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ABSTRACT
In this exploratory work the motion of rowers is analyzed
while rowing on a rowing machine. This is performed using
inertial sensors that measure the orientation at several po-
sitions on the body. Using these measurements, this work
provides a preliminary analysis of the differences between
experienced and novice rowers, or between a good and a
bad technique. The analysis shows that the measured pos-
tural angles show no clear trend that would set apart expe-
rienced and novice rowers or a bad and a good technique.
However, there are clear differences in absolute postural an-
gle’s consistency and timing consistency of strokes between
novice and experienced rowers. We also applied a machine
learning technique to the data to find the similarities be-
tween different rowers and an experienced reference rower.
The results can be used to compare the quality of the row-
ing technique with respect to a reference. In this paper, we
present our initial results as well as the challenges that need
to be further explored.

Keywords
Rowing, inertial motion capture, body sensor network, ma-
chine learning

1. INTRODUCTION
Rowing is a sport in which performance is determined by
technique and strength. While building strength is relatively
simple, novice rowers need a great amount of guidance from
a coach to learn the proper technique and optimize their
performance. Normally, most of the technique is learned on
dry land using a rowing machine (ergometer). A coach can

then clearly see what aspects of the technique need improve-
ment. However, guidance from a coach is not always readily
available, for example in a regular gymnasium. Volunteer
coaches are a scarce resource for many rowing associations.
Therefore, it would be nice to have a system with which a
rower can get real-time feedback on his performance without
a coach present or a coach can later on analyze the rowing
motion, for example, for consistency in postural angles and
timing.

To solve these issues, rowers could be monitored with a sen-
sor system. With the sensor measurements, the system can
provide information about a rower’s motion during rowing
activity. Using this information, the coach can better eval-
uate the crew’s performance. When there is no coach, the
system could provide that information directly to the ath-
letes, possibly accompanied with suggestions on how perfor-
mance could be improved. Alternatively, the data could be
recorded for evaluation by a coach at a later time.

The performance of a rower can be assessed in a number of
ways. For rowing exercise on the water, the movement of
the boat and the oars can be monitored using sensors [5].
For indoor rowing, the rowing machine can be instrumented
to measure various parameters of the rower’s activity, such
as power output, exerted force and the position of the slide
and handle bar [3]. Alternatively, the posture of the rower
can be measured using cameras or on-body sensors [17] .

There are proprietary systems to measure the behavior and
performance of rowers in a boat. These systems are very
costly and are mostly designed for professional athletes [19].
They consist of many different sensors that generate infor-
mation mostly about power output and stroke rate. How-
ever, the sensors often cannot detect errors in rowing posture
or timing. Rowing technique is largely composed of posture
and timing and this work aims to explore these aspects fur-
ther.

The goal of this research is to measure and analyze rowing
motion and to develop a method to give feedback for the
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rowers or coaches. Information on the posture of a rower
can provide insight in flaws in the rower’s technique that
directly influence performance [17]. Moreover, bad posture
can lead to injury [6,24]. In this work, we compare the mo-
tion characteristics of experienced rowers to novice rowers,
to determine what constitutes a correct rowing technique.
We compare the posture of the rowers and the timing of
their strokes. Analysis of the measured movement could be
used to advise a rower what needs to be improved. Timing
and posture information will be essential to advise the rower
properly. This system can assist the rowers and trainers if
it is easy to use and if it gives real-time feedback.

Our goal is to eventually build a system that can assess pos-
ture correctness during training on the water. However, for
simplicity, we limit our experiments outlined in this paper
to the rowing machine. We use on-body inertial motion sen-
sors, because the alternative camera-based motion tracking
systems are not suitable for measurement on the water and
they would be prohibitively expensive for most amateur row-
ing associations. The disadvantage of using motion sensors
is that this technique provides less accurate and less reliable
measurements in most cases.

Our contributions are as follows:

• We provide a preliminary exploration of the differences
in posture and timing between experienced and novice
rowers. A similar approach can be used for differenti-
ating between a good and an inferior rowing technique.

• We apply machine learning to assess the similarity be-
tween the rower’s movements.

