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Abstract 
The energy consumption of production lines can vary across different machines due to diverse factors such as varying pro-
cessing rates, machine conditions, product characteristics, and the compatibility between products and machines. Addition-
ally, identical products on the same type of machine may experience temporal variations in energy consumption due to real-
time equipment status and operational activities. Accurately understanding these influencing factors can aid in developing 
more efficient energy management strategies. This study first analyzes the energy consumption of single machines pro-
cessing single products, establishing a probabilistic model for the stochastic process of single-machine energy consumption 
over time. Mathematical tools, including convolution, are then employed to develop a stochastic process model for energy 
consumption across multiple machines and products within the entire plant. The overall stochastic process model is opti-
mized, leading to the creation of a "Peak Energy Consumption Alert" and an "Energy Efficiency Alert" system to mitigate 
the risks of peak energy consumption and overall energy inefficiency. By utilizing the proposed optimization model for 
machine component energy consumption and the production scheduling module, the likelihood of exceeding contracted 
power capacity is significantly reduced. This approach also enhances the energy efficiency of production scheduling, thereby 
reducing the total energy consumption of the entire plant. Furthermore, while meeting energy planning goals, the model 
considers non-energy-related production indicators (e.g., completion time, order delivery dates), ultimately improving the 
operational efficiency of production lines. 
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1. Introduction

In response to the inclusion of future mechanical equip-
ment in global energy policy regulation projects, it is es-
sential to effectively guide domestic industries to promptly 
react to market changes and to establish the energy man-
agement capabilities of domestic companies. Energy man-
agement issues will become one of the key considerations 
in the industry in the future [1]. However, currently, there 
are of the power consumption of various operations of the 
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machine tools. Therefore, it is not possible to develop more 
value-added application services. If the power consump-
tion during the operation of machine tools can be used to 
establish various power consumption histories to differen-
tiate between different processing states and their corre-
sponding processing conditions, it will help in the manage-
ment of power consumption histories and related applica-
tion services, including monitoring services, warning ser-
vices, etc.  

In recent years, with rising electricity prices and in-
creased emphasis on environmental protection, the power 
energy consumption of machines has begun to be 
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incorporated into production scheduling systems, explor-
ing the influence of energy consumption (Bougain, Ger-
hard, Nigischer, & Uĝurlu, 2015) [2]. From a technological 
and economic perspective, using models to predict and 
control short-term energy consumption is also an important 
issue (Filimonova, Kazarinov, & Barbasova, 2015) [3]. For 
electricity efficiency, the prediction of short-term power 
load can be used to manage production capacity and power 
distribution (Soares, Medeiros, 2008) [4]. In the past, 
scholars have also used different forecasting models to pre-
dict power load (Al-Hamadi & Soliman, 2004; Amjady, 
2001) [5][6]. Additionally, accurately predicting daily peak 
power load demand can help power plants maintain stabil-
ity during peak periods (Sigauke & Chijobvu, 2011) [7]. 
By monitoring energy consumption, the transparency of 
the energy use process can be increased, reducing machine 
waste and thereby lowering manufacturing costs. Further-
more, by installing sensors on the machines, machine data 
can be transmitted to the central system through networks 
[8] for storage, calculation, and analysis of energy con-
sumption (Tristo, Bissacco, Lebar, & Valentinčič, 2015) 
[9]. 

In terms of energy consumption management, combin-
ing intelligent energy monitoring systems with wireless 
transceiver smart sockets (ZigBee-Equipped) and using 
portable devices on the Internet, the usage status of the 
equipment and energy anomalies can be monitored to save 
users' energy consumption and achieve real-time monitor-
ing (Shie, Lin, Su, Chem, & Hutahaean, 2014) [10]. In the 
circuit board manufacturing process, an ERM system is 
provided to monitor energy consumption analysis to man-
age and improve energy use efficiency in the manufactur-
ing process (Lee, Ko, & Ku, 2012) [11]. Retailers have set 
up sensors connected to the SMS system to detect external 
temperature, humidity, and other related data for real-time 
monitoring to achieve effective energy control and under-
stand energy waste (Singh, Saini, Sharma, & Trivedi, 
2015) [12]. 

