Enhancing Agricultural Sustainability with Deep Learning: A Case Study of Cauliflower Disease Classification
DOI:
https://doi.org/10.4108/eetiot.4834Keywords:
Biotechnology, classification, clinical microbiology, food production, Amoeba, Euglena, Hydra, Paramecium, Rod bacteria, Spherical bacteria, Yeast, SVM, Random Forest, KNN, CNNAbstract
The pivotal role of sustainable agriculture in ensuring food security and nurturing healthy farming communities is undeniable. Among the numerous challenges encountered in this domain, one key hurdle is the early detection and effective treatment of diseases impacting crops, specifically cauliflower.This research provides an in-depth exploration of the use of advanced DL algorithms to perform efficient identification and classification of cauliflower diseases. The study employed and scrutinized four leading DL models: EfficientNetB3, DenseNet121, VGG19 CNN, and ResNet50, assessing their capabilities based on the accuracy of disease detection.The investigation revealed a standout performer, the EfficientNetB3 model, which demonstrated an exceptional accuracy rate of 98%. The remaining models also displayed commendable performance, with DenseNet121 and VGG19 CNN attaining accuracy rates of 81% and 84%, respectively, while ResNet50 trailed at 78%. The noteworthy performance of the EfficientNetB3 model is indicative of its vast potential to contribute to agricultural sustainability. Its ability to detect and classify cauliflower diseases accurately and promptly allows for early interventions, reducing the risk of extensive crop damage.This study contributes valuable insights to the expanding field of DL applications in agriculture. These findings are expected to guide the development of advanced agricultural monitoring systems and decision-support tools, ultimately fostering a more sustainable and productive agricultural landscape.
Downloads
References
Kalia, P., Saha, P., & Ray, S. (2017). Development of RAPD and ISSR derived SCAR markers linked to Xca1Bo gene conferring resistance to black rot disease in cauliflower (Brassica oleracea var. botrytis L.). Euphytica, 213(10), 1. https://doi.org/10.1007/s10681-017-2025-y DOI: https://doi.org/10.1007/s10681-017-2025-y
Cai, H., Wang, L., Mu, W., Wan, Q., Wei, W., Davis, R. E., Chen, H., & Zhao, Y. (2016). Multilocus genotyping of a 'Candidatus Phytoplasma aurantifolia'-related strain associated with cauliflower phyllody disease in China. Annals of Applied Biology, 169(1), 64–74. https://doi.org/10.1111/aab.12281
Aksoy, H. M., Ozturk, M., & Tufan, S. (2018). First report on Xanthomonas campestris pv. campestris causing bacterial black rot disease of cauliflower in Turkey. Journal of Plant Pathology, 100(1), 141–141. https://doi.org/10.1007/s42161-018-0030-1 DOI: https://doi.org/10.1007/s42161-018-0030-1
Sharma, B. B., Kalia, P., Singh, D., & Sharma, T. R. (2017). Introgression of Black Rot Resistance from Brassica carinata to Cauliflower ( Brassica oleracea botrytis Group) through Embryo Rescue. Frontiers in Plant Science, 8, 1255–1255. https://doi.org/10.3389/fpls.2017.01255 DOI: https://doi.org/10.3389/fpls.2017.01255
Gogoi, R., Kulanthaivel, S., Rai, S. N., & Ahuja, D. B. (2016). Leaf rot disease of cauliflower caused by Choanephora cucurbitarum in India. Australasian Plant Disease Notes, 11(1). https://doi.org/10.1007/s13314-016-0214-5 DOI: https://doi.org/10.1007/s13314-016-0214-5
Sara, U., Rajbongshi, A., Shakil, R., Akter, B., & Uddin, M. S. (2022). VegNet: An organized dataset of cauliflower disease for a sustainable agro-based automation system. Data in Brief, 43, 108422–108422. https://doi.org/10.1016/j.dib.2022.108422 DOI: https://doi.org/10.1016/j.dib.2022.108422
Deep, S., Sharma, P., Behera, N., & Chowdappa, P. (2014). Diversity in Indian Isolates of Alternaria brassicicola (Schwein) Wiltshire Causing Black Leaf Spot Disease in Cauliflower. Plant Pathology Journal, 13(4), 232–245. https://doi.org/10.3923/ppj.2014.232.245 DOI: https://doi.org/10.3923/ppj.2014.232.245
Rappussi, M. C. C., Eckstein, B., Flôres, D., Haas, I. C. R., Amorim, L., & Bedendo, I. P. (2012). Cauliflower stunt associated with a phytoplasma of subgroup 16SrIII-J and the spatial pattern of disease. European Journal of Plant Pathology, 133(4), 829–840. https://doi.org/10.1007/s10658-012-0004-7 DOI: https://doi.org/10.1007/s10658-012-0004-7
Doszpoly, A., Tarján, Z. L., Glávits, R., Müller, T., & Benkő, M. (2014). Full genome sequence of a novel circo-like virus detected in an adult European eel Anguilla anguilla showing signs of cauliflower disease. Diseases of Aquatic Organisms, 109(2), 107–115. https://doi.org/10.3354/dao02730 DOI: https://doi.org/10.3354/dao02730
