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Abstract 
There is a shortage of wireless spectrum due to developments in the area of wireless communications as well as the number 
of users that are using resources. Spectrum sensing is a method that solves the issue of shortage. Deep learning surpasses 
classical methods in spectrum sensing by enabling autonomous feature learning, which enables the adaptive identification 
of complicated patterns in radio frequency data for cognitive radio in wireless sensor networks. This innovation increases 
the system's capacity to manage dynamic, real-time circumstances, resulting in increased accuracy over traditional 
approaches. Spectrum sensing (SS) using LSTM-BIGRU with gaussian noise has been suggested in this article. Long-term 
dependencies in sequential data are well- preserved by LSTM due to its dedicated memory cells. In addressing and man- 
aging long-term dependencies in sequential data, BIGRU's integration enhances the efficacy of the model as a whole. To 
conduct the investigation, RadioML2016.04C.multisnr open-source dataset was utilized. Whereas, by using 
RadioML2016.10b open-source dataset, QAM64, QPSK and QAM16 performance evaluation has been investigated. The 
experimental findings demonstrate that the suggested Spectrum Sensing has better accuracy on the dataset particularly at 
lower SNRs. The improved spectrum sensing (SS) performance of our suggested model is shown by the evaluation of 
performance indicators, such as the F1 Score, CKC and Matthew's correlation coefficient, highlighting its potency in the 
field of spectrum sensing applications. 
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1. Introduction

The radio spectrum bands used for wireless 
communication are frequencies, and spectrum sensing 
identifies their availability and occupancy state. Cognitive 
radio networks heavily rely on spectrum sensing, which 
enables reliant users to access  free frequency bands to 
optimize spectrum efficiency [1]. Cognitive radio has been 
suggested to optimize the utility of wireless networks' 
spectrum resources.
____________________________________________________ 
*Corresponding author. Email: vargilvijay@gmail.com

 The use of spectrum sensing strongly influences 
cognitive radio. Traditional spectrum sensing methods focus 
on identifying characteristics in a signal received at a given 
place through techniques like cooperative spectrum sensing, 
more accurate spectrum sensing is now possible using DL 
[2].Conventional detectors with their limitations include 
matched filters, energy detectors, and cyclostationary feature 
detectors [8] [9].
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The requirement for spectrum for 4G and 5G networks 
has grown due to the widespread use of mobile devices. 
The present spectrum dilemma is primarily due to the 
wasteful usage of licensed frequency bands. Cognitive 
radio (CR) technology has gained popularity as a solution 
to this issue. The licensed spectrum of primary users (PUs) 
is available to secondary users (SUs) via CR Wireless 
communication has typically relied on specialized 
knowledge and too simplistic models to extract 
characteristics from the spectrum. These methods mainly 
depend on human operators and extensively use 
preconceptions [7]. SUs are in charge of ensuring that 
their access doesn't interfere with PU signals [5]. 
Spectrum sensing (SS), figure out if PUs is on or off, has 
been a challenging issue, with energy detection being the 
most preferred method because of its simplicity. There 
have been many recommendations in recent years to apply 
machine learning (ML)-based SS algorithms to improve 
the exposure performance for cooperative radio frequency 
sensing (CSS) [6]. The SUs in the spectrum- aware radio 
network monitors the frequencies in use and, when 
appropriate, utilize the free channels [5]. Multi-layer 
perceptron (MLP) networks are among the most widely 
used deep learning and machine learning frameworks 
incorporating spectrum sensing. The absence of memory 
components in MLP networks makes them potentially 
useless for time-series data. Alternatively, by extracting 
characteristics from the network itself, deep neural 
networks (DNN) provide a data-driven approach that may 
reduce the number of assumptions. Frequency spectrum 
prediction may reduce time delays by relieving the burden 
of spectrum sensing. Utilizing a deep recurrent neural 
network (DRNN) can predict the spectrum for several time 
slots, as present techniques can only expect the spectrum 
for a single or fewer time slot [3]. Both super- vised and 
unsupervised machine learning DNN models are now used 
in RFML. How- ever, supervised machine learning 
networks are more common since they can be con- figured 
to do specific tasks rather than merely looking for 
structure in the data. The recent outcomes show that CNN, 
and RNN are more effective at spectrum sensing, reducing 
an algorithm's complexity show how performance might 
be improved [2]. A vital component of the LSTM-based 
spectrum sensing strategy is training an LSTM network 
using labeled spectrum data, which imparts the network to 
discover patterns and correlations in the data. The LSTM 
network may be used for real-time spectrum sensing after 
being trained by feeding its received spectrum data; the 
network then determines whether or not a particular 
frequency band is open for usage [4]. LSTM networks 
have gained popularity for their ability to learn temporal 
features from sequential input.[16][17][18]. An LSTM-
based SS method use the data's temporal peculiarities [19]. 
Spectrum-aware radio technique based on LSTM that 
takes use of the extraordinary learning power of LSTM 