2. Related Work 

2.1. Contract Capacity and Excess Contract 
Additional Fees 

Due to the inability to store electricity, in order to meet the 
electricity demands of users at any time, Tai power must 
plan sufficient power generation and supply equipment 
based on the "contract capacity" applied for by users. To 
prevent users from exceeding the originally applied capac-
ity, which could lead to insufficient supply capacity or line 
damage, affecting the safety of power supply, a regulation 
of "excess contract additional fees" has been established to 
ensure the quality of power usage for all users. For large 
electricity users, Tai power calculates the average power 
consumption of users every 15 minutes. If this average ex-
ceeds the contract capacity, an additional fee must be paid. 

 
 

Figure 1. The method for calculating excess con-
tract additional 

The method for calculating excess contract additional 
fees (illustrated in Figure 1) is as follows: 

(i) For the portion exceeding up to 10%, an additional fee 
is charged at twice the rate. 

(ii) For the portion exceeding beyond 10%, an additional 
fee is charged at three times the rate 

2.2. Optimization of Energy Consumption 
for Machine Tool Components and Produc-
tion Scheduling Module 

The energy consumption required for producing different 
products on different machines varies, and even the energy 
consumption required for producing the same product on 
the same machine is not always consistent. If we can more 
accurately grasp the energy consumption characteristics of 
different product and machine combinations, it will enable 
more effective energy management, reduce the risk of elec-
tricity usage exceeding the contract capacity, and improve 
energy use efficiency. 

2.3. Current Issues in Energy Efficiency 
Analysis Cases 

Due to factors such as machine conditions, operator status, 
and other variables, the energy consumption required to 
produce the same product on different machines may not 
be the same, and consequently, the energy efficiency will 
also vary. As shown in Figure 2, assume that Product A can 
be produced on Machine 1 and Machine 2. The energy con-
sumption for each is represented by the peak value curves 
on the right. The red shaded area under each curve repre-
sents the expected energy consumption required to produce 
the product on that machine. 
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Figure 2. Energy Consumption of the Same Product 
on Different Machines 

Considering the ratio of "energy consumption/produc-
tion output" per unit time as a Key Performance Indicator 
(KPI) for evaluating energy efficiency, this KPI can be 
used to assess the energy usage efficiency of products on 
different machine combinations. This provides decision-
makers with a basis for adjusting schedules to improve the 
energy efficiency of the production line. 

3. Research Objectives and Methods 

3.1. Research Objectives 

The energy consumption required for producing different 
products on different machines varies, and even the energy 
consumption required for producing the same product on 
the same machine is not always consistent. If we can more 
accurately grasp the energy consumption characteristics of 
different product and machine combinations, it will enable 
more effective energy management, reduce the risk of elec-
tricity usage exceeding the contract capacity, and improve 
energy use efficiency. 

To incorporate mechanical processing devices into the 
scope of energy control and enhance the management ca-
pabilities of energy efficiency, this collaborative research 
will develop a "Tool Component Energy Optimization and 
Production Scheduling Module" technology. Through this 
project, we aim to achieve the following objectives: 

• Analyze the stochastic characteristics of energy de-
mand for product and equipment combinations and es-
tablish a stochastic process model for energy demand 
based on this randomness. 

• Use the stochastic energy consumption model to gen-
erate scheduling energy consumption warnings and 
improvement suggestions. 

•  Identify the probability distribution of peak energy 
consumption for different schedules and the occur-
rence time of peak energy consumption. 

• Through the "Peak Energy Consumption Warning 
Function," quickly screen high-risk time points that 
violate energy consumption limits, significantly re-
ducing the probability and frequency of violating 
maximum energy consumption limits. 

3.2 Research and Development Technical 
Framework  

This project will gather energy consumption data by in-
stalling meters and constructing energy consumption sto-
chastic process models. The aim is to understand the en-
ergy consumption information for different products pro-
duced on different machines. A system will be established 
to analyze the relationship between the electricity con-
sumption of processing machines and production products, 
achieving the objectives of "Peak Energy Consumption 
Warning" and "Energy Efficiency Warning. 

The IDEF0 (ICAM DEFinition method) uses graphical 
and structured approaches to clearly and rigorously repre-
sent the functions within a system, as well as the constraints, 
relationships, and interactions between these functions. 
Based on IDEF0, this project designs the research and de-
velopment technical framework as shown in Figure 3. 

