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This paper presents a novel approach to solving fractional differential equations by integrating classical and modern 
methods. Building on the traditional Frobenius method, we introduce the Ramadan Group transform, a powerful tool for 
addressing fractional differential equations. In addition, the study explores the application of machine learning techniques, 
specifically neural networks, to enhance the solution process. Through the use of data generation, model design, and 
optimization strategies, we demonstrate how machine learning can complement and improve traditional methods in solving 
fractional differential equations. The results, illustrated through various examples, highlight the synergy between classical 
fractional calculus techniques and machine learning, offering a more robust and efficient approach to solving complex 
fractional differential equations. 
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1. Introduction

Integral transforms are known to be one of the
fundamental tools in mathematics and engineering
because of their universality and applicability across a
broad range of disciplines. Such transforms are used to
solve important differential equations and in explaining
the dynamics of systems; from them, one can draw out
key information that was hidden within complex models.
Thus, these transforms reduce complicated problems to
more easily solved forms and are essential in practical
applications. Fractional Differential Equations have been
of great interest because they are able to model complex
systems with non-local and memory-dependent
behavior. Unlike ordinary integer-order differential
equations, fractional differential equations are able to
capture a wide range of phenomena, including
viscoelastic materials, anomalous diffusion, control

systems, and biological systems. These systems often 
exhibit behaviors that cannot be accurately represented 
by classical models, making fractional differential 
equations crucial in the study of real-world processes 
across different fields, such as physics, engineering, and 
biology. Fractional derivatives describe more realistic 
complex dynamic behavior in practical applications. For 
example, in control systems, fractional-order controllers 
can be designed to create adaptive systems that respond 
effectively to changing conditions, improving both 
performance and stability. In signal processing, 
fractional transforms are used to efficiently handle 
signals with memory effects, thus improving filtering 
and noise reduction techniques. Similarly, in biological 
systems, fractional differential equations describe drug 
delivery in tissues or population growth, where the rate 
of change depends on historical states and not only on 
the current state. The main problem with the solution of 
these equations is their complexity and the fact that 
advanced methods are required to solve them. 
Traditional techniques, such as the Frobenius method, 
have been successfully applied. However, these often 
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require significant computational resources and may not 
be practical for highly non-linear or complicated 
systems. This has led to a quest for modern approaches, 
including machine learning, that complement and 
enhance traditional solution methods. These transforms, 
the importance of the limit in mathematical analysis, and 
broad applicability in many areas have led to the 
significance of such transformations. Building on the 
classical Frobenius method, we present the Ramadan 
Group Transform as a more powerful tool to solve 
fractional differential equations. In this work, we 
appreciate its greater efficiency and accuracy when 
compared with traditional methods, such as Laplace, 
Sumudu, and Kamal transforms, which face problems on 
fractional derivatives and computational difficulties 
when applying them. This results in simpler solutions 
and lower computational cost, leading it to being a 
practical alternative for complex fractional differential 
equations. The use of the limit in mathematical analysis 
and its applicability in almost any area of mathematics 
makes it significant [14, 15]. Recently, Watugala’s 
Sumudu transform has been gaining interest due to its 
applicability in solving problems in control engineering 
and differential equations [16, 2]. In addition, new and 
diverse integral transforms that are specific to certain 
areas of applications seem to indicate the advancement 
in the area. Specifically, the Kamal and Mahgoub 
transforms, for example, have proved prospective in the 
convolution operations that open up new tracks for 
addressing problems [4]. Elzaki’s works with the Elzaki 
transform added into the collection of methods available 
for mathematicians which applicable in different 
mathematical scenarios [3]. Also, it has been previously 
presented that the symmetry of the Sawi transform, 
discussed by Mahgoub and Mohand, reveals new 
characteristics which improve its applicability in various 
mathematical contexts [10]. It is remarkable that 
applications of integral transforms involve signal 
processing, control system design among other fields. 
Circulation techniques which refer to derivatives and 
integrals with non-integer order have recently received 
much attention for the description and analysis of 
complicated systems [11]. In this respect, the fractional 
Laplace transform among others has played a central 
role in revealing the details of fractional calculus and its 
consequence in different fields of science and 
engineering [8]. In this context, the present article 
intends to extend the investigation of fractional 
differential equations using a variety of integral 
transforms including the ZZ transform developed by 
Raghavendran et al. [12]. Combined with such 
transforms, along with classical approaches, the work 
also reveals new methods for efficiently solving such 
equations, such as the classical Frobenius method [7, 8], 
while not only presenting captivating examples of these 
equations in practice but also offering novel formulas for 
calculating roots [1]. By these it aims at helping in the 
current and future discussion on matters to do with 
integral transforms and the application and development 

of mathematical and engineering sciences. 
Radhakrishnan et al. (2024) [17] introduce distributed 
physics-informed machine learning strategies for 
modeling two-phase flows, integrating physics-based 
constraints with machine learning to improve prediction 
accuracy in complex fluid dynamics. This method 
proves effective in multiphase flow simulations for 
engineering applications. Zununjan et al. (2024) [18] 
combine fractional-order derivatives with machine 
learning to estimate leaf water content in spring wheat, 
using hyperspectral indices to enhance model accuracy. 
This hybrid approach captures non-linear plant 
physiological behaviors, improving predictions in 
agricultural monitoring. Larijani and Dehghani [19] 
proposed an efficient optimization framework to 
enhance the design of machine models by combining 
algorithms. Their work focuses on optimizing the 
structure of the machine model, which further improves 
computational efficiency and enables applicability in 
various fields. Abdollahi et al. [20] introduced a new 
computational technique that employed the two-
dimensional Haar wavelet method to solve fractional 
Volterra integral equations. This method has much 
improved accuracy and computational efficiency and 
thus is very appropriate for complex integral equations 
with fractional parts. Alam et al. [21] used radial basis 
functions to approximate solutions for the time-
fractional FitzHugh–Nagumo equation, widely used in 
modeling neural impulse transmission. This method 
offers a robust and reliable approach to handling time-
fractional models, particularly in biological and medical 
applications. Avazzadeh et al. [22] developed a 
generalized shifted Vieta-Fibonacci polynomial-based 
approach to solve nonlinear variable-order time 
fractional Burgers-Huxley equations. The major 
contributions of this work are as follows: 

• Introduction of the Ramadan Group Transform:
A novel and effective tool for solving fractional
differential equations, providing an alternative to
traditional methods.

• Integration of Classical and Modern Methods:
Combining the classical Frobenius method with
machine learning techniques, such as neural
networks, to enhance solution efficiency for
fractional differential equations.

• Application of Neural Networks: Utilizing neural
networks for data generation, model design, and
optimization, demonstrating their potential in
improving the solution process for complex
fractional differential equations.

• Empirical Examples and Case Studies: Providing
numerical simulations and real-life case studies to
showcase the practical effectiveness of the proposed
hybrid approach.

