware classification using machine learning algorithms.
2018 2nd International Conference on Trends in Electronics
and Informatics. 2018;1-9.

[24] D’Angelo G, Ficco M, Palmieri F. Malware detection in
mobile environments based on autoencoders and API-images.
J Parallel Distrib Comput. 2020; 137:26-33.

[25] Shhadat I, Hayajneh A, Al-Sharif ZA. The use of machine
learning techniques to advance the detection and classification
of unknown malware. Procedia Comput Sci. 2020; 170:917-
922.

[26] Gupta SK, Pattnaik B, Agrawal V, Boddu RSK, Srivastava A,
Hazela B. Malware detection using genetic cascaded support
vector machine classifier in internet of things. 2022 Second
International Conference on Computer Science, Engineering
and Applications. 2022;1-6.

[27] Shaukat K, Luo S, Chen S, Liu D. Cyber threat detection using
machine learning techniques: A performance evaluation
perspective. 2020 International Conference on Cyber Warfare
and Security. 2020;1-6.

[28] Aljabri M, Mirza S. Phishing attacks detection using machine
learning and deep learning models. 2022 7th International
Conference on Data Science and Machine Learning
Applications. 2022;175-180.

[29] Selvaganapathy S, Nivaashini M, Natarajan H. Deep belief
network-based detection and categorization of malicious
URLs. Inf Secur J Glob Perspect. 2018;27(3):145-161.

[30] Alwaghid AF, Sarkar NI. Exploring malware behavior of
webpages using machine learning technique: An empirical
study. Electronics. 2020;9(6):1033.

[31] Masum M, Nur I, Faruk MH, Adnan M, Shahriar H. A
comparative study of machine learning-based autism spectrum
disorder detection with feature importance analysis. In:
COMPSAC 2022: Computer Software and Applications
Conference. 2022;3.

[32] Syafaâ L, Zulfatman Z, Pakaya I, Lestandy M. Comparison of
machine learning classification methods in hepatitis C virus.
Jurnal Online Inform. 2021;6(1):73-78.

[33] Htwe CS, Thant YM, Thwin MMS. Botnets attack detection
using machine learning approach for IoT environment. J Phys
Conf Ser. 2020;1646(1):012101.

[34] Rbah Y, Mahfoudi M, Balboul Y, Fattah M, Mazer S,
Elbekkali M, Bernoussi B. Machine learning and deep learning
methods for intrusion detection systems in IoMT: A survey.
2022 2nd International Conference on Innovative Research in
Applied Science, Engineering and Technology. 2022;1-9.

11

EAI Endorsed Transactions on
Internet of Things

| Volume 10 | 2024 |