 
 

Figure 3. Research and Development Technical 
Framework 

3.3 Collecting Machine Energy Consump-
tion Information 

In this research project, the "PA310 Load Record Power 
Meter" (specifications summarized in Table 1 below) will 
be installed on the machines. The PA310 is designed for 
power monitoring and load investigation in general single-
phase and three-phase systems. Its wide measurement 
range (up to 200A) makes it suitable for general low-volt-
age single-phase and three-phase systems. Additionally, it 
maintains an accuracy of better than 0.5% even at low cur-
rents (below 5A), allowing it to be used in medium and 
high-voltage systems as well. By using the load record 
power meter, the project will record the energy consump-
tion information of products and machines in different 
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combinations and understand the energy consumption 
characteristics of different products in various machine 
production environments 

Table 1. Product Specifications 

 

In this research project, the PA310 Load Record Power 
Meter was used to preliminarily collect energy consump-
tion information from "June 1, 2023, to June 10, 2023 (a 
total of 4 working days), from 08:00 to 23:59 each day." 
The electric load curve graph is shown in Figure 4 below. 

 
 

Figure 4. Electric Load Curve Graph (June 1-4, 
2023) 

3.4 Energy Consumption Model Construc-
tion Module 

Matching Power Load Data with Work Order Data 
To further analyze the energy consumption status of vari-
ous products produced on different machines, it is neces-
sary to match "power load data" with "work order data." 
This study classifies energy consumption information 
based on products and production lines to construct a sin-
gle-machine single-product energy consumption model 
that matches products with machines. 𝐸𝐸𝑖𝑖.𝑗𝑗  represents the 
energy consumption model for production line 𝑖𝑖 producing 
product 𝑗𝑗.(see fig.5) 

 
 

Figure 5. Matching Power Load Data with Work Or-
der Data 

Steps for Constructing the Energy Consumption 
Model 
Step 1: Extract the electricity usage data for a specific prod-
uct produced on a specific machine. 
Step 2: Calculate the average electricity usage every fifteen 
minutes. 
Step 3: Count the number of occurrences of all averages 
falling within each energy consumption interval. 
Step 4: Calculate the probability (PDF) of all averages fall-
ing within each energy consumption interval. 
Step 5: Sequentially accumulate the PDF to calculate the 
cumulative probability (CDF). 

 
 

Figure 5. Flowchart for Constructing the Energy 
Consumption Model 

Energy Consumption Probability Density Func-
tion 
The "Probability Density Function" (PDF) is a function that 
describes the likelihood of a random variable's output value 
falling within a specific range around a certain point. As 
shown by the red dots in Figure 7, this can be expressed as 
Prob{18(kw)<Energy Consumption<19(kw)} =0.17. 

Input Voltage phase voltage 96-418V 
Input Current CT∅10(60A)， Optional CT∅16(100A) CT∅24(200A) 

Auxiliary Power Supply AC~110V/220V 
Rated <0.001 lb 

Frequency 50/60Hz 
Output Wh 

Bidirectional 
Measurement 

kW, kWh, kVAR, kVARh 

kWh Accuracy kWh Accuracy 
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Figure 7. Energy Consumption Probability Density 
Function Graph 

Energy Consumption Cumulative Distribution 
Function 
The "Cumulative Distribution Function" (CDF) is a func-
tion that describes the cumulative probability of a random 
variable's output value being less than or equal to a specific 
point. As shown by the red dots in Figure 8, this can be 
expressed as Prob{Energy Consumption < 26(kw)} = 0.9. 

 
 

Figure 8. Energy Consumption Cumulative Distribu-
tion Function Graph 

Using the electricity consumption data from June 1, 
2023, to June 10, 2023, the machine energy consumption 
probability density function model is constructed as shown 
in Figure 9.  

 
 
 

 
 

Figure 9. Energy Consumption PDF(2023.06.01-
06.04) 

Using the electricity consumption data from June 1, 
2023, to June 4, 2024, the machine energy consumption 
probability density function model is constructed as shown 
in Figure 10. 

 
 

Figure 10. Energy Consumption CDF(2023.06.01-
06.04) 

From Figures 9 and 10, we can observe that: 

• Energy consumption is indeed highly correlated with 
production activities, and there are significant differ-
ences in energy consumption for different production 
activities. 

• There is a high risk of peak energy consumption ex-
ceeding the standard each day. Therefore, if efficient 
management rules can be established, the risk of ex-
ceeding the standard can be greatly reduced. 