• We make our data set and videos publicly available for
future research in this domain [22].

This work is explicitly limited to determining the distinc-
tion between experienced and novice rowers. This is based
on the assumption that experienced rowers will have better
technique than novice rowers. This is not necessarily true
however, since an experienced rower can have a bad day for
instance. We aim to extend this work for determining what
can be improved in the rower’s technique. Using expert su-
pervision, data on good rowing technique can be collected
for a large set of athletes, making this work suitable for
determining whether rowers use the correct technique, irre-
spective of whether they are experienced or not. The system
could also be personalized by using an expert to determine
a good rowing technique for one particular rower. This way,
the performance variation of one rower can be measured rel-
ative to the personal reference obtained with expert guid-
ance. This could be very useful for subsequent unsupervised
training.

The rest of the paper is organized as follows. In Section 2, we
briefly describe related work. Some background regarding
rowing technique is provided in Section 3. Subsequently, we
describe our experimental setup in Section 4 and we describe
the results in Section 5. Finally, we describe our conclusions
and future work in Section 6.

2. RELATED WORK
Wearable sensors are extensively used in sports research, es-
pecially for analyzing the performance of elite athletes [2,11,
16]. For rowing, most research focuses either on the athlete’s
force or power output [2–5,8] and the optimal movement of
the oars [1, 5, 12, 18, 19] and the boat [18, 19]. The posture
of the athlete received less attention so far, while it does
provide deeper insight in flaws in the rower’s technique that
directly influence performance. Moreover, bad posture can
lead to injury [6, 24].

Hawkins et al. [14], use electrogoniometers to capture the
joint angles during indoor rowing experiments similar to
ours. Since these mechanical devices need to be strapped
along the joints, these can constrain the rower’s movements.
A similar setup by Page et al. [21] uses a mechanical system
involving potentiometers to measure the angles. Using an
on-body network of wearable sensors to track the rower’s
posture can be less obtrusive, and more importantly it can
be used on the water. A usability study by Franke et al. [9]
demonstrates that wireless body sensors similar to ours do
not constrain the rower in any way.

King et al. [17] perform experiments very similar to ours
using a rowing machine and three wireless inertial sensor
nodes. Although King et al. demonstrate examples of what
bad technique looks like, they mainly investigate the feasi-
bility of the measurement setup and they do not compare
measurements between rowers. Tanaka et al. [24] perform
posture comparisons between experienced and novice row-
ers, but they don’t use on-body sensors and they focus en-
tirely on preventing injury.

3. BACKGROUND
A rowing stroke has roughly two fundamental reference points:
the catch is the moment at which the oar blade enters the
water and the finish (also known as the extraction, release,
or tapping down) is the moment at which the blade is finally
removed from the water. At the catch position, the rower
is fully bent towards the back of the boat. While the oar
is in the water, the rower applies force to the oar, thereby
pushing the boat forward. This is called the drive phase of
the stroke. Once the oar is lifted above the water, the rower
moves from the finish position back to the catch position,
which is called the recovery phase of the stroke.

Much of the rowing technique revolves around timing and
posture. For example, the rower needs to lean forward by
the appropriate amount, needs to pull back on the oar at the
correct time, the rower should keep his back straight, should
pull backwards with his upper body at the correct time, etc.
Therefore, when we compare experienced and novice rowers,
we expect to see differences in the measured posture and the
timing of the various steps in the rowing stroke.

4. EXPERIMENTS
All experiments are performed on dry land with indoor row-
ing machines (ergometers). Figure 1 shows an overview of
the experimental setup. The rower subjects are equipped
with three inertial sensor modules located at one lower leg,
the lower back and the upper back. These locations are
chosen based on expert knowledge. The placement of the
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Figure 1: An overview of the experiment with the
locations of the sensor modules.

sensors allows measurement of the main posture angles dur-
ing the rower’s motion; i.e., the angle of the lower leg and
the angle of the torso. The two sensors on the back provide
a measurement of the extent at which the back is curved.

The sensor modules use accelerometer and gyroscope sensors
to measure the module’s own acceleration and rotational ve-
locity respectively. Using these measurements, we determine
the orientation of the sensors during the experiment using
the algorithm by Madgwick et al. [20]. This yields the ori-
entation of the sensors represented in quaternions.

