
The DiscoDNC v2 –
A Comprehensive Tool for Deterministic Network Calculus

Steffen Bondorf
University of Kaiserslautern

Distributed Computer Systems Lab (DISCO)
Germany

bondorf@cs.uni-kl.de

Jens B. Schmitt
University of Kaiserslautern

Distributed Computer Systems Lab (DISCO)
Germany

jschmitt@cs.uni-kl.de

ABSTRACT
In this paper, we present the Disco Deterministic Network
Calculator v2 – our continuation in the effort to provide
open-source tool support for worst-case performance anal-
ysis. The major achievement of this release is the provi-
sion of a well-documented network calculus implementation
that enables for straight-forward application as well as easy
extensibility. Apart from a fair amount of bug fixes that
improve the tightness of the derived bounds, our efforts re-
sulted in two main differences to the previous versions: the
first is the rigorous modularization of network calculus anal-
yses into their distinct components and the second is a com-
prehensive set of functional tests for our tool.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks; C.4 [Computer Systems Organi-
zation]: Performance of Systems—Modeling Techniques

General Terms
Performance

Keywords
Network Calculus

1. INTRODUCTION
We believe that in the provision of tool support for network
calculus it matters to open up the usage of our offerings
in a multitude of application scenarios. Therefore we de-
cided to use the Java programming language to implement
the core network calculus concepts as well as the analyses
based on them [12]. In the second version of the Disco De-
terministic Network Calculator (DiscoDNC)1, we continue

1Formerly known as DISCO Network Calculator we decided
to rename it to Disco Deterministic Network Calculator to
contrast with our other offering, the Disco Stochastic Net-
work Calculator (DiscoSNC) [3, 6].

to pursue this goal by tackling further obstacles on the way
to a tool commonly adopted and refined. Our efforts have
been twofold: The first aim was to modularize our codebase
along the lines of the network calculus theory. We provide a
library consisting of the implementation of the network cal-
culus framework – from simple curves to complex analyses.
Thus, we allow for easy adaptability and extensibility of our
toolbox – a goal we already achieved with an in-development
version [7]. The second is to provide the classes necessary to
use DiscoDNC v2 as a stand-alone tool. This allowed us to
check our network calculus implementation against network
configurations whose bounds were manually verified. In or-
der to do so, we have created an extensive, well-documented
set of functional tests that we provide alongside the source
code. Further, we have re-licensed the entire code base un-
der the GNU Lesser General Public License (LGPL) version
2.1 and the test cases under a permissive Creative Com-
mons license to facilitate usage of both. The progress of our
endeavor can be traced online [2] and in this paper, where
we present the analytical background of network calculus
we implemented as well as the design and the use of the
DiscoDNC v2.

Outline. We structured the remainder of this paper accord-
ing to the code base’s modularization: Section 2 introduces
the worst-case performance evaluation at network calculus’
foundation and in Section 3 we present the derived concepts
and operations available in our tool. Section 4 depicts the
classes to create a network configuration to perform one of
the analyses of Section 5 on. Section 6 presents the set of
functional tests we created for our tool and Section 7 exem-
plifies the tool usage. Section 8 concludes the paper.

2. PERFORMANCE EVALUATION
In this section, we present the basic model for performance
evaluation as used by network calculus. It is based on the
concepts of data flows and their transformations, both de-
scribed by functions cumulatively counting data. These
curves belong to the following set

Definition 1. [unikl.disco.curves.Curve.java]
The set F0 of non-negative wide-sense increasing functions
is defined by

F0 =
{
f : R → R

+ | f (0) = 0, ∀s ≤ t : f (s)≤f (t) ,

R
+ := [0,+∞] .

 
 

 
 

 



The class unikl.disco.curves.Curve.java provides meth-
ods to create piecewise linear functions of F0.

In particular, we are interested in the functions A(t) and
A′(t) cumulatively counting a flow’s data put into a system
S up until time t and put out from S until t. Both functions
are naturally assumed to be in F0. Throughout the paper,
we assume that systems are abstractly characterized by their
input and output functions; both are assumed to be left-
continuous.