• Multi-disciplinary Applications: Highlighting the
potential of the integrated approach for solving
problems across fields such as physics, engineering,
and encouraging future research in these areas.
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The structure of the paper is as follows: Section 2 
discusses preliminaries, which contains all the necessary 
mathematical concepts and tools for fractional 
differential equations. Section 3 focuses on formulations, 
where two theorems and two propositions are presented 
to establish the foundation for solving fractional 
differential equations. Section 4 elaborates on machine 
learning approaches, which include data generation, 

model architecture, parameter tuning, optimization 
algorithms, validation, testing, and prediction. The 
numerical findings and graphical representation will be 
presented in the form of results and visualization, while 
showing the effectiveness of the proposed approach in 
Section 5. Section 6 will conclude by providing a 
summary of key contributions and future research 
directions. 

2. Preliminaries

In this section, we provide a compilation of
preliminary concepts that hold significance
throughout the paper [7, 9, 12].
1. The definition of the RL fractional integral with
order 𝜁𝜁 > 0 for a function 𝑦𝑦(𝑡𝑡) can be expressed as
follows:

𝐼𝐼𝜁𝜁𝑡𝑡𝑦𝑦(𝑡𝑡) =
1

Γ(𝜁𝜁)
�
𝑡𝑡

0
(𝑡𝑡 − 𝜂𝜂)𝜁𝜁−1  𝑦𝑦(𝜂𝜂)𝑑𝑑𝜂𝜂 

2. The Caputo fractional derivative of the function
𝑦𝑦(𝑡𝑡) is defined as follows:

𝐷𝐷𝜁𝜁
𝑡𝑡𝑦𝑦(𝑡𝑡)

= �
𝑦𝑦𝑖𝑖(𝑡𝑡)  ;      𝑖𝑖𝑖𝑖  𝜗𝜗 = 𝑖𝑖 ∈ ℕ

1
Γ(𝑖𝑖 − 𝜁𝜁)

�
𝜁𝜁

0

𝑦𝑦𝑖𝑖(𝑡𝑡)
(𝑡𝑡 − 𝑥𝑥)𝜁𝜁−𝑖𝑖+1

𝑑𝑑𝑡𝑡        ; 𝑖𝑖𝑖𝑖  𝑖𝑖 − 1 < 𝜁𝜁 < 𝑖𝑖

The Euler gamma function, denoted as Γ(. ), is 
defined as follows:  

Γ(𝜓𝜓) = ∫∞0 𝑡𝑡𝜓𝜓−1𝑒𝑒−𝑡𝑡   𝑑𝑑𝑡𝑡    (ℝ > 0). 
3. The Ramadan Group transform of a function 𝑦𝑦(𝑡𝑡),
𝑡𝑡 ∈ (0,∞) is defined by

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)](𝜗𝜗) = 𝐹𝐹(𝜑𝜑,𝜗𝜗) = �
∞

0
𝑒𝑒−𝜗𝜗𝑡𝑡   𝑦𝑦(𝜑𝜑𝑡𝑡)  𝑑𝑑𝑡𝑡;𝜗𝜗,𝜑𝜑

> 0
4. The Mittag-Leffler function is defined by

𝐸𝐸𝛿𝛿,𝛾𝛾(𝜓𝜓) = �
∞

𝑖𝑖=0

𝜓𝜓𝑖𝑖

Γ(𝛿𝛿𝛿𝛿 + 𝛾𝛾)  (𝛿𝛿, 𝛾𝛾,𝜓𝜓 ∈ ℂ,

ℝ(𝛿𝛿) > 0). 
5. The Simplest Wright function is defined by

𝜌𝜌(𝜔𝜔,𝜓𝜓;𝜙𝜙) = �
∞

𝜉𝜉=0

1
Γ(𝜔𝜔𝛿𝛿 + 𝜓𝜓)

.
𝜙𝜙𝜉𝜉

𝛿𝛿!
 (𝜙𝜙,𝜓𝜓,𝜔𝜔

∈ ℂ  ). 
6. The general Wright function  𝑖𝑖𝜒𝜒 𝑗𝑗  (𝜑𝜑)   is
characterized by the following conditions 𝜑𝜑 ∈ ℂ  ,
𝜈𝜈1𝑙𝑙 , 𝜈𝜈2𝑚𝑚 ∈ ℂ, and real 𝜔𝜔𝑙𝑙 ,𝜙𝜙𝑚𝑚 ∈ ℝ (𝑙𝑙 = 1, … , 𝑖𝑖, 𝑚𝑚 =
1, … , 𝑗𝑗) , as determined by the provided series.

𝑖𝑖𝜒𝜒𝑗𝑗(𝜈𝜈) =   𝑖𝑖𝜒𝜒𝑗𝑗 �
(𝜈𝜈1𝑙𝑙 ,𝜔𝜔𝑙𝑙)1,𝑖𝑖
(𝜈𝜈2𝑚𝑚 ,𝜙𝜙𝑚𝑚)1,𝑗𝑗

  |  𝜑𝜑�

= �
∞

𝜉𝜉=0

∏𝑖𝑖
𝑙𝑙=1 Γ(𝜈𝜈1𝑙𝑙 + 𝜔𝜔𝑙𝑙𝑟𝑟)

∏𝑗𝑗
𝑚𝑚=1 Γ(𝜈𝜈2𝑚𝑚 + 𝜙𝜙𝑚𝑚𝑟𝑟)

.
𝜑𝜑𝜉𝜉

𝛿𝛿!

Remark 1 

𝑅𝑅𝑅𝑅[𝐷𝐷Φ𝑖𝑖(𝑡𝑡)](𝜗𝜗) = 𝜗𝜗Φ  𝑅𝑅𝑅𝑅[𝑖𝑖(𝜑𝜑𝑡𝑡)]

−�
𝑛𝑛−1

ℵ=0

𝜗𝜗Φ−ℵ𝑖𝑖(ℵ−1)(0) 

Note:  The above remark is determined by Fubini’s 
theorem, which is employed to rearrange the order of 
integration in the preceding derivative.  

3. Formulations for Fractional
Differential Equations

In this section, there are strong indications 
suggesting that the function 𝑦𝑦(𝑡𝑡) alone might suffice to 
enable the successful operation of the Ramadan Group 
transform 𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] at a specific value of the parameters 𝜑𝜑 
and 𝜗𝜗. 

Theorem 3.1   Let 1 < 𝛷𝛷 < 2 and 𝑎𝑎 and 𝑏𝑏 ∈ ℝ. Then the 
fractional differential equation  

𝑦𝑦′′(𝑡𝑡) + 𝑎𝑎  𝑦𝑦Φ(𝑡𝑡) + 𝑏𝑏𝑦𝑦(𝑡𝑡) = 0 (1) 
  with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 has the 
unique solution 

𝑦𝑦(𝑡𝑡) =   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ + 1]  𝛿𝛿!  

+𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ+1

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ + 2]  𝛿𝛿!  

+𝑎𝑎𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ−Φ+2

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ − Φ + 3]  𝛿𝛿!  

+ 𝑎𝑎𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ−Φ+3

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ − Φ + 4]  𝛿𝛿!  
. 