networks [10] [15] to extract latent information from 
spectrum data, such as temporal correlations between 
current and timestamps [6]. Recurrent neural networks 
(RNNs)[16] and hybrid CNN-RNN net- works have 
gained popularity over the last ten years, replacing 
convolutional neural networks (CNNs)[12], which were 
previously widely employed in RFML research [13]. The 
Bidirectional Gated Recurrent Units (BiGRUs) neural 
network architecture is utilized for sequence modeling 
[20]. They improve conventional GRUs by pro- cessing 
input data forward and backward and incorporating 
contextual data from previous and future time steps. By 
taking into account bidirectional context, they provide 
more detailed representations and increase the model's 
capacity for precise prediction in sequential data tasks 

2. Related Work

Convolutional operations in the convolutional neural network 
(CNN) extract complicated characteristics from the pre-
processed input that are crucial for regression tasks, 
according to studies by Mahak Kalra [11] et al. The CNN's 
input layer must first receive the pre-processed data, which 
must then perform convolution operations to extract complex 
features relevant to regression. The model consists of layers 
such as the sequence layer, LSTM layer, fully connected 
layer, and regression layer. The LSTM layer incorporates 
LSTM memory cells to enhance the model's memory 
capacity. The CNN-RNN model suggested by this research 
yields the following results the rate is 0.9895, the error 
proportion is 0.0105. CNN and SAM-CNN detectors can 
manage spectrum sensing in situations with intermittent 
prominent signal presence, according to studies by Zhan 
Cong et al. [12]. Numerical findings demonstrate that the 
recommended detectors perform much better than the state-
of-the-art detectors, with higher detection probabilities and 
improved ROC performance. This method also indicates that 
the SAM-CNN detector, which utilizes switch feature 
extraction from channel state data, is superior to the CNN 
detector in spotting abnormalities. The best performing of the 
other detectors achieves detection probabilities below 0.7. In 
contrast, the CNN and the SAM-CNN detectors achieve 
around 0.8 and 0.87 detection percentages with a false alarm 
probability (Pf) of 0.1, respectively.. The best performance of 
the other detectors drops to 0.55 when Pf is adjusted to 0.05, 
but the SAM- CNN detector retains a detection probability of 
around 0.84. When Pf is set to 0.05, the SAM-CNN detector 
improves the detection probability when compared to the 
CNN detector by 19%. The Generalized Likelihood Ratio 
Test (GLRT) was examined in the work of Q. Cheng et al. 
[13]. The GLRT scheme's underlying Maximum Likelihood 
(ML) estimations were devised and expressed in closed 
forms, allowing for real- time implementation appropriate for 
automotive applications. The main goals of this method were
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to evaluate algorithm performance in dynamic random 
processes characteristic of urban traffic applications and to 
advance GLRT spectrum sensing for a generic rank-K 
situation, where 1 ≤ K < M. The research notably addressed 
the complicated vehicular-application spectra that are 
present in areas such as New York City. In the work by M. 
Karimzadeh et al. [14] it was shown that the suggested system 
performs better with heavy-tailed Generalized Gaussian Noise 
(GGN) than its predecessor PCA, and the well-known ED 
method. The slope parameter was optimized in order to 
obtain this improved performance. The research used a GGD 
with shape parameter η=0.9 to account for noise in 
numerical results. This distribution is some- what heavier-
tailed than a Laplacian distribution, which is generally 
regarded as the standard heavy-tailed distribution. The best 
value in the fading situation is considered. to be the same as 
that in the no-fading scenario, despite of the difficulty in 
calculating this value when the primary signal suffers 
fading. This presumption illustrates how difficult it may be to 
determine the ideal settings when there is signal fading. 