These curves allow us to define worst-case performance char-
acteristics of flows as follows:

Definition 2. (Backlog and Delay) Assume a flow with in-
put function A traverses a system S and results in the output
function A′. The backlog of the flow at time t is defined as

B(t) = A(t)−A′(t).

The (virtual) delay for a data unit arriving at S at time t
is defined as

D(t) = inf
{
τ ≥ 0 | A(t) ≤ A′(t+ τ)

}
.

3. NETWORK CALCULUS FRAMEWORK
Network calculus establishes its worst case semantics by
defining the functions bounding data flows over the dura-
tion of an observation d instead of the time instance t.

Definition 3. [unikl.disco.curves.ArrivalCurve.java]
Given a flow with input function A, a function α ∈ F0 is an
arrival curve for A iff

∀ 0 ≤ d ≤ t : A(t)−A(t− d) ≤ α(d)

The definition is independent from the actual time t the
measurement takes place. It is used to express the worst-
case data arrival within any duration of length d. We make
use of (∧,+)-algebra to take advantage of these semantics of
curves with the following operations. A detailed treatment
of (∧,+)-algebra and network calculus can be found in [5],
[8], and [10], respectively.

The operations presented in the following are closed in F0

and in the set of ultimately affine piecewise linear curves that
is used in the DiscoDNC (see [9]). Their explicit solutions
are implemented in the packages and classes referenced in
brackets.

Definition 4. [unikl.disco.minplus]
The (∧,+)-algebraic convolution and deconvolution of two
functions f, g ∈ F0 are defined as

convolution: (f ⊗ g) (d) = inf
0≤s≤d

{f(d− s) + g(s)} ,
deconvolution: (f 
 g) (d) = sup

u≥0
{f(d+ u)− g(u)} .

Convolution and deconvolution enable us to characterize
flow transformations using curves.

Definition 5. [unikl.disco.curves.ServiceCurve.java]
If the service provided by a system S for a given input func-
tion A results in an output function A′ we say that S offers
a service curve β iff

A′ ≥ A⊗ β.

A number of systems fulfill, however, a stricter definition of
service curve [8], which is particularly useful as it permits
certain derivations that are not feasible under the more gen-
eral minimum service curve model.

Definition 6. [unikl.disco.curves.ServiceCurve.java]
Let β ∈ F0. System S offers a strict service curve β to a
flow if, during any backlogged period of duration d, the out-
put of the flow is at least equal to β(d).

Strictness is implicitly checked in the DiscoDNC by applying
the permitted derivations only.

Having curves for different purposes, we can give the perfor-
mance bounds of Definition 2 for network calculus.

Theorem 1. [unikl.disco.nc.BacklogBound.java]
[unikl.disco.nc.DelayBound.java]
Consider a system S that offers a service curve β. Assume
a flow f traversing the system which has an arrival curve α.
Then we obtain the following performance bounds:

backlog: ∀t ∈ R
+ : B (t) ≤ (α
 β) (0)

delay: ∀t ∈ R
+ : D (t) ≤ inf {d ≥ 0 | (α
 β) (−d) ≤ 0}

Graphically, the backlog bound is the maximum vertical de-
viation between arrival curve α and service curve β. Simi-
larly, the delay bound is the maximum horizontal deviation
between α and β. Note, that the delay bound only holds
for systems that preserve the order of packets within a flow
– a property we call FIFO per micro-flow. Non-FIFO per
micro-flow systems require a different treatment [11].

In addition to the performance bounds derivation, the (∧,+)-
deconvolution also enables to derive an arrival curve that
bounds A′ (t) at the output of a system.

Theorem 2.[unikl.disco.minplus.Deconvolution.java]
(Output Arrival Curve) Assume a flow f has an arrival
curve α and consider f traversing the system S offering a
service curve β. After being transformed by S, i.e., at the
system’s output, f is bounded by the arrival curve

α′ (d) =
(
α
̇β

)
(d)

=

{
0 if d = 0

(α
 β) (d) otherwise
.