Using these orientation measurements, we determine the an-
gle of each sensor relative to the vertical, as shown in Fig-
ure 1. We only evaluate the motion in a two-dimensional
fashion, meaning that we assume that there is no significant
sideways motion at the sensor positions [24]. With this as-
sumption, we can use the shortest angle between the sensor
orientation and the vertical. To verify the angle measure-
ments, we made video recordings [22] of the experiments
from a perspective similar to Figure 1.

We use the ProMove-3D [15] system from Inertia Technol-
ogy for this work. A ProMove-3D sensor node features a
3-D accelerometer, a 3-D gyroscope and a 3-D digital com-
pass. The accelerometer has a measurement range of up to
± 6 g and the gyroscope has a measurement range of up
to ±2000 ◦ s−1. The nodes form a network using a 2.4 GHz
radio. The wireless network is used to transmit sensor mea-
surements to a computer for recording and to synchronize
measurements from multiple sensor nodes within 10 µs.

The sample frequency for all sensors was set to 200Hz. The
wireless transmission of the data caused a sample loss of
up to 2 %, which is compensated for by means of linear
interpolation.

For this work we evaluate the motion characteristics of both
experienced rowers (rowing for three years or more) and
novice rowers (rowing for a few months at most). Since
this is only a preliminary study, we perform experiments
with a limited set of only seven subjects, of which three are
experienced and four are novice rowers. The characteristics
of our subjects is shown in Table 1.

To determine whether the rowing speed is a factor, the row-
ers all perform successive experiments with 20 and 30 strokes

Height (cm) Weight (kg) Age (years)
Experienced 1 196 71 23
Experienced 2 183 81 25
Experienced 3 191 93 21

Novice 1 180 70 24
Novice 2 184 74 19
Novice 3 180 72 20
Novice 4 185 67 20

Table 1: Experiment subject characteristics
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Figure 2: Example of the sensor angles during row-
ing at 20 strokes per minute.

per minute. The rowers use feedback from the rowing ma-
chine to maintain the requested stroke rate. Each exper-
iment involves approximately 20 strokes, all of which are
used in our evaluation (whole session). Each experiment at
a specific stroke rate is performed only once by each indi-
vidual rower.

5. RESULTS
For part of this analysis, we choose one experienced rower
as a reference, which we label as Exp. 1. This is the
rower with the most average physique, which means that
he matches best with all the other experienced and novice
rowers. The other experienced rowers are labeled with suc-
cessive numbers and the novice rowers are labeled as e.g.
Nov. 1. Rower Exp. 2 was female and rower Exp. 3
was male, but with a stronger physique than our reference.
Measurements at 30 strokes per minute for rower Exp. 3
failed and were not used for this analysis.

Figure 2 shows an example of the angle measurements from
our reference rower performing the first four strokes at 20
strokes per minute. The figure is annotated with the drive
and recovery phases of the stroke cycle. These phases are
determined automatically using a simple heuristic algorithm
that bases the phase transitions on peaks in the lower leg
and upper back angle signals. The drive phase starts (at the
catch position) when the lower leg starts to move backwards
(angle decreasing) and ends (at the finish position) when the
upper back starts to move forwards (angle increasing). We
use these annotations to compare the stroke phases sepa-
rately and align our comparisons between rowers.

Our goal is to find measurable posture characteristics that
distinguish an experienced rower from a novice rower, or
rather characteristics that distinguish between a good and
a bad technique. We evaluate several possibilities: we com-
pare the absolute angles and its consistency, and the timing



consistency of rowing strokes. These characteristics were
selected based on expert knowledge on what constitutes a
good rowing technique, which largely revolves around good
posture and timing. Finally, we employ machine learning
techniques to obtain a generic measure of similarity.

5.1 Absolute Angles
The most obvious way to compare rowing postures is using
the absolute angles measured during the experiment. There-
fore, with the help of literature and expert knowledge, we
devised a simple quantitative model in which the reference
angles for a certain positions in the stroke phase are de-
fined. In an effort to determine these reference angles, we
evaluated the angles from our experienced rowers.