3. Proposed Method

 
Figure 1. Proposed system Block diagram 

Equation (1) gives the model a problem 
conceptualization. Spectrum sensing is a representation 

for binary classifiers. If the null hypothesis is correct, no 
PU exists, and noise is being picked up instead. If the 
alternative theory is correct, PU will be found. The 
additive gaussian signal in equation (1) has a mean value 
of zero  

𝐻1: {𝑆msg + 5gaussian} 
{𝑌} = { (1) 

  𝐻0:{5gaussian} 
The dataset has been downloaded from open-source 

websites https://www.deepsig.ai/datasets, 
https://www.kaggle.com where these have SNR ranges 
from -20dB to 18db with an increment of 2dB. In this 
various modulation techniques data has been included in 
the form of 128*2 vectors. The proposed system block 
diagram is shown in Fig. 1. . AWGN noise in complex 
form has been added to I- Q form of modulation, and after 
preprocessing, the data and noise are given to 24 LSTM 
and 12 BIGRU units. LSTM networks are primarily used 
for the learning, processing, and classification of data, 
which is in sequential form, because they can learn long-
term dependencies among time steps . Let 𝑚 = (𝑚1, 𝑚2, 
… …. 𝑚z) be the input, 𝑧 be the number of overall 
elements. ℎ represents the vector of the hidden state and 𝑙 
indicates the input sequence position.  

Here 𝒻, u, and 𝑜 denotes the forget, input and output 
gates outputs given in 𝑒𝑞𝑠. (2), (3), 𝑎𝑛𝑑 (4). 𝑏 indicates 
the bias element, U denotes the weight matrix 
corresponding to hidden state, G is the matrix of 
weights, 𝛿 represents memory component to store 
intermediate outcome which has been represented in 𝑒𝑞. 
(5) and in 𝑒𝑞. (6) [20]. 𝑐 denotes the momentary value, ❋
denotes element wise multiplication, and 𝜎 denotes
sigmoid activation. G𝒇rget, G𝒊npt, and G𝒐tpt denote the weight
matrices [21] which belong to forget, input, output gates.

𝑅𝑒𝑙𝑢 activation in LSTM is described in 𝑒𝑞. (7) . 
BIGRU operates in both directions and extracts context 
features in the spectrum sensing model [21][22]. 

3

EAI Endorsed Transactions on 
Internet of Things 

| Volume 10 | 2024 |



E. Vargil Vijay

The output is then passed through a dense layer where the 
features will be extracted, and finally, sigmoid activation 
is used for binary classification to classify signal and noise 
classes. F1 Score and MCC equations have been 
represented in eq. (1) and (2). Where φ indicates True, and 
θ indicates False. Suffixes p and n indicates positive and 
negative respectively. 

4. Results and Discussions

The suggested method's SNR vs accuracy is shown in Fig. 
2. The TP, TN, FP, and FN values have been determined 
using the confusion matrix. The categorization results are 
greater than 84% for both true positives and true negatives. 
This demonstrates how the model more accurately separates 
signals from noise. When the value is greater than -3 dB, 
the accuracy reaches 95%, and at lower SNR, it reaches 
60%. The representation of confusion matrices in SNR wise 
is shown in Fig. 3. It shows that the categorization improves 
as SNR rises; even at lower SNRs, the classification is 
comparably better.
Fig. 4. shows the SNR wise comparison of Performance 
metrics. It has been observed that at lower SNRs the MCC 
value is higher. And CKC value for the proposed system is 
above 0.9 which indicates that the performance of the 
system is reasonably good at all SNR. Similarly, MCC and 
F1 Scores have also been indicated SNR wise. The system 
performance assessment utilizing the RadioML 
2016.04C.multisnr dataset is shown in Fig. 2, Fig. 3, and 
Fig. 4. Table 1 compares the suggested method's 
performance metrics. When it comes to spectrum sensing, a 
range of performance measures provide a thorough