Note, that the deconvolution as given in Definition 4 does
not guarantee (α
 β) (0) = 0 and is thus not closed in F0.
While this property allows for backlog bounding, a slight
augmentation of the operation is needed in our tool in order
to enforce closure and fulfill the arrival curve definition.



Theorem 3. [unikl.disco.nc.LeftOverService.java]
Consider a system S that offers a strict service curve β and
that serves two input flows, f1 and f2 with arrival curves αf1

and αf2 , respectively. The minimum service f1 is guaranteed
to receive is lower bounded by the so-called left-over service
curve βl.o.f1 .

In case of arbitrary multiplexing of flows crossing S, it holds
that

βl.o.f1 = β �ARB αf2

with
(
β �ARB α

)
(t) = sup0≤s≤t (β − α) (s) being the non-

decreasing upper closure of (β − α) (t).

In case of FIFO multiplexing, the left-over service curve is

βl.o.f1 = β �FIFO αf2

where �FIFO computes left-over service curve with the small-
est latency T in a worst-case FIFO multiplexing scenario. T
is defined as the first time instance when α’s burst is worked
off and its arrival rate is smaller than β’s service rate. At
this time it can be safely assumed that the system has spare
capacity that, in the FIFO multiplexing scheme, will be used
to serve f1’s data that arrived in the meantime.

One of the strongest results of network calculus (albeit being
a simple consequence of the associativity of ⊗) is the con-
catenation theorem that enables us to investigate tandems
of systems as if they were single systems:

Theorem 4. [unikl.disco.minplus.Convolution.java]
(Concatenation Theorem) Consider a flow f that traverses
a tandem of systems Si, i = 1, . . . , n. and that Si offers
a service curve βSi to f . Then the concatenation of the n

systems offers a service curve
n⊗

i=1

βSi to the flow.

4. NETWORK CONFIGURATION
In addition to the network calculus foundation, we also pro-
vide the classes to create a network configuration to be ana-
lyzed. They are found in the package unikl.disco.network.
In contrast to the previous versions of our tool, we do not
import external libraries for network creation and are thus
able to tightly integrate the concepts needed for the network
calculus analysis into the respective parts of the network.
This section provides an overview of the network classes by
presenting how they fulfill this purpose.

The finest granularity a system S can have is a single server.
Hence, we provide a Server.java class. Besides the server’s
service curve, it also holds information about its multiplex-
ing strategy. The modularization of the network calculator
therefore made it possible to mix servers with different mul-
tiplexing strategies in a single network. The servers are con-
nected by directed links of type Link.java and the instances
of both classes are combined to a topology created via and
stored by an object of Network.java.

Network.java acts as the exclusive central entity allowing
to create a topology – including servers and links. It is
responsible to provide the information needed by analyses.
For that purpose, methods such as querying servers or their

incident links are given. Moreover, Network.java allows to
add flows – instances of Flow.java – to the network. For
analyses, methods to request specific sets of flows, e.g., those
crossing a given link or originating in a certain server, also
exist. The flow class itself only knows its arrival curve and its
path. Path.java is a new class introduced in the DiscoDNC
v2. It supports the analyses by providing an abstracted view
of the network, only consisting of the topological data known
to a flow – the links and servers it crosses – and used in the
derivation of its performance bounds.

Code 1 depicts the Creation of network configurations.

5. NETWORK CALCULUS ANALYSES
A network calculus analysis combines the operations given in
Section 3 in order to compute bounds on end-to-end delays
of flows and their maximum backlog along their path. Yet,
there are different ways for this combination and therefore
three distinct analysis methods: The Total Flow Analysis
(TFA), the Separate Flow Analysis (SFA) and the Pay Mul-
tiplexing Only Once analysis (PMOO). These analyses are
included in the package unikl.disco.nc. Their modular-
ization according to the structure established in this section
constitutes a major achievement of our efforts. Due to the
focus on a single flow of interest, the analyses divide their
approach into two distinct steps:

1. Arrival Bounding: First, the information needed to
examine the flow of interest’s resource share has to be
derived. To do this, the bounds on data arrivals on its
path are computed.

