Small-area Fingerprint Recognition Based on Improved ORB Algorithm in Embedded Environment
DOI:
https://doi.org/10.4108/eetiot.v7i27.297Keywords:
Fingerprint recognition, Internet of thing, ORB, Feature point extraction and matching, Feature fusionAbstract
Most of the fingerprint matching algorithms were proposed for large area fingerprints, which can hardly work effectively in small-area fingerprints. In this work, an improved ORB algorithm is proposed for small-area fingerprint matching in embedded mobile devices. In feature descriptor design, we analyzed the characters of the fingerprint in the embedded mobile devices and discard the multi-scale feature process to reduce the amount of operations. Moreover, we proposed a fusion descriptor combing LBP and rBRIEF descriptor. In the key point matching process, we proposed a two-step (coarse and fine) matching method by using Hamming distance and cosine similarity, respectively. The experimental results show that the proposed method has a rejection rate of 6.4%, a false recognition rate of 0.1%, and an average matching time of 58ms. It can effectively improve the performance of small-area fingerprint matching and meet the application requirements of embedded mobile device authentication.
Downloads
References
Ranade S , Rosenfeld A . Point pattern matching by relaxation[J]. Pattern Recognition, 1980, 12(4):269-275. DOI: https://doi.org/10.1016/0031-3203(80)90067-9
Stockman G , Kopstein S , Benett S . Matching Images to Models for Registration and Object Detection via Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(3):229-241. DOI: https://doi.org/10.1109/TPAMI.1982.4767240
Zhu E, Yin JP, Zhang GM. A fingerprint matching method based on multiple reference nodes[J]. Computer Research and Development, 2005, 42(10):7. DOI: https://doi.org/10.1360/crad20051014
Liu H-Y, Liu Shu-Q, Ye Miao, et al. Fingerprint matching algorithm based on line pattern[J]. Computer Engineering and Design, 2017, 38(12):7.
M Tico. Fingerprint recognition using wavelet features.[J]. IEEE Intl.symp.on Circuits & Systems Sydney Nsw Australia, 2001, 2.
Fernandez-Saavedra B , Sanchez-Reillo R , Ros-Gomez R , et al. Small fingerprint scanners used in mobile devices: the impact on biometric performance[J]. Iet Biometrics, 2016, 5(1):28-36. DOI: https://doi.org/10.1049/iet-bmt.2015.0018
Ratha, Nalini K , Karu, et al. A real-time matching system for large fingerprint databases.[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1996. DOI: https://doi.org/10.1109/34.531800
Gul S , Memon S , Naz B . Image Registration Model For Remote Sensing Images[J]. EAI Endorsed Transactions on Internet of Things, 2018, 4(16):159333. DOI: https://doi.org/10.4108/eai.21-12-2018.159333
Bay H , Tuytelaars T , Gool L V . SURF: Speeded up robust features[C]// Proceedings of the 9th European conference on Computer Vision - Volume Part I. Springer-Verlag, 2006. DOI: https://doi.org/10.1007/11744023_32
Viswanathan D G . Features from Accelerated Segment Test (FAST).
Rublee E , Rabaud V , Konolige K , et al. ORB: an efficient alternative to SIFT or SURF[C]// IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011. IEEE, 2011. DOI: https://doi.org/10.1109/ICCV.2011.6126544
Ojala T , Pietikainen M , Maenpaa T . Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2002:971-987. DOI: https://doi.org/10.1109/TPAMI.2002.1017623
J Martínez-Bernal, Valencia-Bucio M A , Villarreal R H . Generalized Hamming weights of projective Reed–Muller-type codes over graphs[J]. Discrete Mathematics, 2019, 343(1):111639. DOI: https://doi.org/10.1016/j.disc.2019.111639
Yang G , Zhao X , Fan G . A modification on the vector cosine algorithm of Similarity Analysis for improved discriminative capacity and its application to the quality control of Magnoliae Flos.[J]. Journal of Chromatography A, 2017:34. DOI: https://doi.org/10.1016/j.chroma.2017.08.033
Maltoni D , Maio D , Jain A , et al. Handbook of Fingerprint Recognition[J]. Ch Synthetic Fingerprint Generation, 2005, 33(5-6):1314.
Hou Shuwei, Guo Baolong. A fast algorithm for automatic image stitching [J]. Computer Engineering, 2005, 31(15):3.
Chen, Zijia. Research on face recognition algorithm based on Android [D]. Ningbo University.
Li S.H., Xie C.M., Jia Y.Z., et al. Fast target detection algorithm based on ORB features[J]. Journal of Electronic Measurement and Instrumentation, 2013, 27(5):6. DOI: https://doi.org/10.3724/SP.J.1187.2013.00455
Burt P J , Adelson E H . The Laplacian Pyramid as a Compact Image Code[J]. Readings in Computer Vision, 1987, 31(4):671-679. DOI: https://doi.org/10.1016/B978-0-08-051581-6.50065-9
Song JF, Wen J. A review of image feature point descriptors [J]. Small and Medium Enterprise Management and Technology, 2016(21):2.
Calonder M , Lepetit V , Strecha C , et al. BRIEF: Binary Robust Independent Elementary Features[C]// European Conference on Computer Vision. Springer, Berlin, Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-15561-1_56
Wei W.L., Tan L.N., Lu L.B., et al. ORB-LBP feature matching algorithm with fused descriptors[J]. Electro-Optics and Control, 2020, 27(6):7.
Maesschalck R D , D Jouan-Rimbaud, Massart D L. The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1):1-18. DOI: https://doi.org/10.1016/S0169-7439(99)00047-7
J. A. Núez, Cincotta P M , Wachlin F C . Information entropy[J]. Celestial Mechanics & Dynamical Astronomy, 1996, 64(1-2):43-53. DOI: https://doi.org/10.1007/BF00051604
Cheng Y, Zhu WK, Xu GW. Improved ORB matching algorithm based on cosine similarity [J]. Journal of Tianjin University of Technology, 2021, 40(1):7.
Zhang S , Qi T , Huang Q , et al. USB: ultrashort binary descriptor for fast visual matching and retrieval.[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2014, 23(8):3671. DOI: https://doi.org/10.1109/TIP.2014.2330794
FAN Wenbo. Research on small area fingerprint recognition technology based on Android system [D]. Xi'an University of Science and Technology.
T.T. Wang. Small-Area Fingerprint Image Recognition and Matching Algorithm[D]. Xi'an University of Electronic Science and Technology, 2020.
Abro M , Talpur S , Soomro N , et al. Shape Based Image Retrieval Using Fused Features[J]. EAI Endorsed Transactions on Internet of Things, 2018, 5(17):159916. DOI: https://doi.org/10.4108/eai.31-10-2018.159916
Yang C , Zhou J . A comparative study of combining multiple enrolled samples for fingerprint verification[J]. Pattern Recognition, 2006, 39(11):2115-2130. DOI: https://doi.org/10.1016/j.patcog.2006.05.008
Liang K. Research and implementation of ARM-based small-size fingerprint recognition system.
Danielsson P E . Euclidean distance mapping[J]. Computer Graphics and Image Processing, 1980, 14( 3):227-248. DOI: https://doi.org/10.1016/0146-664X(80)90054-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 EAI Endorsed Transactions on Internet of Things
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
Funding data
-
Scientific Research Foundation of Hunan Provincial Education Department
Grant numbers 21B0833