EAI Endorsed Transactions
on Internet of Things Research Article EALEU

Edge Computing for Computer Vision in IoT: Feasibility
and Directions

Panagiotis Savvidis'*, George A. Papakostas!

"Department of Computer Science, Democritus University of Thrace, Kavala 65404, Greece

Abstract

The convergence of decentralized architectures integrating Machine Learning, Computer Vision and Low Power Wide Area
Networks is increasingly becoming an integral part of our daily existence. Internet of Things serves as a real-time data
conduit enhancing decision making via embedded technology and continuous data exchange. This paper explores the
feasibility of Edge Computing as a foundational pillar in this evolving landscape. We experiment under real world, dynamic
conditions, evaluate the technological aspects, strategies, process flows and key observations under the broad Edge
Computing domain. Research pathways include Multi-access Edge topologies in future 6G networks, model quantization,

and satellite-enhanced communication platforms. Additionally, a discussion is added supporting the advanced Al
functionalities, including zero-shot learning, multi modal perception, and decentralized generative Al, thereby broadening
the scope of intelligent applications across various domains. The significance and research objective of this study are
threefold: (1) evaluation of LoRaWAN and satellite [oT communication strategies, (2) analysis of CV workloads on edge
hardware and (3) future research directions where Edge Computing can support low-latency, energy-efficient and socially
impactful [oT applications. By explicitly addressing these aspects, we aim to establish a clear link between the technological
feasibility, ultimately with a practical and socioeconomic relevance.
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1. Introduction
massive [oT data by being consumed at the network edge.

Embedded boards are encapsulating Machine Learning
(ML) and IoT capabilities, smaller in dimensions and more
compute capable. They utilized in a variety of purposes
such as system development, robotics, education and
others. The context of Artificial Intelligence (Al) and Deep
Learning (DL), led the Single Board Computer (SBC)
manufacturers to compete on small dimensions and low
power draw offerings. In telemetry terms and the exception
of Internet Service Providers (ISP), Low Power Wide Area
Networks (LPWAN) adaptations such as Nb-IoT, Sigfox or
LoRaWAN are the obvious evolution. This paper would
provide the empirical evidence through: (i) LoORaWAN
Field testing in urban, suburban, and rural environments
and practice with satellite IoT via TinyGS, (ii)
Benchmarking YOLOvV4 object detection on the Raspberry
Pi 4 and Jetson Nano, measuring inference time, system

EAI Endorsed Transactions on
C Internet of Things
1 | Volume 11| 2025 |

The Internet of Things (IoT) is a global network of physical
nodes that collect and share data. Connecting all these
different objects with the added built-in sensors, enables a
real time communication without involving the human
intervention. Consequently, Edge Computing (EC) is the
focus area where centralized topologies such as cloud and
central servers are reduced from the data processing,
analysis and computation burdens. The raw data produced
by the numerous things can be enormous that could infer
cloud approaches and conventional computing less
efficient to handle [1],[2]. Researchers in [3] are motivated
by the Systematic Literature Review (SLR) to analyze
resource estimation, consolidation, load balancing and
computational offloading methods that define Edge and
Fog topologies. Thereafter, the scope is to address the
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load, and energy consumption (iii) demonstrating the
future directions for multimodal Edge Al model
quantization and highlighting the socioeconomic dynamics
of Edge based CV deployments. To our knowledge, we
demonstrate the first integrated study combining CV
workloads on low power SBCs and LPWAN into a unified
feasibility analysis. By clarifying these objectives, this
study positions itself at the [oT, Al and next generation
networking intersection, contributing on both the academic
discourse and practical designs of future EC systems.
Structuring this work, we unfold in section 2 the baseline
characteristics for EC, in section 3 introduction on
LPWANSs, LoRaWAN metrics, SatloT specifics and a
practical attempt with TinyGS as an extension from [4].
Section 4 is focused on Computer Vision (CV) literature
review, image annotation, datasets, cameras, the
performance evaluation of two SBCs and YoloV4 classifier
performance metrics. Section 5 is dedicated on the
discussion,  implementation  insights, feasibility
considerations and key contributions.

2. Edge Computing Formal Observations
and case studies

A practical example for a decentralized topology is a flying
plane. Among its sensors and other systems an estimated
300 GB generation of data is a typical occurrence [5].
Continuous ground communication or direct satellite data
link is less feasible for economic and practical reasons [6],
but attainable under certain strategies [7]. Vast data can be
processed and stored onboard with aggregated telemetry
towards a ground station. Over the Top (OTT) platforms
can bottleneck centralized topologies, hence the
development of Multi Access Edge topologies (MEC).
These are the cases of service providers moving the
workloads and services towards the network Edge and out
of the core establishments or data centers [8]. A
contribution by [9] on intelligent transportation systems
pertain the feasibility aspects for Edge Al in [oT. The local
and within the field data process will favor latency
reduction, positive impact on the Quality of services (QoS)
and simplification. In [10] computation offloading is
highlighted where Edge-loT nodes will connect the
physical and digital environments that would empower
businesses, add productivity and help for informed
decisions and actions. Authors at [11] portraying the
utilization of demanding Augmented Reality (AR)
applications with EC. The requirement is continuous object
detection in a wide Field of View (FoV) with high frame
rates and latency minimization. EC will in fact strengthen
the overall experience by local computations while
avoiding unnecessary transmissions to the cloud. Authors
at [12] are evaluating strategies to reduce wireless
bandwidth demands for a drone video exchange and live
streams. Another work in [13] gives the insights of Cloud
Computing advantages but highlight that the on-premises
computing is expected to save on management costs if
implemented under an organized Total Cost of Ownership

2 EA

(TCO) approach. Additionally, in [14] the authors compare
the management and processing costs between a Cloud and
hybrid Edge-Cloud approach, monitoring sensors and a
camera feed of a wind farm over the distance of 200 miles.
This comparison showed a 95% data traffic optimization
favoring the hybrid Edge-Cloud proposition with a cost
reduction on the triennial study from 81000$ to 290008, a
% decrease. Similar in [15] and the contribution for smart
home monitoring, the popular Raspberry SBC is utilized
for data analysis and actuation commands by keeping
communication and computation costs low. Another paper
in [16] promotes the maritime EC for ocean digitization,
intelligence and communication expansion cases. Authors
verifying the feasibility of the proposition by the
integration of a Jetson Xavier NX, a camera and sensors to
process and objectify the recognized object. To follow up
we summarize the benefits of EC:

Latency Reduction: where local ML inference enables
fast, responsive decisions. [17].

Cost Reduction: less raw data transmission minimizing
communication expenses. [10].

Privacy & Security: decentralized data handling reduces
leakage risks. [18],[6].

Independent operation: devices can store/manage
decisions even offline.

Sustainability: same hardware reused for multiple
applications. [19].

Agility: rapid prototyping with low-cost, flexible
hardware.