2. Performance Bound Derivation: In the second
step, the aforementioned arrival bounds are used to
derive the performance bounds of the flow of interest.

Both steps differ considerably between TFA and the other
analysis methods, whereas the approaches of SFA and PMOO
both follow the same general principle.

TFA [TotalFlowAnalysis.java]. This analysis bounds the
totality of flows present at a server s on the flow of interest’s
path P in step 1. It then derives the local performance
bounds at s, delayDs and backlog Bs, for this flow aggregate
(step 2). This whole procedure is repeated, hop by hop, from
the flow of interest’s source to its sink. In the concluding
step, the end-to-end delay and backlog bounds are derived
from the server-local bounds:

B = max
s∈P

Bs , D =
∑
s∈P

Ds .

It is important to note, that the TFA can violate the FIFO
per micro-flow assumption Theorem 1 relies on for its delay
bound derivation. When bounding an aggregate of multiple
flows, the applied multiplexing strategy of a server matters.
Under arbitrary multiplexing, FIFO per micro-flow does not
translate to FIFO per macro-flow, i.e., per flow aggregate.
Thus, the delay bound is defined by the intersection of α
and β instead of their maximum horizontal deviation. In
contrast, FIFO per micro-flow can be assumed for FIFO
multiplexing servers in the total flow analysis. Both types
of systems can be mixed in TFA due to its per-hop approach.



(a) Tandem networks. (b) Tree networks. (c) Feed-forward networks.

Figure 1: Excerpt of the network configurations we test against.

SFA [SeparateFlowAnalysis.java]. In contrast to the
TFA, the SFA models the network as if the flow of inter-
est was not present in order to quantify the share of service
that can be assumed to be at its disposal – we say the flow
of interest is separated from its cross-traffic. Therefore, step
one constitutes a cross-traffic arrival bounding only and
step two needs to be divided into two separate parts:

• Left-Over Service Derivation: First, the network
is abstracted to the flow of interest’s view. To achieve
this, the cross-traffic arrival bounds from step 1 are
used to derive the left-over service curve βl.o.

s (Theorem
3) for every server s ∈ P. They are combined to the
end-to-end service curve βl.o.

e2e using Theorem 4.

• Bound Computation: Secondly, Theorem 1 is ap-
plied to the flow of interest’s arrival curve and βl.o.

e2e to
derive the bounds on delay and backlog. FIFO per
micro-flow is guaranteed when deriving bounds in this
fashion as the single flow of interest was separated first.

The server-local derivation of βl.o.
s allows to mix FIFO mul-

tiplexing and arbitrarily multiplexing servers in the SFA.

Further, SFA leverages a phenomenon called Pay Bursts
Only Once (PBOO). It refers to the fact that the interme-
diate burstiness increase of the flow of interest – as locally
perceived by the servers on its path – does not impact its
performance bounds. This improvement can be attributed
to the derivation of βl.o.

e2e. It is not present in the TFA.

PMOO [PmooAnalysis.java]. The Pay Multiplexing Only
Once analysis [13] proceeds along the lines of SFA, i.e., it
bounds cross-traffic only, derives an end-to-end left-over ser-
vice curve for the flow of interest and computes the bounds
based on this information. Thus, the PMOO analysis pos-
sesses the PBOO property. Yet, it changes the order during
the derivation of βl.o.

e2e – it concatenates before subtracting
cross-traffic arrivals. PMOO does not apply Theorem 4 and
it is only proven to be correct for arbitrary multiplexing
servers whose service is given as a piecewise linear curve. In a
PMOO analysis, the end-to-end semantic is established first
and cross-traffic arrival bounding also differs from SFA’s. In
order to correctly account for demultiplexing on the flow of
interest’s path cross traffic needs to be grouped accordingly.