Figure 3. SNR wise Confusion matrices from -20dB to 16dB 

assessment of the detection procedure. The precision value 
of 0.8469 indicates the dependability of properly detected 
cases when it comes to assessing the accuracy of positive 
predictions. The percentage of true positives that are 
mistakenly categorized as negatives, or the false omission 
incidence, is 0.1384, which indicates a very low incidence 
of missed detections. The effective sensitivity in 
detecting positive cases is shown by the miss rate, which is 
0.1357. With an observed value of 0.1530, the false 
discovery rate which quantifies the proportion of false 
positives to all anticipated positives indicates a 
modest degree of overprediction. The model's ability to 

Figure 2. Confusion matrix and accuracy 
percentage comparison plot
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accurately identify negative instances is demonstrated by 
the Negative Predictive Value, which is calculated at 
0.8615 and illustrates the accuracy of negative predictions. 
With a calculated value of 0.8909, the diagnostic odds 
ratio a thorough indicator of diagnostic accuracy offers a 
full evaluation of the sensing system's effectiveness. With 
a misclassification rate of 14.59%, which is the total error 
rate, there seems to be a very low number of 
misclassifications. The model's balance in managing false 
positives and false negatives is attested to by the F1 score, 
a balanced measure of accuracy and recall, which is given 
as 0.855. With a CKC score of 0.7081, which represents 
the classification knowledge contribution, there is a 
sufficient degree of discriminative ability. Lastly, the 
model's capacity to precisely detect positive cases in 
spectrum sensing applications is shown by the FMI Index, 
which measures the similarity between predicted and 
actual positive occurrences at 0.8554. . It has been shown 
that from Fig. 4(d) and Fig. 4(e), both misclassification 
rate and FOR values steadily decrease as SNR increases, 
and that the misclassification percentage is still higher 
than 60% even at lower SNRs. 

Figure 4. SNR wise performance comparison 

Table 1. Performance metrics using RadioML 
2016.04C.multisnr dataset 

 

Performance Metric Value 
Precision 0.8469 
False omission rate 0.1384 
Miss rate 0.1357 
False discovery rate 0.1530 
Negative predictive value 0.8615 
Diagnostic odds ratio 0.8909 

Misclassification rate (%) 14.59 
F1 Score 0.855 

CKC Score 0.7081 
FMI Index 0.8554 

Using the RadioML 2016.10b dataset, Fig. 5. compares 
the misclassification rate (MCR), sensing error (SE), false 
negative rate (FNR), and false discovery rate (FDR) for 
QAM64, QAM16 and QPSK. Based on the acquired data, 
QAM64 performs better than QAM16, and QPSK for the 
metrics mentioned above. Specifically, QAM64's sensing 
error is reduced at 11.78 compared to QAM16's 14. 7, and 
QPSK’s 18.09. Thus, in comparison to QAM16 and 
QPSK, QAM64 performs better in noisy environments 

5. Conclusion

In contrast to conventional techniques, spectrum sensing 
using deep learning in Cognitive Radio (CR) performs 
better because of advancements in AI and DL technology. 
This paper proposed the LSTM-BIGRU strategy as an 
enhanced DL-based spectrum sensing method that 
provides a sophisticated knowledge of spectrum sensing. 
Our model carefully examined performance metrics, such 
as MCC, F1, and CKC scores, to provide a thorough 
assessment of its effectiveness using, RadioML 
2016.04C.multisnr dataset, and performance evaluation 
for QAM64, QPSK, and QAM16 have been performed 
using RadioML 2016.10b dataset. The suggested method  

Figure 5. Performance metrics bar chart for QAM64, QAM16 
and QPSK 
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was quite effective as it was not only buoyant under normal 
circumstances but also more flexible when Gaussian noise 
was present. This flexibility highlights its practical use and 
represents a significant progress in improving the 
dependability and effectiveness of spectrum sensing in 
dynamic communication context. 
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