2.1 Edge Computing architecture overview

In general consensus inexpensive SBCs with low power
requirements are introducing EC capabilities regardless of
their limited computational potential. In telemetry terms,
0T is adapted with Nb-IoT, Sigfox and LoRaWAN, Fig 1
depicts the various layers of the concept.

Cloud-Intermet
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Figure 1. Embedded devices contained to the Edge
of the network, communicating with the internet.
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Also, GPU accelerated examples in bibliography are
ensembling this architecture. Traditionally, sensors and
actuators at their core foundation are computationally
incapable, thus they will feed a central decision-making
entity as being the heart of the system. This middle layer
can consist of a field programmable gate array (FPGA), an
SBC or an Application Specific Integrated Circuit (ASIC).
Additionally, utilization of Neural Compute Stick (NCS),
Vision Processing Unit (VPU) and Graphic Processing
Unit (GPU) are accelerating neural computations and real
time Al inference capabilities [20]. Another component of
these platforms is the communication layer of either the
LPWAN or mobile data. The benefit of processing raw data
made by various sensors or cameras in a closed loop offers
the chance of reduced yet significant metadata to be
transmitted. Author at [6] paraphrases the concept as: “In
data abstraction those raw elements are consumed within
the device, hence the human involvement to the data is
minimized but proactive” .

2.1.1 Edge Computing use cases

Computation Offloading (CO): Will be the process of
linking computer intensive tasks and storage to a different
co-processor or to an Edge topology. These architectures
perform communication and computational resources
allocation or load balancing [10]. In [21] they propose
Deep Neural Networks (DNN) offloading strategies to the
Edge on supporting smart IoT.

Smart Home: It is the derivative for smart home
applications with seamless communications and contained
operations focusing on privacy and security. A home with
various connected devices is producing a fair amount of
data, with this paradigm. EdgeOS has been introduced by
utilizing Edge Routers [22].

Smart City: To a much larger extent applications already
serve urban, suburban and rural areas producing
intimidating volumes of big data. As IoT integrates
infrastructures such as smart utility meters, Intelligent
Transportation Systems (ITS), healthcare, public safety,
and farming, Edge topology can mitigate these loads from
centralized infrastructures.

Collaborative Edge Computing (CEC): This is an ad hoc
style communication to facilitate collaboration of multiple
EC hosts for the purpose of data sharing across
geographically distributed heterogeneous devices [23].
Referred to as early information exchange systems between
nearby Edge stations. This technique can resemble the
Cloud operation on a smaller scale, thus inheriting some of
its drawbacks through the cost of data transmission.
Industrial Analytics: Data leverage from sensors,
machines and other connected devices will improve
efficiency, and predict potential issues before they occur.
By applying advanced analytics techniques such as ML and
Al to industrial data, organizations can gain valuable
insights that drive decision-making. Overall, edge analytics
can help businesses save money, while also improving the
quality of their analytical models [24].
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Edge Al: By combining EC and Al, we reach another
subject and purpose. They bring analysis, computation and
decision making closer to the data sources. Silicon on Chip
(SoC) manufacturers are developing newer designs,
enabling system engineers to perform Al and ML tasks in
the network edge.

Beyond these generalized cases, a real-world deployment
by [25], showcases the significance of EC as it aims to
protect farming crops. The prototype is designed to
function as an intelligent animal repelling system that
recognize wild nature species. The system's functionality is
enabled by Raspberry, or a Jetson Nano and Yolo CV
algorithm. For serving the rural communication purposes
LoRaWAN and Xbee radio were the most suitable
solutions between the SBC and the sensors.

Table 1. Edge and Cloud characteristics

Edge Cloud Computing
Computing

Decentralized- Centralized
Local

Architecture

Data Processing Directly from Away of the source

the source
Latency Minimized High
Connectivity Various High speed internet
Requirements protocols-

LPWAN
Computing Low High
capabilities
Naturalization- Growing High
Infrastructure
Analysis Short term Long term
Cost/Data Lower Higher
throughput
Energy Better Inferior
efficiency
Privacy-Prone to  Better Inferior

cyber attack

2.1.2 Challenges in Edge Computing

Due to the nature of heterogeneous computing platforms,
maintenance, revision and troubleshooting in the
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remoteness of the nodes becomes a complex task, the need
of unique device identifiers for logistical purposes is
crucial for that matter. Standardization of different
communication interfaces and devices is a prerequisite.
The lack of technical proficient personnel to release
changes and overcome the technical barriers or
complexities is also an issue. Based on observations
gathered under the broad EC term, a work by [26] outlines
the performance metrics on Edge and Cloud. As previously
discussed, each of the specified approaches are based on
certain application criteria. An argument arises about the
inversion performance issue for Edge Computing. It
describes the high queuing delays endured in Edge
topology caused by the less potent hardware on the end-to-
end comparison with the cloud for moderate loads.
Performance metrics between the two paradigms had been
compared using queuing models in order to bring a
common ground on the latencies for different workloads.
While a moderate portion of EC implementations might not
utilize broadband communications or having on par
hardware capabilities, a direct comparison might not be
justified. The advantages of Edge architecture are not
reflected due to generalization of dispersed Cloudlets and
Micro datacenter applications. With that notion a cloudlet
defines computation offloading, where in fact Edge is the
basis of keeping the load decentralized. The reported mean
and tail latency for Edge applications in moderate loads
should be scaled proportionally for both architectures.
Another study in [27] proposing the methodologies
towards the sustainability of medium sized EC
deployments and a use case for Advanced Driver
Assistance Systems (ADAS). Indicative is the Power
Usage Effectiveness (PUE) for EC, deviating from the
cloud farm index respectively. Energy efficiency and
collaborative orchestration are the strategies to leverage
any implications that dense EC collocated solutions are
inherent to. By summarizing, Edge and Cloud solutions
aren’t challenging each other, but deployable propositions
for organizations and developers to identify the needs, cost
requirements and assessing what works the best.