Figure 3 shows the angle differences between our reference
rower and each of the other novice and experienced rowers at
the upper back sensor at a velocity of 20 strokes per minute.
The results are compensated for differences in the length of
the strokes by normalization; the x-axis shows the phase
of the full stroke rather than an absolute time. The angle
differences are only shown at the stroke phase positions of
the reference angles of our quantitative model.

The results show large differences in the angles, even amongst
the experienced rowers. This is a clear indication that the
absolute angle has very little value for comparing rowing
posture. The results for the leg and lower back positions are
very similar. We speculate the measured angles do not only
depend on the rower’s technique, but that there are also sig-
nificant dependencies on the rower’s physique. The rower’s
length and strength are likely important factors. However,
these are not the only factors, since rowers with similar
physique (such as Exp. 1 and Exp. 2) still show signifi-
cant differences. For a stroke rate of 30 strokes per minute,
we observe very similar results as for the experiment at 20
strokes per minute.

Figure 4 shows the standard deviations in the leg, lower back
and upper back angles at a velocity of 20 strokes per minute.
These statistics show that on average the experienced row-
ers have lower standard deviation values than inexperienced
rowers. This standard deviation can be an indication of the
angle consistency of the rowers. We expect a high standard
deviation for rowers with an inconsistent, bad technique.
For example, Nov. 3 has a high standard deviation for all
angles, which is a likely indicator for an inconsistent tech-
nique.

5.2 Stroke Timing Consistency
Table 2 shows the stroke timings for each rower at 20 strokes
per minute. The ideal stroke at that speed lasts 3 seconds.
The table shows that the experienced rowers are able to
match this timing more closely. More interestingly, the stan-
dard deviation of the full stroke time is smaller for the ex-
perienced rowers, meaning that their strokes are more con-
sistent. The results show that on average about 40 % of a
stroke is spent in the drive phase, which is consistent with
the stroke proportion statistics reported by Dawson et al. [7].
Judging by the standard deviation, the fraction of time spent
in the drive phase is also more consistent for the experienced
rowers. The results for the recovery phase are not shown in
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Figure 4: Posture angle standard deviation at 20
strokes/min.

Full Stroke Drive
time(s) std.dev.(s) time frac.(%) std.dev.(%)

Experienced 1 3.06 0.04 40.00 2.00
Experienced 2 2.90 0.04 37.00 1.00
Experienced 3 2.95 0.07 36.00 1.00

Novice 1 2.40 0.14 44.00 2.00
Novice 2 2.87 0.17 38.00 3.00
Novice 3 2.73 0.16 35.00 5.00
Novice 4 2.92 0.11 44.00 2.00

Table 2: Stroke timing consistency for 20 strokes
per minute

Table 2, because this is the only other phase and therefore
the statistics are identical.

Table 3 shows the stroke timings for each rower 30 strokes
per minute. The results show that the stroke timing con-
sistency of experienced rowers is not noticeably affected by
the stroke rate. In contrast, statistics for both the full stroke
and the fraction spent in the drive phase indicate that novice
rowers can maintain more consistent stroke timing at higher
stroke rates. Figure 5 presents an overview of the standard
deviations for the full stroke at each stroke rate for each of
our subjects, which shows this stroke rate dependence more
clearly. At the highest evaluated stroke rate, the standard
deviation of the full stroke is for most novice rowers at the
same level as the experienced rowers. Still, at that stroke
rate the fraction of a full stroke spent in the drive phase still
shows higher standard deviation for the novice rowers.

While a higher stroke rate may improve stroke timing con-



Full Stroke Drive
time (s) std.dev.(s) time frac.(%) std.dev.(%)

Experienced 1 1.91 0.06 45.00 1.00
Experienced 2 1.97 0.06 44.00 1.00
Experienced 3 N/A N/A N/A N/A

Novice 1 1.83 0.05 47.00 1.00
Novice 2 1.88 0.13 44.00 2.00
Novice 3 1.95 0.06 44.00 2.00
Novice 4 2.03 0.06 43.00 2.00

Table 3: Stroke timing consistency for 30 strokes
per minute
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Figure 5: Overview of stroke time consistency.

sistency for novice rowers, the results in Section 5.3 indicate
that the overall technique of the novice rowers becomes less
similar to the experienced rowers at higher stroke rates. We
speculate that it becomes more difficult to maintain correct
technique at higher stroke rates.