(2) 

Proof. By employing the Ramadan Group transform in (1) 
and considering, we obtain  
𝜗𝜗2𝐹𝐹(𝜑𝜑,𝜗𝜗)

𝜑𝜑2 −
𝑖𝑖′(0)
𝜑𝜑

−
𝜗𝜗𝑖𝑖(0)
𝜑𝜑2

+ 𝑎𝑎 �
𝜗𝜗Φ𝐹𝐹(𝜑𝜑,𝜗𝜗)

𝜑𝜑Φ −
𝑖𝑖′(0)
𝜑𝜑Φ −

𝑖𝑖(0)𝜗𝜗Φ−1

𝜑𝜑Φ �

+ 𝑏𝑏  𝐹𝐹(𝜑𝜑,𝜗𝜗) = 0
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𝜗𝜗2𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]
𝜑𝜑2 −

𝜐𝜐1
𝜑𝜑
−
𝜗𝜗𝜐𝜐0
𝜑𝜑2

+ 𝑎𝑎 �
𝜗𝜗Φ𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]

𝜑𝜑Φ −
𝜐𝜐1
𝜑𝜑Φ −

𝜐𝜐0𝜗𝜗Φ−1

𝜑𝜑Φ �

+ 𝑏𝑏  𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 0

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)][
𝜗𝜗2

𝜑𝜑2 +
𝑎𝑎𝜗𝜗Φ

𝜑𝜑Φ + 𝑏𝑏] =
𝜗𝜗𝜐𝜐0
𝜑𝜑2 +

𝜐𝜐1
𝜑𝜑

+
𝑎𝑎𝜐𝜐0𝜗𝜗Φ−1

𝜑𝜑Φ +
𝑎𝑎𝜐𝜐1
𝜑𝜑Φ

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)][
𝜗𝜗2

𝜑𝜑2 +
𝑎𝑎𝜗𝜗Φ

𝜑𝜑Φ + 𝑏𝑏]

= 𝜗𝜗𝜐𝜐0𝜑𝜑−2 + 𝜐𝜐1𝜑𝜑 + 𝑎𝑎𝜐𝜐0𝜗𝜗Φ−1𝜑𝜑
−Φ

+ 𝑎𝑎𝜐𝜐1𝜑𝜑−Φ

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 𝜗𝜗𝜐𝜐0𝜑𝜑−2+𝜐𝜐1𝜑𝜑+𝑎𝑎𝜐𝜐0𝜗𝜗Φ−1𝜑𝜑
−Φ

+𝑎𝑎𝜐𝜐1𝜑𝜑−Φ

�𝜗𝜗
2

𝜑𝜑2
+𝑎𝑎𝜗𝜗

Φ

𝜑𝜑Φ
+𝑏𝑏�

. (3) 

  Since 
1

𝜗𝜗2
𝜑𝜑2 + 𝑎𝑎𝜗𝜗Φ

𝜑𝜑Φ + 𝑏𝑏
=

1
(𝑃𝑃2 + 𝑎𝑎𝑃𝑃Φ + 𝑏𝑏)

1
(𝑃𝑃2 + 𝑎𝑎𝑃𝑃Φ + 𝑏𝑏) =  

𝑃𝑃−Φ

𝑃𝑃2−Φ + 𝑎𝑎 + 𝑏𝑏𝑃𝑃−Φ

=
𝑃𝑃−Φ

(𝑃𝑃2−Φ + 𝑎𝑎) �1 + 𝑏𝑏𝑃𝑃−Φ
𝑃𝑃2−Φ + 𝑎𝑎�

=
𝑃𝑃−Φ

𝑃𝑃2−Φ + 𝑎𝑎
�
∞

ℵ=0

�
−𝑏𝑏𝑃𝑃−Φ

𝑃𝑃2−Φ + 𝑎𝑎
�
ℵ

= �
∞

ℵ=0

(−𝑏𝑏)ℵ𝑃𝑃−Φℵ−Φ

(𝑃𝑃2−Φ + 𝑎𝑎)ℵ+1

= �
∞

ℵ=0

(−𝑏𝑏)ℵ𝑃𝑃−2ℵ−2

(1 + 𝑎𝑎  𝑃𝑃Φ−2)ℵ+1

= �
∞

ℵ=0

(−𝑏𝑏)ℵ𝑃𝑃−2ℵ−2�
∞

𝜉𝜉=0

(−𝑎𝑎𝑃𝑃Φ−2)𝜉𝜉 �ℵ + 𝛿𝛿
𝛿𝛿 �

= �
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉   𝑃𝑃(Φ−2)𝜉𝜉−2ℵ−2

= �
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉   (

𝜗𝜗
𝜑𝜑

)(Φ−2)𝜉𝜉−2ℵ−2. 

(4) 
 Upon substituting the aforementioned equation (4) into 
(3), we obtain  

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]

=   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉

𝜗𝜗(Φ−2)𝜉𝜉−2ℵ−1

𝜑𝜑(Φ−2)𝜉𝜉−2ℵ

+ 𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉

𝜗𝜗(Φ−2)𝜉𝜉−2ℵ−2

𝜑𝜑(Φ−2)𝜉𝜉−2ℵ−1

+ 𝑎𝑎𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉

𝜗𝜗(Φ−2)𝜉𝜉−2ℵ+Φ−3

𝜑𝜑(Φ−2)𝜉𝜉−2ℵ+Φ−2

+ 𝑎𝑎𝜐𝜐1 ∑∞
ℵ=0 (−𝑏𝑏)ℵ ∑∞

𝜉𝜉=0 �
ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉 𝜗𝜗(Φ−2)𝜉𝜉−2ℵ−2

𝜗𝜗(Φ−2)𝜉𝜉−2ℵ+Φ−2.

(5) 
  Therefore, applying the inverse Ramadan Group transform 
to equation (5) results in the solution (2).  

𝑦𝑦(𝑡𝑡) =   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ + 1]  𝛿𝛿!  

+𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ+1

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ + 2]  𝛿𝛿!  

+𝑎𝑎𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ−Φ+2

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ − Φ + 3]  𝛿𝛿!  

+ 𝑎𝑎𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡2ℵ−Φ+3

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−𝑎𝑎𝑡𝑡(2−Φ)�
𝜉𝜉

Γ[(2 −Φ)𝛿𝛿 + 2ℵ − Φ + 4]  𝛿𝛿!  
. 

Which is (2). Thus, the proof of the theorem is concluded. 

Example 1  The fractional differential equation is 

𝑦𝑦′′(𝑡𝑡) + √6  𝑦𝑦�
3
2�(𝑡𝑡) + 12𝑦𝑦(𝑡𝑡) = 0 

with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 has the 
unique solution  
𝑦𝑦(𝑡𝑡)

=   𝜐𝜐0�
∞

ℵ=0

(−12)ℵ  𝑡𝑡2ℵ

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−√6  𝑡𝑡�
1
2��

𝜉𝜉

Γ ��1
2� 𝛿𝛿 + 2ℵ + 1�   𝛿𝛿!  

+ 𝜐𝜐1�
∞

ℵ=0

(−12)ℵ  𝑡𝑡2ℵ+1

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−√6𝑡𝑡�
1
2��

𝜉𝜉

Γ ��1
2� 𝛿𝛿 + 2ℵ + 2�   𝛿𝛿!  