3. LPWAN options

Researching the IoT communication spectrum between
the end nodes, we dedicating the following comparison
(Table 2) on different LPWANs and LoRaWAN [28].
Sigfox excels in energy efficiency but with limited
capacity, NB-IoT benefits from LTE infrastructure at
higher power costs [29], and IEEE 802.15.4 offers
reliability but with a short range [30]. In our opinion,
LoRaWAN strikes the balance between long range
coverage, low energy draw, moderate data rates and easy
integration. From the developer standpoint, multitude of
resources are available for experimenting. These make
LoRaWAN a popular choice for various IoT deployments.
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Table 2. Characteristics of common LPWAN options

Sigfox

1 Un-licensed
ISM bands-
868, 915
MHz and 433
MHz

2D-BPSK

3100 Hz

4100 bps

512 bytes
uplink, 8
bytes
downlink

6 140 uplinks,

4 downlink

710 km
(urban), 40
km (rural)

s High

o High

14 ETSI

LoRaWAN

Un-licensed
ISM bands-
868, 915
MHz and 433
MHz

CSss
250 kHz and
125 kHz

50 kbps

222 bytes

30 seconds
of uplink per
device

5 km (urban),
20 km (rural)

Low

High on
Class A-Low
in Class C
Yes

Low

AES 128b
Yes

LoRa-
Alliance

NB-IoT

Licensed
LTE bands

QPSK

200 kHz

200 kbps

1600 bytes

Unlimited

1 km
(urban), 10
km (rural)
Low

Low

No
Moderate
LTE
encryption

No

3GPP

IEEE 802.15.4

Un-licensed
ISM bands-
868 MHz,
915 MHz
(low band)
and 2.4 GHz
(high band)

BPSK/ O-
QPSK

2 MHz high
band

250kbps
(2.4GHz)

127 bytes

Unlimited

10-75m,
1000m in
LOS
High

High

No

High

AES 128b

No

IEEE

1.Physical layer (PHY), 2. Modulation, 3. Bandwidth, 4.
Maximum data rate, 5. Maximum payload length, 6. Maximum
messages-daily, 7. Range, 8. Interference, 9. Latency, 10.
Adaptive data rate, 11. Energy Drawn, 12. Authentication, 13.
Private network, 14. Standardization.
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3.1 Background on LoRaWAN

Is a networking protocol enabling long-range (in rural and
LOS) transmissions of more than 15km. The gateways
relaying messages between the end nodes and network
servers in RF traffic and IP packets respectively targeting
wireless battery-operated things Fig 2. The things or nodes
are referred to literature as Wireless Sensor Networks
(WSN). They listen and forward broadcasts in a license free
sub-Gigahertz RF with bands like 433, 868, 915, 470 and
923 MHz’s.
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Figure 2. LoRaWAN Architecture

Lora is a modulation method based on Chirp Spread
Spectrum (CSS). It stands for Compressed High Intensity
Radar Pulse, a signal whose frequency increases or
decreases over time. Advantages of CSS radio modulation
is interference resilience, a good link budget and low power
characteristics. The physical layer of LoRa consists of
preamble up chirps, frame delimiter down chirps and the
varying length up chirps that represent the data, Fig 3.

S up-ﬁchirp 5

fiow i i , time
e . down:-chirp

erter -

fiew

Figure 3. The chirp spread spectrum
modulation technique

A, B or C are class definitions for the downlink receive
windows intervals, an A device class strives for efficiency
by receiving the downlink after an uplink before a sleep
state. On the contrary the lowest latency is reserved to class
C devices and an open receiver state, a mode for non-
battery-operated nodes.

Adaptive Data Rate (ADR) is the mechanism that
assesses the available SNR margin to increase the data rate.
The mechanism adjusts the spreading factor, transmission
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power and bandwidth values that benefits the airtime and
energy consumption.

Spreading Factor (SF) relates to the number of chips to
represent a symbol with an exponential factor of 25F = 1
symbol. More chips lead to a wider distance signal reach
and gain but with longer airtime. SF7 holds 128 where
SF12 4096 chirps per symbol.

Code Rate (CR) on a low SF setting will retain additional
redundancy with a Forward Error Correction (FEC), a
strategy towards link interferences. Other adjustable Data
Rate indices are the bandwidth (BW) in kHz and
transmission (TX) power in dBm.

Table 3. SF to airtime comparison based on 11
bytes plus the overhead payload

SF7B SF8B SF9B SF10B  SF11B  SF12B
Wi125  WI25  WI25  WI125 WI125 W125

61.7 113.2 2058 370.7 8233 1.482
ms ms ms ms ms ms

3.1.1 LPWAN metrics methodology

With this assessment urban, suburban and rural
environments behavior are examined. For the tests four
gateways are utilized, with C and D being within the urban
environment while in the city outskirts the gateways B and
A, in Fig 4.

symvol s 7/
TnuRokA =

Figure 4. The 4 gateways along with the 27 test
spots (blue pushpins) and 9 rural test spots (red

push pins)

An academic contribution in [31] concludes that
LoRaWAN reliable communications are based on strategic
placement of the Ground Stations (GS). A key feature to
base conclusions is the SF potential in different test spots.
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With SF we can directly determine the network coverage,
blind spots and indicate energy demands as a derivative of
payload airtime. Inside this airtime envelope an optimized
duty cycle of the radio links is regulated.

3.1.2 Urban and suburban communications

The green overlaid polygon from Fig 4 covers an area of
143.75 km? and is defined as the radio link quality
evaluation for urban and suburban areas. The blue pins are
the test spots and assessed on the Received Signal Strength
Indicator (RSSI) and Signal to Noise Ratio (SNR) at
various SF modes. For urban and suburban environments
RSSI and SNR were at their best levels at (-87dBm and
12,5 dBm) with their worst at (-126dBm and -14dBm)
respectively. With all the SF values from 27 test spots a
mean performance of (-110dBm and 1.44dBm) for RSSI
and SNR was obtained. Worth mentioning that multicast
uplinks are possible, where the same payload can be
listened to by 3 stations with values shown on Table 4.

Table 4. A multicast reception example

Gateway ID RSSI@SF10 SNR@SF10

D/B/A -126/-112/-90 -14/-125/8.5

Out of the 3 stations D received a weak uplink and A had
the best reception.

SF integrity among 27 urban and suburban test spots

Figure 5. Prevalence of SF modes on urban and
suburban environments.

Fig 5 above shows the complete coverage on SF modes 12,
11 and 10, attributed from the high radio sensitivity and the
longer chirp durations. In modes 9, 8 and 7 some stations
will lose broadcasts caused by the urban density and test
spots distance. In next Fig 6 we depict the most utilized
gateway from 131 broadcasts among different locations
and SF modes. Station A takes the majority of listening
ability with 103 of them, while the rest are received by the
other stations and A simultaneously.

< EAI

Station listening ability among 27 spots

Figure 6. Base station activity among all broadcasts.

This concludes that a higher elevated GS at 1426 ft ASL
plays a considerable role to intercept most of the end node
broadcasts [32]. The portion of this field experiment was
conducted with the end node operating inside a car interior
without an outside mounted antenna. Relatively this affects
the receiving ability at various SF modes and RSSI and
SNR level inaccuracies on the end results.

3.1.3 Rural communications

Another area to commit radio link quality evaluation
derives on the red-circled area shown in Fig 4 and the red
push pins. The defined rural area extends on a radius of
15,05 km with the Gateway A as the center point and an
approximate effective area of 350 km2. On those A-I test
spots we accomplished 21 successful payload
transmissions at various modes with a mean SF usage of
11,04 and upwards. It proved that SF12 mode can
successfully be used for the 100% of all broadcasts, while
modes 11, 10 and 9 offer partial potential. In SF modes 8
and 7 no gateway had the ability to listen to the end node
with the percentages to be shown on the following Fig 7.