• Although the proportion of energy consumption ex-
ceeding 50KW is less than 3%, it results in very high 
excess additional fees. By utilizing a peak energy con-
sumption warning system, it is possible to more effi-
ciently identify schedules with a high risk of exceed-
ing the standard. 
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Convolution 
Convolution has numerous applications in both engineer-
ing and mathematics. In statistics, a weighted moving av-
erage is a type of convolution. In probability theory, the 
probability density function of the sum of two independent 
variables, X and Y, is the convolution of the probability 
density functions of X and Y. In electrical engineering and 
signal processing, the output of any linear system can be 
obtained by convolving the input signal with the system's 
function. In physics, any linear system that follows the 
principle of superposition involves convolution. 

Let X and Y be two independent continuous random var-
iables, with 𝑓𝑓𝑋𝑋(𝑥𝑥) and 𝑓𝑓𝑌𝑌(𝑦𝑦) representing the probability 
density functions of X and Y, respectively, and𝐹𝐹𝑋𝑋(𝑥𝑥) and 
𝐹𝐹𝑌𝑌(𝑦𝑦) representing the cumulative distribution functions of 
X and Y, respectively. Assuming 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌, we have: 

𝐹𝐹𝑍𝑍(𝑡𝑡) = 𝐹𝐹𝑋𝑋+𝑌𝑌(𝑡𝑡) = 𝑝𝑝(𝑋𝑋 + 𝑌𝑌 ≤ 𝑡𝑡) 
 

 = ∬ 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑓𝑓𝑌𝑌(𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑥𝑥+𝑦𝑦≤𝑡𝑡 .                 (1) 

= � � 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑑𝑑𝑥𝑥𝑓𝑓𝑌𝑌(𝑦𝑦)𝑑𝑑𝑦𝑦
𝑡𝑡−𝑦𝑦

−∞

∞

−∞
 

= � 𝐹𝐹𝑋𝑋(𝑡𝑡 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
∞

−∞
 

 
It can be proven that for all 𝑡𝑡 ∈ (−∞,∞), the above inte-
gral exists. As 𝑡𝑡 takes different values, this integral defines 
the cumulative distribution function 𝐹𝐹𝑍𝑍(𝑡𝑡) of Z, which is 
the convolution of the two independent random variables 
X and Y. 

Using convolution, multiple single-machine single-
product energy consumption stochastic process models can 
be summed to obtain the overall total energy consumption 
stochastic process model. An illustration is shown in Figure 
11. 

 
 
 

Figure 11. Illustration of Convolution 

 
 
 
 

4. Simulation 

4.1 Simulation Scheduling 

Based on the electricity load data collected from June 1, 
2023, to June 4, 2023, it can be observed that the continu-
ous production time for each product on the same machine 
ranges from 1 to 4.5 hours. Additionally, it is known that 
this electricity data includes the electricity usage records of 
three products on four production lines. Therefore, this 
study defines two variables, T and P, to generate "simula-
tion scheduling" data in a random manner. 
T~𝑈𝑈𝑈𝑈𝑖𝑖𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈(4,18): The continuous production time for 
each product on the same machine  
P~𝑈𝑈𝑈𝑈𝑖𝑖𝑓𝑓𝑈𝑈𝑈𝑈𝑈𝑈(1,3): Product Number to be Produced 

The system will simultaneously consider the output val-
ues generated by the two random variables, T and P, to pro-
duce the simulation scheduling. For example, if T=10 and 
P=2, it represents "continuously producing product 2 for 
ten intervals," and so on, until all time slots are scheduled. 
The illustration is shown in Figure 12. 

 
 

Figure 12. Simulation Scheduling Illustration 

4.2 Verification Method 

Using the energy consumption stochastic process model 
constructed from the electricity load data collected from 
June 1, 2023, to June 4, 2023, the probability of total 
energy consumption exceeding the contract capacity for 
each simulation schedule in every fifteen-minute interval is 
predicted. The simulation results are further analyzed to 
verify the effectiveness of this energy warning system. The 
structure is shown in Figure 13. 
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Figure 13. Verification Method Structure Diagram 

4.3 Simulation Results 

Under the conditions of a contract capacity of 110 KW and 
a critical probability of 0.99 (the probability that the total 
energy consumption does not exceed the contract capacity), 
the statistical results of 20 repeated simulations are shown 
in Table 2: 
 

Table 2. Simulation Results Statistical 

 

Among them: 

• Accuracy of Warnings: The probability that the sys-
tem provides a warning when the contract capacity is 
exceeded. 