+ √6𝜐𝜐0�
∞

ℵ=0

(−12)ℵ  𝑡𝑡2ℵ+
1
2

ℵ!
�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  �−√6𝑡𝑡�
1
2��

𝜉𝜉

Γ ��1
2� 𝛿𝛿 + 2ℵ + 3

2�   𝛿𝛿!  

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |

P. Raghavendran et al.



5 

+ √𝟔𝟔𝝊𝝊𝟏𝟏�
∞

ℵ=𝟎𝟎

(−𝟏𝟏𝟏𝟏)ℵ  𝒕𝒕𝟏𝟏ℵ+
𝟑𝟑
𝟏𝟏

ℵ!
�
∞

𝝃𝝃=𝟎𝟎

𝚪𝚪(ℵ + 𝝃𝝃 + 𝟏𝟏)  �−√𝟔𝟔𝒕𝒕�
𝟏𝟏
𝟏𝟏��

𝝃𝝃

𝚪𝚪 ��𝟏𝟏𝟏𝟏� 𝝃𝝃 + 𝟏𝟏ℵ + 𝟓𝟓
𝟏𝟏�   𝝃𝝃! 

. 

Figure 1 depicts the solution behavior of the 
fractional differential equation in Example 3.1 at 
different values of Φ, considering the initial 
conditions 𝜐𝜐0 = 1 and 𝜐𝜐1 = 1. 

Figure 1.The solution behavior of Example 3.1 

Theorem 3.2   Let 1 < 𝛷𝛷 < 2 and 𝑎𝑎  and 𝑏𝑏  ∈ ℝ. 
Then the fractional differential equation  

𝑦𝑦Φ(𝑡𝑡) + 𝑎𝑎  𝑦𝑦′(𝑡𝑡) + 𝑏𝑏𝑦𝑦(𝑡𝑡) = 0 (6) 
  with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 
has the unique solution  
𝑦𝑦(𝑡𝑡)

=   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ 
Γ[(Φ− 1)𝛿𝛿 + Φℵ + 1]  𝛿𝛿!  

+ 𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ+1 
Γ[(Φ − 1)𝛿𝛿 + Φℵ + 2]  𝛿𝛿!  

+ 𝑎𝑎𝜐𝜐0 ∑∞
ℵ=0

(−𝑏𝑏)ℵ  
ℵ!

∑∞
𝜉𝜉=0

Γ(ℵ+𝜉𝜉+1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ+Φ−1  
Γ[(Φ−1)𝜉𝜉+Φℵ+Φ]  𝜉𝜉!  

. (7) 

Proof. By utilizing the Ramadan Group transform in (6) 
and considering, we have  

�
𝜗𝜗Φ𝐹𝐹(𝜑𝜑,𝜗𝜗)

𝜑𝜑Φ −
𝑖𝑖′(0)
𝜑𝜑Φ −

𝑖𝑖(0)𝜗𝜗Φ−1

𝜑𝜑Φ �

+ 𝑎𝑎 �
𝜗𝜗𝐹𝐹(𝜑𝜑,𝜗𝜗)

𝜑𝜑
−  

𝑖𝑖(0)
𝜑𝜑

� + 𝑏𝑏  𝐹𝐹(𝜑𝜑,𝜗𝜗)

= 0 

𝜗𝜗Φ𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]
𝜑𝜑Φ −

𝜐𝜐1
𝜑𝜑Φ −

𝜗𝜗Φ−1𝜐𝜐0
𝜑𝜑Φ + 𝑎𝑎 �

𝜗𝜗𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]
𝜑𝜑

−  
𝜐𝜐0
𝜑𝜑
�

+ 𝑏𝑏  𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 0

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)][
𝜗𝜗Φ

𝜑𝜑Φ +
𝑎𝑎𝜗𝜗
𝜑𝜑

+ 𝑏𝑏] =
𝜐𝜐0𝜗𝜗Φ−1

𝜑𝜑Φ +
𝜐𝜐1
𝜗𝜗Φ

+
𝑎𝑎𝜐𝜐0
𝜑𝜑

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 𝜗𝜗Φ−1𝜐𝜐0𝜑𝜑−Φ+𝜑𝜑−Φ𝜐𝜐1+𝑎𝑎  𝜑𝜑−1  𝜐𝜐0

[𝜗𝜗
Φ

𝜑𝜑Φ
+𝑎𝑎𝜗𝜗𝜑𝜑 +𝑏𝑏]

. (8) 

Since 
1

[𝜗𝜗
Φ

𝜑𝜑Φ + 𝑎𝑎𝜗𝜗
𝜑𝜑 + 𝑏𝑏]

=
1

(𝑃𝑃Φ + 𝑎𝑎  𝑃𝑃 + 𝑏𝑏)

1
(𝑃𝑃Φ + 𝑎𝑎  𝑃𝑃 + 𝑏𝑏) =  

𝑃𝑃−1

𝑃𝑃Φ−1 + 𝑎𝑎 + 𝑏𝑏𝑃𝑃−1

=
𝑃𝑃−1

(𝑃𝑃Φ−1 + 𝑎𝑎) �1 + 𝑏𝑏  𝑃𝑃−1
𝑃𝑃Φ−1 + 𝑎𝑎�

=
𝑃𝑃−1

𝑃𝑃Φ−1 + 𝑎𝑎
�
∞

ℵ=0

�
−𝑏𝑏𝑃𝑃−1

𝑃𝑃Φ−1 + 𝑎𝑎
�
ℵ

= �
∞

ℵ=0

(−𝑏𝑏)ℵ𝑃𝑃−Φℵ−Φ

(1 + 𝑎𝑎  𝑃𝑃1−Φ)ℵ+1

= �
∞

ℵ=0

(−𝑏𝑏)ℵ𝑃𝑃−Φℵ−Φ�
∞

𝜉𝜉=0

(−𝑎𝑎  𝑃𝑃1−Φ)𝜉𝜉 �ℵ + 𝛿𝛿
𝛿𝛿 �

= �
∞

ℵ=0

(−𝑏𝑏)ℵ�
∞

𝜉𝜉=0

�ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉   𝑃𝑃(1−Φ)𝜉𝜉−Φℵ−Φ

=

∑∞
ℵ=0 (−𝑏𝑏)ℵ ∑∞

𝜉𝜉=0 �
ℵ + 𝛿𝛿
𝛿𝛿 �   (−𝑎𝑎)𝜉𝜉   (𝜗𝜗

𝜑𝜑
)(1−Φ)𝜉𝜉−Φℵ−Φ. (9) 

Upon substituting the aforementioned equation (9) into (8) 
and taking the inverse, we obtain the solution (7). 
𝑦𝑦(𝑡𝑡)

=   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ 
Γ[(Φ − 1)𝛿𝛿 + Φℵ + 1]  𝛿𝛿!  

+ 𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ+1 
Γ[(Φ− 1)𝛿𝛿 + Φℵ + 2]  𝛿𝛿!  