SF % mode integrity among rural broadcasts

SF12

SF70%—, SF12100% BSHL

B SF10

SF80% _—__ \ A
= \ BSE
' | SF1166% ‘ S8

SF7

Figure 7. Spreading factor ratio for rural areas with
percentages on total broadcasts.

EAI Endorsed Transactions on
Internet of Things
| Volume 1112025 |



Edge Computing for Computer Vision in loT: Feasibility and Directions

The mean performance for RSSI and SNR in rural areas is
in the range of (-117dBm and -5.45dBm). RSSI holds a
negative value and is measured in dBm with values closer
to 0 depicting signal robustness. High SF levels pose higher
receiver sensitivity than lower ones, hence further the
distance they can cover. LoRa SNR span between -20 and
+25 dBm where anything > 0 means that the RSSI values
are above the noise floor and the signal is less corrupted
from interference. A link can be considered good when the
RSSI > -115dBm and SNR > -7dBm. The end nodes we
evaluated are the RAK811 and Ai-Thinker RA-08H with
sensitivities of -130dBm and -138dBm respectively. Table
5 shows radio metrics among all evaluated areas.

Table 5. Radio metrics among different locations

Solid SF  Partial SF potential ~ avg
potential (%)

o RSSI/SNR

) dBm
Urban- 12,11, 9(70%), 8 (66%), -110/1.44
Suburban 10 7 (48%)

(100%)
Rural 12 11 (66%), 10 -117/-5.45

(100%) (44%), 9 (22%), 8
& 7 modes (0%)

3.2 Satellite

Rounding the communications spectrum, no protocol
neither a terrestrial LPWAN is immune for lack of
infrastructure or infinite range [33]. For example, a sensor
node meant to be serving locations such as forests,
uninhabited pieces of land or undeveloped countries will
face challenges for data transmission and reception.
Researchers at [34] are emphasizing the broadened IoT
connectivity prospect via Satellites. Low Earth Orbit
(LEO) constellations can integrate data relay functions
over terrestrial ones. Satellites are classified by their mass
and orbit on low, medium and Geosynchronous Equatorial
Orbit (GEO) classes. The survey analyzes the challenges
and communication protocols with Direct-to-Satellite
(DtS-IoT) topology. They suggest Lora and NB-IoT are
among the most widely spread protocols summarizing
them as a viable solution with multiple use cases. Notable
additions are the LEO CubeSats in which academic
institutions are  developing them for various
experimentation and communication purposes and made
on mainstream and commercial off the shelf components.
Manufacturers and project base entities that offer IoT space
and mission expertise are FOSSA, Newspace Systems,
Lacuna, Sateliot, Libre Space Foundation and SatNOGS
Network. Another study on [35] specifically is exploring
the signal propagation integrity at 433 MHz frequency
spectrum and examines the LEO satellite ability to serve as
a LoRaWAN gateway from ground data collection nodes
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in areas lacking internet connectivity. Although this is a
theoretical study between the Slant range of an object and
the Free Space Path Loss (FSPL) calculation, they achieved
a theorem of the signal reach to space. Their
experimentations consist of a RAK2245 LoRaWAN
gateway, SX1278 end nodes and artificial attenuators to
simulate the path loss. So, each attenuation level was
examined for RSSI and SNR values. This proved that a
transmitted signal towards space can reach a distance of
2700 km, much further of a CubeSat at an altitude of 550
km. They add that this experimentation needs additional
work for the complete uplink and downlink study of the
payload to the ground stations. In [36] they reinforce the
notion for Extreme Edge Computing with Sat-IoT
applications.

3.2.1 LPWAN satellite communications and use
cases

Environmental and remote area monitoring:
Researchers can deploy IoT nodes in remote areas to
monitor conditions such as weather patterns, water and air
quality. Satellite communications enable the nodes to
transmit sensor data back to a central server for analysis.
Precision Agriculture: Farmers can benefit with IoT
technology by monitoring soil moisture levels, temperature
and other phenotypic parameters in their orchards. Satellite
connectivity ensures that data can be collected even in
areas with poor terrestrial network coverage.

Asset Tracking: Companies can track their assets status
such as containers or equipment, using IoT devices
connectivity. Satellite communication allows for real-time
tracking across vast distances, even in remote locations.

Figure 8. Depiction of SatloT [37]

3.2.2 Time delay sensitive services

For countless loT applications and end nodes, listening to
terrestrial GS is the de facto occurrence for uplink
communications. In different scenarios if conventional
methods are non-existent due to lack of infrastructure,
satellites can be the only communication option. A satellite
has a unique term for temporal resolution also known as
repetition rate, this is the orbit time interval over the same
area and ranges from 14 days to 15 minutes based on the
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satellite type [38]. This leads to an important consideration
whether a reception delay can be overlooked or is crucial
for an intendent scenario. loT Delay Tolerant Applications
[39] or (DTA) are characterized by the requirement of
continuous network connectivity with a tolerance delay
ranging from milliseconds to several seconds. Controlling
remote assets with SatloT can be successfully utilized in
various industries as this integration offer numerous
benefits for environmental or agriculture monitoring which
do not demand strict latency requirements and are possible
to function within a tolerable delay. On the other hand,
Time Delay Sensitive services or (DSAs) discerned as to
those of real time monitoring significance, for example a
critical infrastructure will require multiple redundancies.
Delay sensitive applications for autonomous vehicles, or
industrial automation will demand communication links
with latency guarantees. Additionally existing upper layer
protocols need to be redesigned to support these
applications effectively [40]. Various studies are exploring
Medium Access Control (MAC) protocols and resource
allocation mechanisms for satellite aided IoT networks to
meet the requirements of delay sensitive applications. They
assess the conformity of current MAC and upper layer
protocols for DtS-IoT communications especially in
disaster management scenarios due to the sort transmit
opportunity window affecting non-Geostationary satellites
or LEO’s with the susceptibility to Doppler effect [41].
Some of the key findings from these studies include:

e Existing MAC protocols such as Aloha and Slotted
Aloha have been evaluated for satellite aided IoT networks,
found to be inefficient due to high collision rates and
limited access opportunities.

o Time Division Multiple Access (TDMA) has shown
promise in reducing collisions and increasing efficiency for
satellite aided IoT networks, particularly in scenarios
where multiple nodes need to access the satellite
simultaneously.

e Dynamic resource allocation mechanisms based on
channel conditions and traffic patterns have been proposed
to optimize resource utilization and improve overall
network performance.

e Hybrid approaches combining multiple MAC protocols
have been proposed to address the challenges of satellite
aided IoT networks, such as the combination of TDMA and
Carrier Sense Multiple Access (CSMA) to improve
efficiency and reduce latency.

e Future research directions include the development of
cross-layer design approaches that jointly optimize MAC,
routing, and transport protocols for satellite-aided IoT
networks meeting the needs of delay-sensitive applications.