5.3 Machine Learning
It is difficult to determine all aspects of the motion that
distinguish experienced rowers from novice ones or a bad
rowing technique from a good one. Therefore, we employ
machine learning techniques to obtain a generic measure of
similarity of the motion of subjects in our experiments rela-
tive to the motion of an experienced reference rower.

Obviously, we expect and assume that the motion of our
experienced rowers will be more similar to the reference ex-
perienced rower than the novice rowers. However, if the
novice rower is doing the rowing technique in the right way,
then it can have a better similarity to the reference rower
as well. Moreover, we also assume that the reference rower
is doing the technique in the right way, which is not a very
strong assumption. However, this assumption was neces-
sary to keep the scope of this preliminary study limited. In
future data collection experiments, the reference rower will
be supervised by an expert where we can be sure that the
reference technique is a proper one.

These machine learning results will not be useful in deter-
mining what exactly is different or wrong. However, this
assessment will provide an indication of how much a rower
is deviating from the reference. Such indication can be help-
ful for the rowers to ask for a supervised session to evalu-
ate their technique. This approach can be very helpful in
personalized training. For example, a rower can be super-
vised by an expert to perform the rowing technique once
and use that data as a reference point, thereby training a

personalized classifier. Such a personalized classifier can de-
tect deviations from the verified technique for that specific
rower, when the expert or trainer is not around. Moreover,
it can help him by giving a generic feedback about such de-
viations. This personalized approach is more practical than
the generic ones. However, we leave this for the next study
as a future work.

We employ machine learning to recognize the two main phases
of a rowing stroke: drive and recovery. We train our clas-
sifiers using these two stroke phases. The classifiers are
trained using our reference rower, which is one of the ex-
perienced rowers, and subsequently applied to each of the
other rowers as a test data. The recognition performance is
used as the measure for similarity. We have used one rower
as a reference because of our limited data set. In future,
we are planning to cluster experienced rowers for training a
classifier.

We used WEKA (version: 3.7) [13] as a machine learning
tool for analysis. For our initial analysis, we selected K-
nearest neighbor for finding similarities between different
rowers. It uses Euclidean distance to find similarity between
training data and test data. We use this classifier in its de-
fault mode in order to make our work easily reproducible,
except K is chosen as 3. This specific number is chosen,
because an odd number is important for breaking the pos-
sible tie in majority voting. Also, higher values of K help in
avoiding the effects of noise [23].

We segmented the angle measurements into windows of 75
samples (0.375 s) with no overlap. This way, at least two
window segments are fully located in either the drive or re-
covery phase of each stroke. Using a sliding window ap-
proach, we extracted the following features from the seg-
mented angle measurements: the mean and the mean angu-
lar velocity. The mean angular velocity is calculated by tak-
ing the mean of the differences between each two consecutive
points within each segment. Our two classes were of differ-
ent sizes. Therefore, we used the classbalancer filter [25] on
our training data in the preprocessing phase. This filter as-
signs the same weights to all classes, thereby avoiding bias
towards the majority class by various classifiers [25].

For performance evaluation, we use accuracy, and Matthews
Correlation Coefficient (MCC). MCC is considered a bal-
anced measure for the recognition performance, because it
considers all aspects of a confusion matrix [10]. These are
defined as follows as per WEKA documentation:

• The True Positive rate (TPR) or accuracy is the
proportion of examples which were classified as class
x, among all examples which truly have class x, i.e.
what part of the class was captured correctly.

• The MCC takes into account all aspects of a confu-
sion matrix, such as true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) and
is calculated as follows:

MCC =
(T P ∗ T N − F P ∗ F N)√

(T P + F P )(T P + F N)(T N + F P )(T N + F N)
(1)



The results for the KNN classifier at 20 and 30 strokes per
minute are respectively shown in Figure 6 and Figure 7. It is
important to note that these results are the average of the
drive and recovery phases. These results show how much
the recognition performance of all rowers is lower than that
of the reference rower Exp. 1. The reference rower is one
of the three experienced rowers.