+ 𝑎𝑎𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (−𝑎𝑎)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ+Φ−1 
Γ[(Φ− 1)𝛿𝛿 + Φℵ + Φ]  𝛿𝛿!  

which is (7). Thus, the proof of the theorem is concluded. 
Also, the Wright function can express this solution as 

𝑦𝑦(𝑡𝑡) =   𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)ℵ  𝑡𝑡Φℵ

ℵ! 1
𝜆𝜆1 �

(ℵ + 1, 1
(Φℵ + 1, Φ− 1)|

− 𝑎𝑎  𝑡𝑡Φ−1�
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+ 𝜐𝜐1�
∞

ℵ=0

(−𝑏𝑏)𝑘𝑘𝑡𝑡Φℵ+1 
ℵ! 1

𝜆𝜆1 �
(ℵ + 1, 1
(Φℵ + 2, Φ− 1)|

− 𝑎𝑎  𝑡𝑡Φ−1�

+ 𝑎𝑎𝜐𝜐0�
∞

ℵ=0

(−𝑏𝑏)𝑘𝑘𝑡𝑡Φℵ+Φ−1 
ℵ! 1

𝜆𝜆1 �
(ℵ + 1, 1
(Φℵ + Φ, Φ− 1)|

− 𝑎𝑎  𝑡𝑡Φ−1�.

Example 2  The fractional differential equation 

𝑦𝑦
3
2(𝑡𝑡) + 4𝑦𝑦′(𝑡𝑡) + 11  𝑦𝑦(𝑡𝑡) = 0 

With initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 has the 
unique solution 

𝑦𝑦(𝑡𝑡) =   𝜐𝜐0�
∞

ℵ=0

(11)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (4)𝑟𝑟𝑡𝑡(Φ−1)𝜉𝜉+Φℵ 

Γ ��1
2� 𝛿𝛿 + 3

2ℵ + 1�   𝛿𝛿!  

+ 𝜐𝜐1�
∞

ℵ=0

(11)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (4)𝑟𝑟𝑡𝑡�
1
2�𝜉𝜉+

3
2ℵ+1 

Γ ��1
2� 𝛿𝛿 + 3

2ℵ + 2�   𝛿𝛿!  

+4𝜐𝜐0�
∞

ℵ=0

(11)ℵ 
ℵ!

�
∞

𝜉𝜉=0

Γ(ℵ + 𝛿𝛿 + 1)  (4)𝑟𝑟𝑡𝑡�
1
2�𝜉𝜉+

3
2ℵ+

1
2

Γ ��1
2� 𝛿𝛿 + 3

2ℵ + 3
2�   𝛿𝛿!  

. 

Figure 2 depicts the solution behavior of the fractional 
differential equation in Example 3.2 at different values of 
𝚽𝚽, considering the initial conditions 𝝊𝝊𝟎𝟎 = 𝟏𝟏 and 𝝊𝝊𝟏𝟏 = 𝟏𝟏. 

Figure 2. The solution behavior of Example 3.2. 

Proposition 1  Let 1 < 𝛷𝛷 < 2 and 𝑏𝑏  ∈ ℝ. Then the 
fractional differential equation  

𝑦𝑦Φ(𝑡𝑡) − 𝑏𝑏𝑦𝑦(𝑡𝑡) = 0 (10) 
 with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 has the unique solution 

𝑦𝑦(𝑡𝑡) = 𝜐𝜐0�
∞

ℵ=0

𝑏𝑏ℵ
𝑡𝑡Φℵ

Γ(Φℵ + 1)

= 𝜐𝜐0𝐸𝐸Φ(𝑏𝑏𝑡𝑡Φ). (11) 

Proof. By employing the Ramadan Group transform in (10) 
and considering, we have  

�
𝜗𝜗Φ𝐹𝐹(𝜑𝜑,𝜗𝜗)

𝜑𝜑Φ −
𝑖𝑖(0)𝜗𝜗Φ−1

𝜑𝜑Φ � − 𝑏𝑏  𝐹𝐹(𝜑𝜑,𝜗𝜗) = 0 

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)]𝜗𝜗Φ

𝜑𝜑Φ −
𝜐𝜐0𝜗𝜗Φ−1

𝜑𝜑Φ − 𝑏𝑏  𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 0

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)][
𝜗𝜗Φ

𝜑𝜑Φ − 𝑏𝑏] =
𝜐𝜐0𝜗𝜗Φ−1

𝜑𝜑Φ

𝑅𝑅𝑅𝑅[𝑦𝑦(𝑡𝑡)] = 𝜐𝜐0𝜗𝜗Φ−1𝜑𝜑−Φ

[𝜗𝜗
Φ

𝜑𝜑Φ
−𝑏𝑏]

. (12) 

 Since 
1

[𝜗𝜗
Φ

𝜑𝜑Φ − 𝑏𝑏]
=

1
[𝑃𝑃Φ − 𝑏𝑏]

1
(𝑃𝑃Φ − 𝑏𝑏) =  

1
𝑃𝑃Φ(1 − 𝑏𝑏  𝑃𝑃−Φ)

=
𝑃𝑃−Φ

1 − 𝑏𝑏  𝑃𝑃−Φ

= 𝑃𝑃−Φ  (1 − 𝑏𝑏  𝑃𝑃−Φ)−1 

= 𝑃𝑃−Φ  [1 + 𝑏𝑏  𝑃𝑃−Φ + (𝑏𝑏  𝑃𝑃−Φ)2 + ⋯ ] 

= 𝑃𝑃−Φ�
∞

ℵ=0

(𝑏𝑏  𝑃𝑃−Φ)ℵ 

= (𝜗𝜗
𝜑𝜑

)−Φ ∑∞
ℵ=0 �𝑏𝑏  (𝜗𝜗

𝜑𝜑
)−Φ�

ℵ
. (13) 

 Upon substituting the aforementioned equation (13) into 
(12) and taking the inverse, we obtain the solution.

𝑦𝑦(𝑡𝑡) = 𝜐𝜐0�
∞

ℵ=0

𝑏𝑏ℵ
𝑡𝑡Φℵ

Γ(Φℵ + 1)

= 𝜐𝜐0𝐸𝐸Φ(𝑏𝑏𝑡𝑡Φ) 
which is (11). Thus, the proof of the theorem is concluded. 

Remark 2  Accordingly, 𝑎𝑎 = 0 in (6), then the derivative is 
𝑦𝑦Φ(𝑡𝑡) + 𝑏𝑏𝑦𝑦(𝑡𝑡) = 0 

with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 its 
proposal is provided by  

𝑦𝑦(𝑡𝑡) = 𝜐𝜐0𝐸𝐸Φ,1(−𝑏𝑏𝑡𝑡Φ) + 𝜐𝜐1𝐸𝐸Φ,2(−𝑏𝑏𝑡𝑡Φ). (14) 

Proposition 2  A different differential equation exhibiting 
nearly simple harmonic vibration  

𝑦𝑦Φ(𝑡𝑡) + 𝑧𝑧2𝑦𝑦(𝑡𝑡) = 0 
with initial conditions 𝑦𝑦(0) = 𝜐𝜐0 and 𝑦𝑦′(0) = 𝜐𝜐1 its 
proposal is provided by  

𝑦𝑦(𝑡𝑡) = 𝜐𝜐0𝐸𝐸Φ,1(−𝑧𝑧2𝑡𝑡Φ) + 𝜐𝜐1𝐸𝐸Φ,2(−𝑧𝑧2𝑡𝑡Φ). 
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Proof. The preceding proof is achieved by substituting 
𝒃𝒃 = 𝒛𝒛𝟏𝟏 into equation (14). 