3.2.3 Doppler effect

In a recent academic source [42], authors investigate the
multiple parameters affecting the Lora DtS links regarding
the Doppler effect in the LEO framework. In DtS scenarios
the frequency shift is attributed by the rapid satellite
movement. Physics behind it are the vehicle elevation
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angles in regards to the ground station, leading to reduced
visibility intervals on low altitudes. The static and dynamic
doppler would account for packet losses and hindered
demodulation as these will introduce variability between
the transmitted and received node frequency. Among these
PHY frequencies, the 433MHz spectrum is preferred over
the 868MHz due to interference immunity. Whether is a
feasible concept apart from the technical challenges, the
statistical point of view dictates a growth in active LPWAN
enabled LEOs. A study in [43] sheds light on the high
immunity of Lora modulation on DtS-IoT for SF modes <
11 and bandwidth > 62.5 kHz.

3.2.4 A practical attempt

To understand the DtS concepts we operated the TinyGS
network [44]. Lora enabled ground stations are distributed
globally and operated by ESP32 embedded boards running
specialized firmware. The purpose of TinyGS is to develop
communication means with satellites and flying weather
probes with small and versatile devices. This can be the
foundation for broadened expertise beyond the terrestrial
LoRaWAN and IoT gateways towards DtS
communications by the public. The device we operated is
the Heltec wireless stick V3, connected to a dipole
antenna. Both the end node and the antenna are tuned on
using the 400 to 436 MHz spectrum. In the following Fig 9
we see a coverage radius of approximately 1500 km, which
in theory serves an area of 7 million square kilometers from
a single LEO satellite. In Fig 10 we see various LEO
satellite interval transmission footprints.
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Figure 9. LEO position and theoretical cover radius

EAI Endorsed Transactions on
Internet of Things
| Volume 1112025 |



Edge Computing for Computer Vision in loT: Feasibility and Directions

< R _geriniana
+ / \ e righ e \ o

& GaoFen-24

D TimO: 1715702415318
Distance: 2524 Km
Elevation: 8.38%

) Azimuth: 91.87°

_____ RSSI: -120 dBm

Ul SNR: -12.75 dB

t Freq error: 4673 Hz

Tan

ity Ak

Nigeria south'Sudan AIT&S

Oirgall s Soomaaliya

| 1000 km | e
Figure 10. SatloT Tx towards our ground station

From the GaoFen-24 LEO recurrent transmissions in Fig
10, a track of the first payload was picked above northern
Saudi Arabia with the last on the southern part of Caspian
Sea. The covered distance of 1360 km with a LEO speed
of 7,55 km/sec gave 90 km Tx intervals with a 3-minute
window of opportunity for Tx and Rx.

Station Name Distance Elevation L' Time
ZpandraZ 2578 Km A3 19:00:30.189
RSSI SNR Predicted Frequency Error
-119dBm  -12dB DETpIEF 5029.75 Hz
-4854.13 Hz

Figure 11. Ground station statistics

The information on Fig 11 above depicts the frequency
error as an offset between the expected to the altered
received packet frequency. Predicted doppler is the
calculated frequency drift due the elevation and speed of
the satellite. Although a very important aspect here is the
absence of an uplink capability from a TinyGS node to a
LEO and downlink the way the traditional LoRaWAN
gateway listens. The lack of full duplex communication
from the overhead LEO gateways hinders the expansion
scheme for public experimentations. In conclusion,
Satellite IoT and LoRaWAN technologies play a crucial
role in the advancement of EC by extending connectivity
to remote and inaccessible areas.

4. Computer Vision

Applied CV in robotics and other disciplines enable image
acquisition to directly trigger actuation and provide
recommendations in various scenarios. Fig 12 shows a
typical ML object detection algorithm flowchart.
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Figure 12. A typical CV system employing detection
and classification

BUTTERFLY

The aim is to detect spatial patterns, defects, contaminants
and other cases using various recognition algorithms. The
term CV in [45] is examining 2 definitions. First the
biological scope of an interdisciplinary science that aims at
computational models influenced from human visual
perception and second the engineering scope of aids that
perform or outperform the human vision. State of the art
CV systems extract their data in 2D or 3D based on single
or multiple cameras, streaming sources or data acquisition
from numerical and symbolic representations. Collectively
CV plays a crucial role in tasks such as object recognition,
image registration, and visual tracking. Researchers in [46]
proposed an autonomous Edge architecture CV system for
precision agriculture. Farm biotic stress is calculated as a
matter of crop yield reduction with further attention on the
continuous detection of pests. They are utilizing 3 different
ML classifiers such as MobileNetV2, LeNet and VGG16
to process captured images of insects inside pheromone
traps in the heart of an orchard. Author’s prime direction is
to ensure that the EC implementation operating reliable and
unattended. Second, if these ML algorithms are the right
candidates for the limited resource embedded devices and
third, if the proposition has viable operating characteristics
with solar energy. They discuss that manual analysis from
humans on pest counting and recognition taken out of
digital images can be slow and error prone and the use of
Convolutional Neural Network (CNN) utilized in Edge
topology can overcome and normalize these limitations. In
the context of Single Shot Detectors (SSD) and towards
their performance bias over accuracy, in [47] authors
developing a fast reaction badminton playing robot. Ball
size and high-speed shuttlecock can be a prime example for
a CV system to handle, especially on an embedded device.
They assume that deep Yolo based network suffers from
inadequate spatial information on the deeper layers and
proposing the need of increased receptive fields from first
layers with the use of appropriate kernels. Thus, they
reduce the number of parameters without increasing the
computational cost. The proposed lightweight RFSOD was
tested on a Jetson Nano and achieved 30fps by the reused
feature maps.
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4 1 CV Datasets, Annotation and Camera

A dedicated dataset is a collection of images or videos that
will train and test a CV algorithm performance. Popular
CV datasets are the MNIST, CIFAR-10 and ImageNet. For
reference the COCO dataset contains 80 classes and 1.5
million annotated objects. Our hybrid dataset includes
images from, The Apple Benchmark [48], the Minne Apple
[49] and pictures taken on a local apple orchard. The
preprocessing was conducted using 14 mini-batches,
considering pose, time and lighting characteristics, picture
exposures and variations among apples. The sum consists
of 302 apple images and 27 additional blanks / negatives.
These negatives include lemons, pomegranates and
tomatoes, items that resemble apples in detection due to
color and shape. With this approach the 329 images, 2 class
dataset generated 49809 annotated objects with a share of
71.74% on apples and the rest 28.26% for bad apples. The
ground truth objects were density based as they could differ
per image (11 minimum to 817 maximum). The dataset
size is relative. For example, training a network that aims
to recognize objects in a controlled environment with a
fixed mounted camera will require a moderate amount of
annotated data. On the contrary medium and high variable
environments such as plantations are considered those
which will require a bigger dataset of a few hundreds to
thousands of image samples. Also, to reduce the algorithm
bias on certain classes, homogenization and grouping
should occur. Further annotation is the bounding boxes
creation with their respective coordinates and associated
classes in Fig 13.