As expected, the similarity to our reference rower is consis-
tently better for our experienced rowers than for our novice
rowers with a few exceptions. In some cases, the inexperi-
enced rowers have almost the same or better similarity to
the reference rower than that of the experienced rowers. A
possible explanation for this could be that the inexperienced
rower is doing the technique properly at that specific time.
We repeated this analysis for the other two experienced row-
ers (Exp. 2 and Exp. 3), by taking each of them as a
reference point and then evaluating the rest of the rowers
with respect to them. We see similar trends.

That is one of the limitations of this study, where we as-
sumed that inexperienced rowers will not perform the row-
ing technique in an optimal way compared to the experi-
enced ones. That assumption can be wrong, so this should
be explored further. One option could be to have an expert
present at the data collection phase who can supervise the
process and identify who is doing the technique in a proper
way.

Beside this analysis, we analyzed these results in relationship
with the heights of the rowers to see if it plays an important
role. However, we do not see any clear connection between
them.

It can also be seen that in some cases the performance drop
for these rowers compared to the reference rower or com-
pared to each other, is small. Based on expert knowledge,
such small differences can be ignored by applying a thresh-
old in comparing these performances. Because a good row-
ing technique does allow for different angle values within
a specific range. Defining this specific range is the job of
a rowing expert and it can be easily integrated with such
intelligent systems.

Though this work should be further explored, we observe
that different performance measures can be combined to dif-
ferentiate between an experienced and inexperienced rower
or a good and bad technique. As we discussed in Section 5.2,
stroke timing consistency becomes better at higher stroke
rates, whereas the similarity with the reference becomes
worse at higher stroke rates for novice rowers. Therefore,
we can combine these two factors for distinguishing experi-
enced from novice rowers or distinguishing a bad technique
from a good one, because at least one of these will likely
differ.

6. CONCLUSION
Our preliminary experiments show that absolute posture an-
gles provide no direct means of distinguishing experienced
and novice rowers. For the absolute posture angles, the
measurements vary wildly, even amongst experienced row-
ers. However, the standard deviation of the absolute postu-
ral angles could be used to assess the inconsistency of the
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Figure 6: Machine learning results for the KNN
classifier at 20 strokes per minute.
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Figure 7: Machine learning results for the KNN
classifier at 30 strokes per minute.

rower’s technique.

In contrast, the timing consistency of the rowing strokes
does show a clear difference between experienced and novice
rowers. The standard deviation of the full stroke time and
the fraction of the stroke spent in the drive phase is low and
consistent across varying stroke rates for the experienced
rowers. Novice rowers show higher standard deviation. In-
terestingly, the consistency of novice rowers improves with
higher stroke rates.

Machine learning techniques can distinguish between expe-
rienced and novice rowers, because the recognition perfor-
mance of the latter is lower compared to our reference. Un-
like the stroke timing consistency, at higher stroke rates,
the recognition performance using machine learning of the
novice rowers becomes low compared to the experienced ref-
erence rower. Therefore, a combination of these two metrics
can be used to identify a deviant rowing technique.

An important problem with using machine learning for this
analysis is that it is not possible to tell exactly what an in-
experienced rower is doing different from the ’good’ tech-
nique. This requires further exploration. Moreover, we
assumed that our inexperienced rowers would consistently
perform worse than our experienced rowers. This does not
account for some natural talent, which means that inexperi-
enced rowers could perform equally well in some cases. For
future experiments, we should have an expert present that
can judge the technique during the experiment to make a
clear assessment.



In future work, the number of subjects needs to be larger
than seven and experiments need to be repeated several
times. With only a few subjects each performing only a
few experiments, the results can be influenced by unappar-
ent coincidental factors, such as the participants suffering
from fatigue, illness, or stress. Also, our experiments did
not explicitly explore the effects of gender differences on
rowing posture: most of our subjects were male, with only
one exception.
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