4. Machine Learning Approaches for
Solving Fractional Differential
Equations

Fractional differential equations are a generalization
of the integer-order derivatives with the capability of
modeling systems with memory. The conventional
techniques used in the solution of fractional
differential equations are often tedious and involve a
lot of computation especially when a closed form
solution cannot be obtained. Machine learning
provides a much sound approach by learning from the
provided data and approximating the solutions by
using neural network models. This section highlights
the use of machine learning to solve a fractional
differential equation and use different neural
networks for this purpose and the following section
compares the results with the theoretical solutions.

4.1. Machine Learning Approach 

Machine learning can approximate the solutions to 
fractional differential equations by learning from 
numerical or simulated data. Here’s a step-by-step 
guide to implementing this approach: 

4.1.1. Data Generation 

 Data acquisition is therefore an important step when 
it comes to solving fractional differential equations 
using machine learning. From (3.1) and (3.2), we 
create synthetic datasets with characteristics similar 
to those of the fractional differential equations. 
To generate the data:   

1. Parameter Selection: Assume arbitrary values
for 𝑎𝑎, 𝑏𝑏 and Φ using typical values for those 
parameters in a design process.  

2. Initial Conditions: They are set some initial
conditions 𝜐𝜐0 and 𝜐𝜐1. 

3. Time Vector: Design a time vector 𝑡𝑡 for the
ensuing analysis over the interval of interest. 

4. Compute Solutions: For each set of parameters
use the formulas given in the theorems to find out the 
signal 𝑦𝑦(𝑡𝑡).  

5. Form Dataset: Build a set of input variables
temporal placement 𝑡𝑡, and action-angle variables 
𝑎𝑎, 𝑏𝑏,Φ and set of output target variables 𝑦𝑦(𝑡𝑡).  
To ensure that the synthetic datasets generated for 
machine learning training reflect the behavior of real-
world fractional differential equation (FDE) 
scenarios, the process is designed with careful 
consideration of key features and behaviors typically 

seen in real-world systems governed by fractional 
dynamics. The generation process includes the 
following elements: 
Parameter Selection: The values of parameters 
𝑎𝑎, 𝑏𝑏, and Φ are selected according to general values 
commonly found in natural systems. These parameters 
often participate in fractional models from the various 
fields including physics, biology, and engineering. 
Since the chosen values correspond to practical usage, 
the artificially generated data sets also mimic the 
actual parameters controlling the fractional phenomena 
in natural systems. 
Initial Conditions: The initial conditions (υ0, υ1) are 
set to resemble realistic starting states, reflecting the 
initial configurations commonly observed in natural or 
engineered systems. This ensures that the synthetic 
data does not deviate from plausible system behaviors 
observed in real-world contexts. 
Time Vector: A time vector t is specifically defined to 
span the relevant time scales for most FDE 
applications. This way, data produced using this vector 
can simulate the long-term behavior or transients of 
practical systems in real time, which can more closely 
match the typical time scales used in most realistic 
applications. 
Solution Computation: Using the equations from the 
theorems, synthetic data simulates the dynamics of the 
FDE-governed system. Solutions obtained are 
designed to show characteristics of memory effects 
and non-local interactions, as are exhibited by 
fractional systems in most real-world applications. 
Forming the Dataset: It creates a dataset by 
combining input parameters which consist of time t 
and the other variables of the system 𝑎𝑎, 𝑏𝑏, and Φ and 
the output variable-y(t). Such setting allows the 
machine learning model to learn meaningful patterns 
transposable to practical situations mimicked from the 
real world due to input-output relations within 
fractional systems. 

With such a process of data generation, synthetic 
datasets will very well simulate real fractional systems' 
behavior, which may be successfully used for the 
purpose of effective machine learning training for 
solving real FDEs in any kind of applications. 

4.1.2. Model Architecture 

 In order to solve these fractional differential equations 
through machine learning algorithms, we propose the 
use of a neural network model. The architecture can be 
summarized as follows:The architecture can be 
summarized as follows:   

1. Input Layer: That lifts the features 𝑡𝑡, 𝑎𝑎, 𝑏𝑏, and
Φ. 

2. Hidden Layers: Fully connected layers stacked
in hierarchy with activation functions like ReLU for 
formulating non-linearity as to perform elaborate 
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relationships. 
3. Output Layer: Prediction of the value of 𝑦𝑦 at

the particular time instant 𝑡𝑡 which is given as the 
predicted value 𝑦𝑦�(𝑡𝑡).  

4. Activation Functions: ReLU is widely used in
the hidden layers so that the model can learn the 
training data and more complex patterns. It is 
common for the output layer to use linear activation 
since the dependent variable is usually continuous as 
depicted in equation 2 below;  

5. Loss Function: Mean Squared Error (MSE) is
used to quantify the difference between the predicted 
and actual values. MSE is given by:  

MSE =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 

where 𝑦𝑦𝑖𝑖 represents the actual value and 𝑦𝑦�𝑖𝑖 represents 
the predicted value.  

4.1.3. Parameter Tuning and Sensitivity Analysis 

The performance of the proposed neural network is 
highly dependent on its parameter configuration. An 
elaborate parameter tuning process was performed as 
follows: 

1. Learning Rate: A learning rate η=0.001 was
selected based on a grid search over
{0.0001,0.001,0.01,0.1}. This value had managed to
strike a balance between stability and convergence
speed, as depicted in a Learning Rate vs. Epochs plot.
Future studies could explore other optimization
techniques such as random search or Bayesian
optimization to further refine the learning rate.
2. Number of Hidden Layers and Neurons:
Architecture was tuned by trying layer combinations
from 1 to 5, and number of neurons per layer, from 32
to 128. Optimal was the configuration with 3 layers
with 64 neurons each.
3. Batch Size: A batch size of 32 was chosen by
trying out values of 16, 32, 64, and 128. This batch
size achieved the balance between gradient accuracy
and computational efficiency, thereby reducing the
training time with convergence stability.
4. Activation and Regularization: ReLU is kept for
the hidden layers because it is more robust. Dropout
was tried but found not necessary since overfitting
was not encountered in this application.

The sensitivity analysis conducted on the learning 
rate, number of layers, neurons, and batch size 
showed a great influence of all the parameters on the 
performance of the model. The use of 0.001, 0.01, 0.1 
for the learning rate ensures convergence stability but 
above that learning rate introduced oscillation in the 
loss curve. Adding more than three layers or neurons 
beyond 64 had diminishing returns in terms of 
accuracy and therefore importance on the complexity 
balance. The smaller batch sizes increased the 

computational time, and the larger sizes reduced the 
gradient precision. These insights guided the selection 
of parameters, ensuring optimal accuracy and 
computational efficiency for the neural network. 