i ©,0)

480px

(0, 480)

Figure 13. Annotation of an object, Yolo requires the
center x, y pixel values. [50]

These tasks were evaluated by Labellmg [51] and CVAT
image annotation tool [52], in Fig 14.
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Figure 14. Annotation and class registration

Other types of algorithms utilize different approaches and
no local annotations. The examples in Fig 15,16 and 17
show the different masking processes where image
classification is implemented by various pre-processing
techniques. PlantCV, a phenotyping library incorporates
Gaussian blur, ROI (Region of Interest) and object analysis
to extract leaf disease attributes. The key deriving features
from the Kaggle Grapevine Disease Dataset are utilized to
train a CNN that consists of 4 classes: Black Rot, ESCA,
Leaf Blight and Healthy grape leaves [53].
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il a
Figures 15. 16. 17. respectively on Gaussian Blur,
ROI and Object Analysis Masks on grape leaves.

The camera as a fundamental element of any CV system
has different form factors. A close distance between the
camera and the subject requires different resolution to a
hoovering UAV above an orchard, as more effective pixels
and lens physics will help the identification and overall
spatial perception. A review from [54] discussing yield
prediction and fruit estimation methods for precision
agriculture on different optics implemented in computer
and machine vision. In our example currently, a higher
resolution would identify smaller objects with the cost of
higher inference time. We assessed the OV5647 SMP for
Raspberry Pi4 and the Sony IMX219 8MP sensor for the
Jetson Nano.

Figure 18. How image saturation, brightness and
exposure levels affect the detection

By altering saturation, brightness or exposure levels we can
emulate different optic sensors behavior. Fig 18 above
shows the three subsequent image snaps of the OV5647
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sensor and the varying detection results. To fully
comprehend this in the next Fig 19 we used a IMX682
16MP sensor on the same angle with a slightly different
distance. As such CV applications based on uncontrollable
environments will require conditional sensor mounting
point and image normalization techniques as angle
distance, light and sensor variation will lead to inconsistent
detections.

Figure 19. Different angles and distance.

4.2 Performance comparison between 2
SBC platforms and Energy Drawn

Raspberry Pi model 4B is the core platform and Darknet is
the experimental framework for YoloV4 SSD. With that
said the inference intensive tasks are solely use CPU time.
To this extent we investigate the possibilities and
differences with a Jetson Nano 2gb version featuring a
GPU for faster parallel neural calculations.

e RPi has better I/O performance than the Jetson on
loading weight files, due the newer architecture of the
A72 Arm CPU.

e Jetson even with the reduced 1I/O lag, has a significant
performance gain at 29.93, with RPi at 91.29sec
inference time, attributed to its GPU.

e Both platforms use the Kingston Canvas Go Plus
64GB A2 performance rating.

e RPi memory usage is 183mb at idle, 1.45gb@576 and
1.6gb@608 during inference. It has a better ram
management than the Jetson equivalent.

e Jetson Nano memory usage is 240mb at idle in
headless mode and 450 with the GUI enabled, while at
inference maxes its ram at 1.9gb and 1.1gb swap.

EAI Endorsed Transactions on
Internet of Things
| Volume 1112025 |



P. Savvidis, G.A Papakostas

Table 6. Performance comparison in Yolo v4
inference between 3 different platforms
15" 240b ram  Jetson Nano  Raspberry Pi 4B
laptop with 2gb Ram + 4gb Ram
GTX1650 +4gb  Swap file
VRAM gpu
Startto  5.39sec@608x 57.62sec?, 98.30 sec@
finish 608° 46.64sec*  608x608°
script’ @608x608 85.04sec@
576x5765
NN 4.06sec 18.84sec?, 7.01sec@
loading 16.71sec*  608x608°
2 6.77sec@
576x5765
Inferenc  1.33sec@608x 38.78sec’, 91.29sec@
etime  608° 29.93sec*  608x608°
only? @608x608 78.27sec@
5 576x5765

1. Elapsed time from start to end of the script comprised on the
Neural Network (NN) layers loading and the actual inference
time. 2. I/O loading time, less time shows a strong performance
between the CPU, the storage controller, NVme or SD random
disc access performance. 3. Shows the GPU neural engine
performance. These metrics are usually in FPS or in sec. 4. For
the Jetson Nano 2GB only we tested both GUI and headless setup.
Through Secure Shell Protocol (SSH) we disabled the desktop
GUI to spare crucial RAM during inference. With this there is a
22 % speed improvement. 5. Network size / input resolution.

The following Table 7 demonstrates various subtasks such
as the 1/0 load, inference, data parse, LoORaWAN uplink
and the reception on a frontend Ul. Commercial level SBC
implement slow eMMC storage options which hinders their
full potential.

Table 7. Subtask time factors, energy draw

704/
Jetson

608/
Jetson
Image

snap & NN
load

Yolo
Inference

Data
parse/Lora
/Ul display

Total Time
Energy

Inference
draw

Energy
per

inference
ratio?

Result
1. Higher value shows efficiency (% 1073). 2. ADQT Adequate
3. MRGL Marginal

Energy draw estimations for the RPi at peak CPU time
during inference is P(w) = 1.1amp x 5V equaling to 5.5W.
To measure the Wh in different network configurations
then 0.21Wh would be consumed for 138", 0.139Wh for
91" and 0.119Wh for 78" seconds respectively.
Alternatively, in the 10W Jetson Nano the power draw will
be 0.2Wh for 72" and 0.083Wh for 30" seconds inference
time. High I/O time for the 704-network size in Jetson is
attributed from the limited 2gb ram and slow swap file. The
energy per inference ratio label above in Table 7, assumes
that high computation availability on low demand
applications is a waste of resources. At the same time,
calculating the power draw for LoRaWAN uplinks,
instantaneous load spikes of 50-100 mAh between SF
modes 7 to 12 were detected. These noticeable fluctuations
in theory dictating the power demands especially on the
battery operated [oT implementations. It is clear that the
Jetson Nano outperforms RPi significantly in inference as
it is 3 times faster (30" vs 91" at 608x608 network size)
and in energy almost 1.67 times lower. All along it means
that latency tolerant implementations such as precision
agriculture or infrastructure inspection can remain viable
on either platform, though with safety critical cases such as
traffic incident detection and others, GPU enabled Edge
nodes with latency mitigation analysis is imposed.