Arrival Bounding
The analyses presented above define the procedure on the
flow of interest’s path as well as the demand on the ar-
rival bounding method conducted in step 1. The provision-
ing of arrival bounds as needed by the different analyses –
e.g., including the flow of interest or bounding cross-traffic
only – is coordinated by the class ArrivalBounds.java in
unikl.disco.nc. It provides the ability to use multiple of
the alternative methods for arrival bounding simultaneously:

• PbooArrivalBounding_*.java: Three alternatives to
compute an arrival bound with the PBOO property ex-
ist – directly derived from Theorem 2 (Output_PerHop)
or structured according to SFA; either applying Theo-
rem 2 iteratively (PerHop) or deriving the end-to-end
left-over service curve first (Concatenation).

• PmooArrivalBounding.java: This arrival bound alter-
native proceeds according to the PMOO analysis.

• Per-flow bounding: ArrivalBounds.java also provides
the possibility to carry out a SFA or a PMOO analy-
sis for every flow whose arrival needs to be bounded.
A left-over service curve from the flow’s source to the
point of bounding is derived and Theorem 2 is used to
bound the flow. The individual arrival bounds are then
summed up to the aggregate arrival bound. This alter-
native leads to looser bounds compared to the others.

Independent of the actual analyses, the arrival bounding
may be repeatedly executed in order to bound the cross-
traffic of the flows to bound – this scheme even repeats re-
cursively for cross-traffic of cross-traffic etc. For that reason
the network configuration to be analyzed needs to possess
the feed-forward property, i.e., there are no cyclic dependen-
cies among its flows. Otherwise, such interdependencies will
escalate in the arrival bounding process and thus eventually
cause unboundable arrivals, i.e., infinite bounds.

6. FUNCTIONAL TESTS
We have established an extensive set of functional tests whose
documentation reenacts the derivation of the bounds as done
in the DiscoDNC itself. In the package unikl.disco.tests

there are 18 different network configurations. Each is an-
alyzed with every combination of analysis – TFA, SFA or
PMOO – and arrival bounding alternative. The test suite
covers a wide range of network configurations: Simple single



Figure 2: FeedForward_1SC_4Flows_1AC_4Paths.java

server, single flow settings test basic operations and com-
plex feed-forward network configurations test different ef-
fects of the analyses like the positive and negative impact of
the PMOO – either on the flow of interest or in the arrival
bounding. Figures 1 and 2 show an excerpt of the network
configurations we test against. They illustrate the inductive
steps we take from tandems to trees to feed-forward net-
works. The delay and backlog bounds we check our toolbox
against are all derived manually and provided in the 159
pages of supplementary material in unikl.disco.tests’s
Single.pdf, Tandem.pdf, Tree.pdf and FeedForward.pdf.

Additionally, we test the different code paths that can be
triggered in unikl.disco.nc.Configuration.java, e.g., the
removal of duplicate arrival bounds if multiple arrival bound-
ing methods are tested at every recursion level of this pro-
cess. In total, we currently provide 1800 functional tests
with the DiscoDNC v2. They all give insight into the algo-
rithmics of deriving performance bounds with network cal-
culus as well as the the inner workings of our calculator.

In order to allow for testing, we enabled the code to run
on two alternative number representations: real values and
rationals. The former is based on the double data type, and
thus suffers from rounding errors that prevent their use for
tests. Hence, we extended our code base with the ability
to operate on rational numbers. The choice of the number
representation to use is made at compile time by using the
according file for unikl.disco.misc.Num.java and depends
on the scenario the DiscoDNC is used for. Whereas the
rational numbers deliver exact results that enable verifica-
tion, they are based on integer values for the numerator and
denominator and are thus prone to overflows. Moreover,
the computations are more demanding than the with the
double-based numbers. Therefore, analyses take potentially
longer to finish. We recommend to resort to the rationals
for verification and to reals for simulation.

7. USING THE DISCO DNC
Depending on the purpose the Disco Deterministic Network
Calculator is used for, it might depend on external libraries.
For testing purpose, using the rational number representa-
tion requires Apache Commons Math [1] as well as the JUnit
testing framework [4] and its dependencies. For the use as
stand-alone tool operating on real numbers there are no ex-
ternal dependencies to run the DiscoDNC v2.