4.1.4. Optimization Algorithm 

 In this study, the Adam (Adaptive Moment 
Estimation) optimizer is adopted for the purpose of 
optimizing the utilized neural network. Adam it is an 
improvement of other two other modifications of 
stochastic gradient descent. It calculates the learning 
rates which are adaptive in nature with reference to the 
parameters based on estimates of first and second 
moments of the gradients. The update rule for Adam is 
given by:  

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑣𝑣�𝑡𝑡 + 𝜖𝜖
⋅ 𝑚𝑚�𝑡𝑡 

where:  
1. 𝜃𝜃𝑡𝑡 is the parameter at time 𝑡𝑡,
2. 𝜂𝜂 is the learning rate,
3. 𝑚𝑚�𝑡𝑡 is the estimate of the first moment (mean),
4. 𝑣𝑣�𝑡𝑡 is the estimate of the second moment

(uncentered variance), 
5. 𝜖𝜖 is a small constant to prevent division by zero.

While Adam is a powerful optimizer for training 
neural networks, it is worthwhile to consider the 
possibility of employing other machine learning 
techniques for the solution of FDEs. These include 
Gaussian Processes (GP) and Support Vector 
Regression (SVR), among others, each with its 
advantages and disadvantages. 

1. Gaussian Processes (GP): Gaussian Processes is
a powerful, non-parametric approach widely used
in regression tasks. GP models allow the
probabilistic framework that would lead to the
quantification of the uncertainty of predictions.
The method comes out really helpful when the
dataset is pretty small and noise is present in the
data. However, one major limitation of Gaussian
Processes is the computation of time; they grow
cubically with the size of the dataset (𝑂𝑂(𝑛𝑛3)).
This makes them less efficient while dealing with
large datasets that are typical in solving complex
FDEs.

2. Support Vector Regression (SVR): SVR is
another robust machine learning technique,
particularly effective for regression problems. It
uses the kernel trick to map input data into higher-
dimensional spaces, thereby enabling it to capture
non-linear relationships. SVR is well-known for
its ability to handle outliers and its good
performance in high-dimensional spaces.
However, its performance heavily depends upon
the choice of the kernel and the optimal selection
of hyperparameters. Moreover, SVR requires
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much computational memory, especially when 
the size of a dataset grows. 

3. Neural Networks with respect to Adam
Optimization: Compared to the GP and SVR, it
is seen that neural networks using the Adam
algorithm provide big advantages, especially in
cases where large datasets are involved and the
problem is complex and possibly non-linear. The
adaptive learning rate mechanism in Adam
enables faster convergence, and neural networks
can effectively learn intricate relationships in the
data. Furthermore, neural networks exhibit
greater flexibility and scalability, which are
essential when solving FDEs where the number
of variables and data points may be large.

Neural networks also enable end-to-end learning from 
raw data, eliminating the need for domain-specific 
feature engineering, unlike SVR or GP, which require 
more explicit design of features and kernels. 
Therefore, the use of Adam-optimized neural 
networks in this study is well-suited for solving FDEs 
due to their ability to scale efficiently, adapt to 
complex patterns, and outperform other machine 
learning techniques in both performance and 
computational efficiency. 

4.1.5. Validation and Testing 

 Validation and testing are crucial stages in 
performance assessment of the machine learning 
model in the solution of fractional differential 
equations. This is to confirm that the model can make 
good generalizations on new data and give the 
accurate predictions under different conditions.   

1. Validation: First, split the data into two sets: a
training set and a validation set. Use the training set 
to train the neural network, and the validation set to 
test how well your model performs while training is 
being conducted. Compare the results of the model's 
prediction with the validation set's true solutions in 
order to fine-tune the hyperparameters for a better 
performance from the model. The validation set acts 
as a proxy for checking how well the model 
generalizes to data that has not been seen before, thus 
preventing overfitting. Key metrics such as accuracy, 
precision, and error rates are calculated on the 
validation set so that the best model configuration can 
be determined. For example, this includes learning 
rate, the number of hidden layers, and the activation 
functions used in the network. Once the model is 
tuned on the validation set, its performance is 
compared against known solutions derived from the 
control equations (3.1) and (3.2). This comparison not 
only helps in validating the accuracy of the machine 
learning approach but also demonstrates its capability 
to approximate the solutions of the fractional 
differential equations.  
2. Testing: The model is tested on an independent

dataset, which is called the test set; it has not been seen 
before during the training or validation of the model. 
In other words, this ensures that there would be no bias 
in testing out the generalization capability of the 
model. A good test dataset is important since, at the 
end, they are used to check that there is no overfitting 
to the training data but rather can make the prediction 
on new, unseen data. We used a 70:30 or 80:20 split of 
the data for this study, allocating between 70% to 80% 
of the dataset for training and using between 20% to 
30% for validation. The test has 1000 data points with 
which the model will then be tested over a wide range 
of values of parameters a, b, and Φ, corresponding to 
different conditions in fractional differential equations. 
This diverse range of data allows for a better judgment 
of the model. 
To analyze how the model performs on prediction, we 
use Mean Squared Error as a measure of the 
performance. The Mean Squared Error measures the 
differences of the predicted values with true values 
objectively. We further verify whether or not the 
model could work to approximate y(t) for different 
parameter values, i.e., a, b, and Φ. The predictions by 
the model are compared to the theorems. This enables 
verification that the model is fitting the data as well as 
providing results which are as accurate and reliable as 
can be expected by the theorems. By using this 
structured validation and testing approach, we ensure 
that the machine learning model is robust, reliable, and 
able to solve fractional differential equations 
accurately in a wide range of scenarios. Furthermore, 
the reproducibility of the process is enhanced by 
providing a detailed description of the dataset, model 
evaluation metrics, and testing procedures, which can 
be easily replicated in future studies to verify the 
model's performance. 

4.1.6. Prediction 

 In the prediction stage, the neural network model 
trained is employed to predict the solution 𝑦𝑦�(𝑡𝑡) for any 
new values of 𝑡𝑡,𝑎𝑎, 𝑏𝑏, and Φ. The accuracy of the 
constructed model is judged by means of comparison 
of identifiers with theoretical values calculated 
according to formulas (3.1) and (3.2). This ensures that 
the identified machine learning model is effective in 
capturing the dynamics of the fractional differential 
equations thereby making it possible to apply it in 
solving other real-life fractional differential equations. 

5. Results and Visualization

Here, we present the results and analyse the 
effectiveness of using machine learning in solving 
fractional differential equations. The deltas illustrate 
enhanced the performance of the machine theory 
model and enable direct comparison with the 
analytical solutions hence constituting a strong 
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validation. From the error distribution plot, the 
frequency and the extent of error can be deduced 
which can be used to understand the performance of 
the model and what potential changes that could be 
made. The learning curve also shows that the model 
is learning as the error decreases with an increasing 
training epochs signifying good model training and 
optimization. 

5.1.  Comparison Plot 

The Comparison Plot shows how the machine 
learning model provide a solution to the constructed 
fractional differential equations from the analytical 
solutions. It allows making a direct visual comparison 
in order to analyze the matching of the obtained 
machine learning model with the theoretical findings.   

Figure 3. Comparison between machine 
learning model predictions and the analytical 
solutions for (3.1) and (3.2). 