4.3 CV Metrics and field behavior

Certain metrics are employed in data sciences to assess the
trained algorithm. Precision defines the correct predictions
as a ratio of true positives (TP) divided by the combined
TP and false positives (FP), Recall is the proportion of TP
to the total sum of TP and false negatives (FN). Both can
be raised proportionally in an optimal model. The concept
of IoU in Fig 20 represents the intersection area of the
predicted bounding box (red) over the union which
corresponds to the actual ground truth (green). With a 0.5
threshold our TP derives after an overlap of half the ground
truth and above as a confidence factor. If we lower this
threshold then more samples will be identified as TP
improving recall and precision scores.
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Figure 20. The concept of loU

YoloV4 will be validated on a 20% of unseen data of the
original dataset. In the following Table 8 the best achieved
batch identified as the 3700@329 with 0.76 precision, 0.65
recall and 0.70 f7 value. The latter shows the robustness
against other training iterations as a harmonic mean
between precision and recall. In simple terms the lower it
gets is indicative of model imbalance among the basic CV
metrics.

Table 8. Final training iteration trials on Precision,
Recall and f1 metrics.

Iterations Precisi Recall fl AP good mAP@0.5

#images on apples
704x704!

2°@3293 0.64 0.69 0.67 73.95% 62.21%

32@329° 0.77 0.57 0.65 75.01% 63.53%

3,77@329° 0.76 0.65 0.70 74.23% 65.52%

42@3293 0.79 0.56 0.65 74.42% 62.76%

1. Network Size. 2. Training Iterations * 1000 / Max Batches. 3.
Dataset size

To homogenise both metrics a precision and recall curve at
varying IoU confidence thresholds is employed. The
following action will plot all (x,y) metric values towards an
optimal point. Fig 21 graph depicts the confidence
thresholds starting at 0.13 on the left edge of the orange
curve in 0.01 increments up to 0.8 on the right edge. This
reveals that the Euclidean distance from (1,1) towards the
curve intersecting the optimal threshold. A fairly robust
model that operates in stable environment conditions
would expect minimal class imbalances hence the precision
and recall curve should be closer to (1,1). Exact coordinates
for Precision (x) = 0.7 and Recall (y) = 0.7 intersects the

< EAI

optimal threshold of (z) = 0.15, also in 3-dimensional
depiction in Fig 22. CV metrics balance are of particular
importance and relevant in the IoT scenarios were
transmitting fewer but reliable positives is preferable than
to send large volumes of uncertain data over constrained
networks. The findings highlight the feasibility but
underlining the need for a larger annotated dataset, the
proportionality we discussed in the 4.1 section.

Optimal Threshold PR curve

1.0

0.8

0.6 1

Recall

0.4 1

0.2 7

0.0 T T T T
0.0 0.2 0.4 0.6 0.8

Precision

Figure 21. 2d conf_thresh

0.80
Precision

0.75

Figure 22. 3d conf_thresh

Based on where our model currently operates in, setting the
ToU confidence threshold will cope with crop occlusions
from tree branches and leaves. In this case FP objects
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become TP due to this predefined threshold and detect
actual crops, Fig 23.

§ Y

Figure 23. How the trained algorithm detects good
and bad apples on frames.

Recent papers resonating our work focus while
emphasizing the relevance of augmented CV within the
IoT contexts. In [55], a modality fusion vision transformer
is proposed for collaborative hyperspectral and LiDAR
classification, demonstrating that multimodal architectures
are achieving high accuracy. With further efficiency
improvements the principle can align with the EC based
fusion strategies. In [56], the RSEE framework is
introduced to jointly optimize video resolution selection
and conditional early exiting validated in a Jetson Nano
SBC. The significance of this work is founded with the
reduced computational cost while maintaining recognition
performance and is directly applicable to real time vision
processing on the resource constrained EC deployments.
Additionally, authors in [57] exploring a multimodal fusion
framework integrating RFID and CV monitoring human
exercise, demonstrating that a combination of visual and
non-visual sensing is enhancing IoT applications where
communication and energy efficiency are critical.

5. Discussion

Object detection models can face specific difficulties over
accuracy and robustness. Factors such as data limitations,
hardware or software constraints play a significant role.
Specifically, the performance in regards to detection and
classification will certainly be influenced by the defined
strategies and dataset quality remains the backbone.
Additionally, the model architecture for a specific domain
is crucial. For example, SSDs have weaknesses on very
small objects while fine-grained information such as plant
phenotypes will require specific segmentation techniques.
To ensure optimal operation, the deployed model should be
analyzed, scrutinized and refined. Furthermore, a model
may encounter difficulties in adapting to novel or complex
user inputs emphasizing the necessity of post deployment
evaluation, sensor sensitivity and the camera placement are
one the dependence factors that will complement a fine-
tuned CV algorithm.

< EAI
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For LoRaWAN, the three case studies lead to multiple
conclusions. The node configuration and gateway strategic
location are indices that influence data relay performance.
Similarly, antenna gain is of pivotal importance. More
specifically a stationary device correctly tuned, transmitted
all the intended uplinks on the urban and suburban
conditions of a flat provincial city - 3.1.2. On rural
communications now due to further distances the operation
was similar but the ground morphology hindrance can
essentially affect data relay. As we noted, higher SF that
led to longer air time can relatively tackle factors such as
signal absorption, refraction or lack of LOS. The
experiments prove its purpose as a resilient mean for
remote sensing applications where small data, distance
coverage, flexibility, scalability and power consumption
are the requirements.

Regarding security, EC deployments are inherently less
prone on privacy risks and attacks due to the distributed
nature of the devices that reduce the single point of failure
and interception chances. Also, the minimal data
transmission will be less desirable for DDoS attacks. For

maintaining trust and resilience, robust identity
authentications and different safeguard measures should be
employed.

The empirical evaluation of the two commercially
available SBCs reveals that low-power platforms when
combined with lightweight DL models can serve as viable
edge inference actors. Primarily for latency tolerant
decision-making applications. Last, scalability can remain
a challenge as resource-constrained edge devices may
struggle to maintain responsiveness when deployed at a
higher scale. Hybrid edge-cloud frameworks though with
lightweight protocols can sustain the service quality.