In this section, we present the functional test FeedForward_
1SC_4Flows_1AC_4Paths.java (See Figure 2). Besides the
functional tests, we provide demo classes without JUnit test-
ing in the package unikl.disco.demos.

Using the DiscoDNC will be illustrated by the network cre-
ation, running different analyses on the network and access-
ing the generated information. The code samples shown re-
semble the actual code of the test class – there is no pseudo-
code abstraction required to depict how to execute an anal-
ysis with our network calculator, yet, we omitted variables’
types where it is clear from the context.

Network Creation. Our objective was to improve the net-
work creation such that it is as straight-forward as possi-
ble. Therefore, we decided to require the user to provide
a feed-forward network instead of transforming any given
one with turn prohibition [14] as it was commonly done in
the previous version. Additionally, this outright application
of the analysis allows for easier relation of results to their
corresponding impact factors. Code 1 shows how to use
Network.java to create Figure 2’s network configuration.

network = new Network ( ) ;

s0 = network . addServer ( s e r v i c e c u r v e ) ;
s1 = network . addServer ( s e r v i c e c u r v e ) ;
s2 = network . addServer ( s e r v i c e c u r v e ) ;
s3 = network . addServer ( s e r v i c e c u r v e ) ;

l s 0 s 1 = network . addLink ( s0 , s1 ) ;
l s 0 s 3 = network . addLink ( s0 , s3 ) ;
l s 1 s 3 = network . addLink ( s1 , s3 ) ;
l s 2 s 0 = network . addLink ( s2 , s0 ) ;
network . addLink ( s2 , s1 ) ;
network . addLink ( s2 , s3 ) ;

L i s t<Link> f 0 path = new LinkedList<Link >() ;
f 0 path . add ( l s 0 s 1 ) ;
f 0 path . add ( l s 1 s 3 ) ;
L i s t<Link> f 3 path = new LinkedList<Link >() ;
f 3 path . add ( l s 2 s 0 ) ;
f 3 path . add ( l s 0 s 3 ) ;

f 0 = network . addFlow ( a r r i v a l c u r v e , f0 path ) ;
f 1 = network . addFlow ( a r r i v a l c u r v e , s2 , s3 ) ;
f 2 = network . addFlow ( a r r i v a l c u r v e , s2 , s1 ) ;
f 3 = network . addFlow ( a r r i v a l c u r v e , f3 path ) ;

Code 1: Create network configuration of Figure 2.

Running an Analysis. Section 5 presented a crucial part
of our modularization efforts: The separation of the analysis
into arrival bounding and performance bound derivation.
The DiscoDNC v2 allows to combine alternatives for both
and it is possible to set multiple arrival bounding methods
that compete at every level of this process (see Code 2).

Con f igurat ion . setArrivalBoundMethod (
ArrivalBoundMethods .PBOO PER HOP) ;

Conf igurat ion . addArrivalBoundMethod (
ArrivalBoundMethods .PBOOCONCATENATION) ;

Conf igurat ion . addArrivalBoundMethod (
ArrivalBoundMethods .PMOO) ;

Code 2: Setting the arrival bounding methods



TFA SFA PMOO

Service curves [βl.o.
e2e] [] getLeftOverServiceCurves() getLeftOverServiceCurves()

Service curves [βl.o.
s ] [] getServerLeftOverBetasMap() []

Arrival bounds at s getServerAlphasMap()† getServerAlphasMap()‡ getServerAlphasMap()‡∗
†entire traffic ‡cross-traffic only ∗grouped according to demultiplexing

D getDelayBound() getDelayBound() getDelayBound()

Ds getServerDelayBoundMap() [] []

B getBacklogBound() getBacklogBound() getBacklogBound()

Bs getServerBacklogBoundMap() [] []

Table 1: Accessing analysis results.