The following figure shows an overall performance of 
how the machine learning model predicts the solution 
of the fractional differential equations as provided in 
(3.1) and (3.2). The plot shows the expected solutions 
which were obtained from the machine learning 
model and it is represented through the use of dashed 
lines in order to compare it with the actual analytical 
solutions that are shown as solid lines; all in the 
context of varying parameter values of 𝑎𝑎, 𝑏𝑏 and Φ. 
Thus, comparing such curves one can clearly see how 
well the machine learning model fits the results of the 
analytical solution. This comparison is helpful in the 
determination of the effectiveness of the developed 
machine learning approach in solving such equations. 

5.2. Error Distribution Plot 

 The error distribution plot helps in understanding the 
distribution of prediction errors across different 
magnitudes of the contextualized data. This is 
particularly useful in determining the consistency of 
the predictive model and assessing the degree of 
difference between the model's predictions and the 
actual solutions.   

Figure 4. Distribution of errors between machine 
learning model predictions and analytical 
solutions for (3.1) and (3.2), with error bounds 
and confidence intervals. 

This histogram shows the difference between the 
predicted values of various machine learning 
algorithms and the analytical solutions for the 
problems stated in (3.1) and (3.2). The horizontal axis 
represents the error magnitude, while the vertical axis 
reflects the frequency of occurrences of similar errors 
in each category. 
To provide deeper insight into prediction reliability, 
we have included error bounds and confidence 
intervals. These additions allow for a better 
understanding of the variability and uncertainty 
associated with the predictions. A tightly centered 
distribution around zero, with smaller confidence 
intervals, indicates higher prediction accuracy, while a 
more spread distribution and larger confidence 
intervals suggest greater discrepancies between the 
predicted and actual values. By incorporating these 
elements, this plot now provides a more 
comprehensive analysis of model performance, 
including both the accuracy and the uncertainty of the 
predictions. 

5.3. Learning Curve 

 The learning curve illustrates the progression of 
model training, specifically showing how the mean 
squared error (MSE) evolves over various epochs. This 
plot is used to assess the correlation and the degree of 
optimization in the training process.   

EAI Endorsed Transactions 
on Internet of Things 
| Volume 11 | 2025 |

P. Raghavendran et al.



11 

Figure 5. Learning curve showing the mean 
squared error (MSE) of the machine learning 
model over training epochs, with error bounds 
and confidence intervals. 

The learning curve displays the MSE of the machine 
learning model as the training progresses through 
multiple epochs. The x-axis represents the training 
iterations, while the y-axis shows the MSE value. 
This curve visually demonstrates how the model’s 
accuracy improves over time, reducing the error rate 
as the training continues. A decreasing MSE trend 
indicates that the model is learning and refining its 
predictions. Conversely, if the MSE stabilizes or 
starts to increase, it suggests potential issues such as 
overfitting or insufficient training. 
To enhance the interpretability of the learning 
process, error bounds and confidence intervals are 
included. These additions provide insight into the 
variability of the MSE at each epoch, helping to 
assess the stability and reliability of the model's 
performance. Smaller error bounds and narrower 
confidence intervals indicate more consistent training 
behavior, while wider bounds suggest greater 
uncertainty in the model’s predictions. By 
incorporating these elements, the learning curve 
offers a more comprehensive understanding of the 
model’s training dynamics, providing better insight 
into both the accuracy and the reliability of the 
model’s predictions over time. 

5.4. Implementation Potential 

Although the proposed approach is well based 
theoretically, several practical issues are to be 
resolved for implementation in the real world. First, 
scalability is one of the main factors for such high-
dimensional systems, particularly when applying the 
method to complex systems with a high number of 
variables or intricately conditioned boundaries. With 
the growth in the complexity of the system, 
computational cost and memory requirements are 
growing, which can be restrictive on model's handling 
more data in an efficient way. 
Real-world validation of the model is very important, 
mainly in environments in which the data may be 
noisy or even the system considered has solutions that 

are non-smooth. Data obtained from real-world 
systems are typically noisy, sometimes missing values 
or inaccurate. Moreover, many real-world systems 
have discontinuities and non-smooth behaviors, which 
would not be properly accounted for with traditional 
models. To address all these challenges, more 
significant efforts are needed to fine-tune the model, 
especially to deal with noisy data and non-smooth 
solutions. This could involve employing regularization 
techniques or hybrid methods that enhance the 
robustness of the model by combining machine 
learning with classical approaches. In future work, the 
scalability of the model can be explored by leveraging 
advanced computational techniques or parallel 
processing to reduce time complexity for larger 
systems. Further, testing the model on various real-
world datasets would provide deeper insights into its 
effectiveness and robustness across different 
applications.  
The results attained through the proposed approach 
show significant contributions to both mathematical 
theory and practical applications. Combining the 
traditional method of the Ramadan Group transform 
with modern machine learning algorithms makes the 
study reveal new insights toward solving fractional 
differential equations, contributing to fractional 
calculus, and yielding analytical solutions that can 
serve as benchmarks for numerical methods. The 
machine learning approach, verified by synthetic 
datasets that reflect the dynamics of real-world 
problems, bridges theoretical models and practical 
scenarios, making it robust and adaptable to 
applications in engineering, environmental modeling, 
and control systems. Numerical simulations and 
graphical representations highlight the model's 
accuracy and efficiency, demonstrating its reliability in 
approximating complex solutions where analytical 
methods are impractical. Besides this, the research 
allows for a wide scope of interdisciplinary 
applications into medicine, finance, and data science 
while underlining the integration of classical 
mathematical techniques with the use of contemporary 
computational methods in dealing with real-world 
problems. Further issues include the enormous 
computational overhead induced by training and 
deploying the introduced model. Frequently, high-
dimensional fractional differential equations are 
computationally expensive, in the sense that they 
cannot operate in real-time in resource-restricted 
environments, which is something to be aware of. 
Other optimization strategies used to enhance this 
computational efficiency might include reduced order 
modeling, accelerations on GPUS, distributed 
computing, to name a few. Sparse incomplete datasets 
are usually another challenge related to real 
application. Thereby, data imputation techniques and 
transfer learning may improve performance under 
noisy or missing data. More adaptive algorithms will 
be needed, where the problem requirements 
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dynamically vary the computational complexity, 
balancing precision with efficiency for practical 
implementations in the future. 

6. Conclusion

In this study, the Ramadan Group transform,
combined with the Laplace transform, has been
effectively applied to solve fractional differential
equations, offering both practical and theoretical
advancements in the field. The incorporation of
extension coefficients from the binomial series has
enriched the application of these transforms,
providing deeper insights into their utility and
versatility. Additionally, the research presents a
very promising role for machine learning and neural
networks in approximating solutions to complex
and nonlinear fractional differential equations.
Because machine learning models are adaptable and
learn from data, the flexibility to solve these types
of equations surpasses and complements the
traditional analytical methods. Looking forward,
there is much scope to be explored in hybrid
approaches combining the strengths of both
advanced mathematical transforms and machine
learning techniques. For example, hybrid models
that integrate multiple transforms, along with data-
driven machine learning methods, may even offer
more accurate and efficient solutions for complex
fractional systems. Further research into these
hybrid models may help bridge this gap between
traditional mathematical techniques and modern
computational approaches by furthering the study of
fractional differential equations and their use in
different scientific and engineering disciplines.
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