5.1 Feasibility considerations

The evolution of 6G technology hitting the markets by the
end of this decade will enhance connectivity and
computing capabilities. European Telecommunications
Standards Institute (ETSI) segregates Edge Computing as
an overarching term and MEC as an evolution for mobile
communications. Current dense terrestrial networks can be
in favour of low latency IoT but in difficult areas and dead
zones the data uplink may be problematic. The future
architecture of MEC in 6G networks [58], [59] is
envisioned to incorporate various wireless communication
platforms. LEO satellites, High Altitude (HAP) and Low
Altitude Platforms (LAP) are potential candidates for
complementing terrestrial communication infrastructure.
MEC integration enables the network to provide a range of
services, including communication, storage, computing,
and management. The versatility, flexibility, and
manoeuvrability of UAVs have garnered attention in the
context of UAV enabled MEC networks. This is a strong
indication that the academic community and industry will
dedicate resources to promote ultra-reliable and extended
coverage EC propositions. Object detection and
classification is a relevant area where feasibility aspects are
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examined. The following work from [60] comments on the
visual perception differences between a human and CV
systems specifically on visual illusions. Principally, human
perception is a multifaceted process that involves the
combination of various visual cues such as colour, texture,
motion, depth and context. In contrast CV systems
typically rely on the analysis of specific visual features,
neglecting the rich contextual information that is inherent
to human perception. This case, features the development
of sophisticated CV models that can capture the visual
distinctions and complexities as human experiences. The
context of intelligent systems that can process and analyse
multi modal information uniformly rely on the ability to
extract and synthesize multidimensional data. To facilitate
the decision making on these systems, an intermediate
mechanism is necessary. The survey in [61] focuses on a
key challenge to extract visual, textual, and other
representative attributes from multiple data streams and
distribute them into a common representation space known
as Multimodal Al The success is driven by the availability
of large, widely usable data sets, powerful computing
resources, and high-quality feature representations.
However, the open research challenge is to strengthen the
correlations through robust models and select the optimal
fusion schemes.

5.1.1 Where does this feasibility study lead to?

Answering to what this feasibility study acts upon on has a
multi-dimensional approach. Technologically; innovative
EC systems in their ability catering many use cases on
varying levels of maturity. They are characterized by their
scalability and low latency characteristics where data
collection is obtained from scattered IoT or imaging
sensors. A useful roadmap by [62] examining large model
quantization can deliver effective deployments on smart
cities, autonomous vehicles, industrial automation and
healthcare. In socioeconomic planning; EC can offer
various services especially in rural areas and developing
countries where the pervasive issue of internet access
exists. Precision agriculture can be utilized efficiently with
these services in hunger and undernourishment
communities on the emerging issue of global food security
[63]. The following publication [64] offers a
comprehensive technical analysis for the economic
opportunities and environmental benefits associated with
the shift towards EC within the EU markets. Al and ML
integration at the edge represents a significant innovation
in the digital transformation that leads to the creation of
new business models. The study also focuses on the
importance of LPWAN and satellite networks while
concluding Edge Al computation rather than in the cloud
computing yields more accurate results and enhances the
efficiency of Al algorithms. In the evolution phase; the
transition between the current Legacy Al to the integration
of Generative Al models for decentralized based entities is
taking place. Google Al studio and Nvidia Metropolis
Microservices are examples where the interaction among
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visual and contextual representation is taking place. These
services are enhanced Edge to Cloud integrations, with pre-
trained models on different modalities based on internet
scale data to reason unseen classes. Zero Shot Object
Detection (ZSOD) in [65] and Visual Language Models
(VLM) represent distinct areas of Al where the explicit
labelled training data is not a requirement and the
integration of cross modal reasoning respectively to link
visual and textual information will both enhance object
detection tasks. The following work by [66] examining the
cases on tuning Large Language Models (LLM) by
inducting visual inputs and integrate them into a Visual
Language (VILA) that can be deployed on the Edge of the
Network with a Jetson Orin platform. What is certain,
semiconductor manufacturers are committing into the EC
sphere and develop Al Processing Units (AIPU) designed
for scaled edge inference workloads, for low power
mobility applications or for workstation class systems [67].
Additionally, the following paper [68] highlights how
scaled Gen Al systems leveraging Edge-Cloud computing
can solve current infrastructure challenges more effectively
by combining local and remote computing resources
(offloading) to reduce latency and handle more requests.

5.2 Contribution of this Paper

This work contributes to the fields of Edge Computing
and Computer Vision in IoT through the following:

Feasibility ~Analysis: Empirically evaluates CV
workloads, highlighting latencies, energy consumption,
and inference trade-offs.

Communication Strategies: Assesses LoRaWAN
scenarios while demonstrating the satellite IoT concept
again with presentable metrics as a complementary
communication mean that can support the distributed and
remote CV deployments.

Integration Pathways: Identifies how the emerging
technologies such as MEC in 6G, multimodal AI and
generative Al can extend the scalability and importance of
edge-based CV systems.

Socioeconomic Relevance: Citing the potential impact of
edge-enabled CV for precision agriculture, smart cities,
environmental monitoring or industrial automation based
on the resource constrained implementations and remote
environments.

Future Directions: The covered interdisciplinary sources
direct the research toward imaging and telecommunication
aspects involving LEO, HAP, and LAP satellites to enable
multimodal and generative Al at the edge. These
developments will broaden the impact of CV in IoT.

6. Conclusions

The empirical findings of this study confirm the technical
feasibility of Computer Vision (CV) within the Internet of
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Things (IoT) ecosystems. Evaluations are focused on three
latency pillars: (1) the image acquisition and NN load time,
(2) the DL inference duration and (3) the data parse and
relay. Based on the measurements in Tables 6 and 7 the
system I/O loading times span between 7 to 61 seconds,
while the inference duration spanned between 30 and 138
seconds among the two platforms. Table 3 further
demonstrates the uplink airtime ranged between 60 ms to 1
& ' seconds attributed from SF and payload sizes. The
experimentation use case for precision agriculture achieved
encouraging results on important CV metrics: 0.76 on
precision, 0.65 on recall and 0.70 on f7-score by using a
modest-sized dataset. The robustness of the detection
results is further enhanced by applying a confidence
threshold, particularly under the dynamic occluded
environments in an apple orchard. Computation
availability under EC regimes is optimized using attributes
such as the energy-per-inference ratio. This metric helps
developers balance resource utilization with sustainability
goals. On the communication spectrum, LoRaWAN
demonstrates reliability in uplinks over extended distances,
proving its utility in remote sensing applications. The
findings support the protocol use alongside EC for scalable,
energy-efficient deployments in various domains. A
forward-looking discussion on Satellite IoT (SatloT)
emphasizes the relevance in the battery operated and
geographically dispersed deployments. The broader
implications of this study validate the real-world system
behaviour, demonstrating the suitability for remote sensing
applications where near real time response is sufficient.
Further standardization as being addressed in 2.1.2, play a
pivotal role to ensure the interoperability across edge-lIoT
ecosystems. Efforts by ETSI (MEC specifications), IEEE
(particularly for LPWAN and IEEE 802.15.4) and 3GPP
(for NB-IoT and upcoming 6G) provide different
frameworks for streamlining those protocols, interfaces,
and data formats. Multimodal and generative Al at the edge
highlights an emerging paradigm where intelligent systems
are deployed locally to offer improved responsiveness. As
advancements in hardware will continue to evolve with
hybrid cloud models, the role of EC will support digital
transformation, sustainability, and socioeconomic impact,
positioning it as a cornerstone in future of IoT and Al-
powered systems.
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