Starting the entire analysis consists of two simple steps:
First, create an instance of an analysis for the network con-
figuration to be analyzed and then start it for a specific flow
of interest – f0 in our example in Code 3. Further options to
tweak the analyses (in addition to arrival bounding shown
in Code 2) can be found in Configuration.java.

t f a = new TotalFlowAnalys is ( network ) ;
t f a . performEnd2EndAnalysis ( f 0 ) ;

s f a = new SeparateFlowAnalys i s ( network ) ;
s f a . performEnd2EndAnalysis ( f 0 ) ;

pmoo = new PmooAnalysis ( network ) ;
pmoo . performEnd2EndAnalysis ( f 0 ) ;

Code 3: Starting different analyses

Results. The last step of an analysis is accessing the re-
sults. As mentioned above, the network calculator oper-
ates on an unchanged network as provided by the user.
This fact as well as the code modularization allowed us to
make intermediate results user-accessible and directly re-
late them to the network configuration. Table 1 depicts
each analysis’s results together with their according func-
tion calls (or return value if constant). Note, that all anal-
yses can produce sets of arrival bounds at a server s if
multiple arrival bound methods are set similar to Code 2.
Thus, SFA and PMOO both can result in a set of βl.o.

e2es.
For example, in the network configuration we present here,
there will be a total of 81 left-over end-to-end service curves
for the SFA and 27 for the PMOO analysis. Yet, due to
the relative simplicity of this network – service curves and
arrival curves were chosen homogeneously – the configu-
ration option setRemoveDuplicateArrivalBounds(true) of
Configuration.java reduces the amount of arrival bounds
on intermediate recursion levels of this procedure such that
there is only one βl.o.

e2e remaining for each of the analyses. A
similar reduction applies to SFA’s βl.o.

s results.

8. CONCLUSION
In this paper, we presented the Disco Deterministic Network
Calculator v2 – an extensively tested, simple to use and easy
to extend toolbox for deterministic network calculus. In or-
der to depict these properties, we provided insight in our test
set, illustrated the straight-forward use of the DiscoDNC v2
and treated alternative arrival bounding methods provided
with our source code distribution. We achieved all this by
overhauling our code base; by modularizing it and docu-
menting its functionality. Thus, our tool is not only suitable

for straight-away use and integration in existing projects but
due to the comprehensive set of tests it can also be used for
educational purposes.

9. REFERENCES
[1] The Apache Commons Mathematics Library. Online.

http://commons.apache.org/proper/commons-math/.

[2] The Disco Deterministic Network Calculator. Online.
disco.cs.uni-kl.de/index.php/projects/disco-dnc.

[3] The Disco Stochastic Network Calculator. Online.
disco.cs.uni-kl.de/index.php/projects/disco-snc.

[4] The JUnit Testing Framework. Online.
http://junit.org.

[5] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P.
Quadrat. Synchronization and Linearity: An Algebra
for Discrete Event Systems. Wiley, 1992.

[6] M. A. Beck and J. B. Schmitt. The DISCO Stochastic
Network Calculator Version 1.0 - When Waiting
Comes to an End. In ValueTools, 2013.

[7] K. Blaiech, O. Mounaouar, O. Cherkaoui, and
L. Beliveau. Runtime Resource Allocation Model over
Network Processors. In IEEE International
Conference on Cloud Engineering (IC2E), 2014.

[8] J.-Y. L. Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet. Springer, 2001.

[9] A. Bouillard and E. Thierry. An Algorithmic Toolbox
for Network Calculus. Discrete Event Dynamic
Systems Journal, Springer, 2008.

[10] C.-S. Chang. Performance Guarantees in
Communication Networks. Springer, 2000.

[11] J. B. Schmitt, N. Gollan, S. Bondorf, and
I. Martinovic. Pay Bursts Only Once Holds for (Some)
Non-FIFO Systems. In IEEE INFOCOM, 2011.

[12] J. B. Schmitt and F. A. Zdarsky. The DISCO Network
Calculator - A Toolbox for Worst Case Analysis. In
ValueTools, 2006.

[13] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Improving Performance Bounds in Feed-Forward
Networks by Paying Multiplexing Only Once. In
GI/ITG MMB, 2008.

[14] D. Starobinski, M. Karpovsky, and L. A. Zakrevski.
Application of Network Calculus to General
Topologies Using Turn-Prohibition. IEEE/ACM
Transactions on Networking, 2003.