• Type I Error: The probability that the contract capac-
ity is exceeded, but the system does not provide a 
warning. 

• Type II Error: The probability that the contract ca-
pacity is not exceeded, but the system provides a 
warning. 

Each simulation includes the results of "50 working days, 
from 08:00 to 21:00 each day." Among the 20 simulation 
results, the average percentage of exceeding the contract 
capacity is approximately 0.0019. The probability that the 

system correctly provides a warning when the contract ca-
pacity is exceeded is 0.838, while the average Type I and 
Type II errors are 0.162 and 0.316, respectively. 

The simulation results indicate that the peak energy 
consumption warning system can correctly predict more 
than 80% of production activities where the machine 
exceeds the contract capacity. It generates warnings for 
production schedules with peak energy consumption, 
providing a basis for improving the schedule and thus 
reducing the probability that the total energy consumption 
of the production system exceeds the contract capacity. 
This verifies the project's goal of "achieving an 80% 
reduction in the risk of machine tools exceeding the 
contract capacity.  

5. Conclusion 

Currently, the technology for capturing the electricity con-
sumption of machine tools only considers total electricity 
usage data without further analyzing the energy consump-
tion of each operation of the machine tool. As a result, it is 
challenging to develop more value-added application ser-
vices. To overcome the issue of frequent line changes in 
the stamping machine manufacturing industry due to small 
batch production with various products, this project aims to 
establish various energy consumption histories based on 
the electricity usage content of machine tool operations and 
work order data. This approach will analyze the energy 
consumption status of the same product produced on dif-
ferent machines, assisting decision-makers in formulating 
more effective energy management strategies. By analyz-
ing the electricity consumption histories and the electricity 
usage content of machine tools, it can be confirmed that 
energy consumption is indeed highly correlated with pro-
duction activities, and there are significant differences in 
energy consumption for different production activities. If 
the electricity consumption history of each product can be 
understood in advance, it can provide decision-makers with 
references for scheduling planning, allowing high-energy-
consuming production activities to be distributed across 
different time periods. This approach can reduce the overall 
energy consumption demand of the production system, 
lower the contract capacity signed with Taipower, save 
fixed electricity costs, and reduce variable electricity costs, 
ultimately reducing the carbon footprint. 

The tool component energy optimization and production 
scheduling module developed in this project includes the 
"Peak Energy Consumption Warning System" and the "En-
ergy Efficiency Warning System." These systems can gen-
erate warnings for schedules with a high risk of exceeding 
the total energy consumption contract capacity and low 
power usage efficiency. The peak energy consumption 
warning system can accurately predict more than 80% of 
production activities where the machine tools exceed the 
contract capacity. This significantly reduces the chances of 
exceeding the contract capacity, improves the energy 

 
Frequency Frequency Probability of 

Exceedances 
Accuracy of 

Warnings Type I Error Type II Error 

1 3 0.00115 1.0 0 0.333 
2 4 0.00154 1.0 0 0.284 
3 7 0.00269 0.714 0.286 0.239 
4 8 0.00308 0.875 0.125 0.266 
5 3 0.00115 1.0 0 0.32 
6 6 0.00231 0.667 0.333 0.293 
7 1 0.00038 1.0 0 0.315 
8 8 0.00308 0.75 0.25 0.982 
9 2 0.00077 1.0 0 0.328 

10 4 0.00154 1.0 0 0.323 
11 8 0.00308 0.75 0.25 0.295 
12 3 0.00115 0.667 0.333 0.309 
13 6 0.00231 0.667 0.333 0.303 
14 5 0.00192 1.0 0 0.23 
15 4 0.00154 0.5 0.5 0.177 
16 6 0.00231 0.833 0.167 0.256 
17 5 0.00192 1.0 0 0.309 
18 6 0.00231 1.0 0 0.229 
19 9 0.00346 0.667 0.333 0.248 
20 3 0.00115 0.667 0.333 0.289 

Average 5.05 0.00194 0.83785 0.16215 0.3164 
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efficiency of production activities, and reduces the total en-
ergy consumption of the entire plant. 
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