Verma, A., & Singh, Y. (2018). Inheritance of downy mildew resistance and its relationship with biochemical traits in cauliflower (Brassica oleracea L. var. botrytis). Crop Protection, 106, 132–138. https://doi.org/10.1016/j.cropro.2017.12.024 DOI: https://doi.org/10.1016/j.cropro.2017.12.024
Kesharwani, A. K., Kulshreshtha, A., Singh, R. P., Srivastava, A., Avasthi, A. S., & Kaur, B. (2023). First Report of Tobacco Rattle Virus Infecting Brassica oleracea var. botrytis (Cauliflower) in India. Plant Disease, 107(4). https://doi.org/10.1094/PDIS-08-22-1853-PDN DOI: https://doi.org/10.1094/PDIS-08-22-1853-PDN
Doumayrou, J., Leblaye, S., Froissart, R., & Michalakis, Y. (2013). Reduction of leaf area and symptom severity as proxies of disease-induced plant mortality: The example of the Cauliflower mosaic virus infecting two Brassicaceae hosts. Virus Research, 176(1-2), 91–100. https://doi.org/10.1016/j.virusres.2013.05.008 DOI: https://doi.org/10.1016/j.virusres.2013.05.008
Inturrisi, F. C., Barbetti, M. J., Tirnaz, S., Patel, D. A., Edwards, D., & Batley, J. (2021). Molecular characterization of disease resistance in Brassica juncea – The current status and the way forward. Plant Pathology, 70(1), 13–34. https://doi.org/10.1111/ppa.13277 DOI: https://doi.org/10.1111/ppa.13277
Cai, H., Wang, L., Mu, W., Wan, Q., Wei, W., Davis, R. E., Chen, H., & Zhao, Y. (2016). Multilocus genotyping of a ‘ Candidatus P hytoplasma aurantifolia’‐related strain associated with cauliflower phyllody disease in C hina. Annals of Applied Biology, 169(1), 64–74. https://doi.org/10.1111/aab.12281 DOI: https://doi.org/10.1111/aab.12281
Postma, J., Scheper, R. W. ., & Schilder, M. . (2010). Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil. Soil Biology & Biochemistry, 42(5), 804–812. https://doi.org/10.1016/j.soilbio.2010.01.017 DOI: https://doi.org/10.1016/j.soilbio.2010.01.017
Saha, P., Kalia, P., Sonah, H., Sharma, T. R., & Chevre, A. ‐. (2014). Molecular mapping of black rot resistance locus Xca1bo on chromosome 3 in Indian cauliflower (Brassica oleracea var. botrytis L.). Plant Breeding, 133(2), 268–274. https://doi.org/10.1111/pbr.12152 DOI: https://doi.org/10.1111/pbr.12152
Shaw, R. K., Shen, Y., Zhao, Z., Sheng, X., Wang, J., Yu, H., & Gu, H. (2021). Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower (Brassica oleracea var. botrytis L.). Frontiers in Plant Science, 12, 667757–667757. https://doi.org/10.3389/fpls.2021.667757 DOI: https://doi.org/10.3389/fpls.2021.667757
Canale, M. C., & Bedendo, I. P. (2013). 'Candidatus Phytoplasma brasiliense' (16SrXV-A Subgroup) Associated with Cauliflower Displaying Stunt Symptoms in Brazil. Plant Disease, 97(3), 419–419. https://doi.org/10.1094/PDIS-09-12-0874-PDN DOI: https://doi.org/10.1094/PDIS-09-12-0874-PDN
Pereira, T. B. C., Dally, E. L., Davis, R. E., Banzato, T. C., Galvão, S. R., & Bedendo, I. P. (2016). Cauliflower is a New Host of a Subgroup 16SrVII-B Phytoplasma Associated with Stunting Disease in Brazil. Plant Disease, 100(5), 1007–1007. https://doi.org/10.1094/PDIS-09-15-1110-PDN DOI: https://doi.org/10.1094/PDIS-09-15-1110-PDN
Faruk, M., & Rahman, M. (2018). Management of cauliflower seedling disease (Sclerotium rolfsii) in seedbed with different substrate based Trichoderma harzianum Bio-fungicides. Bangladesh Journal of Agricultural Research, 42(4), 609–620. https://doi.org/10.3329/bjar.v42i4.35789 DOI: https://doi.org/10.3329/bjar.v42i4.35789
Valvi, H. T., Kadam, J. J., & Bangar, V. R. (2019). Isolation, Pathogenicity and Effect of Different Culture Media on Growth and Sporulation of Alternaria brassicae (berk.) Sacc. causing Alternaria Leaf Spot Disease in Cauliflower. International Journal of Current Microbiology and Applied Sciences, 8(4), 1900–1910. https://doi.org/10.20546/ijcmas.2019.804.223 DOI: https://doi.org/10.20546/ijcmas.2019.804.223
Jiang, H., Song, W., Li, A., Yang, X., & Sun, D. (2011). Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Molecular Biology Reports, 38(1), 621–629. https://doi.org/10.1007/s11033-010-0148-5 DOI: https://doi.org/10.1007/s11033-010-0148-5
Hii, G., Pennington, R., Hartson, S., Taylor, C. D., Lartey, R., Williams, A., Lewis, D., & Melcher, U. (2002). Isolate-specific synergy in disease symptoms between cauliflower mosaic and turnip vein-clearing viruses. Archives of Virology, 147(7), 1371–1384. https://doi.org/10.1007/s00705-002-0812-8 DOI: https://doi.org/10.1007/s00705-002-0812-8
Tremblay, N., Bélec, C., Coulombe, J., & Godin, C. (2005). Evaluation of calcium cyanamide and liming for control of clubroot disease in cauliflower. Crop Protection, 24(9), 798–803. https://doi.org/10.1016/j.cropro.2004.12.013 DOI: https://doi.org/10.1016/j.cropro.2004.12.013
Chable, V., Rival, A., Beulé, T., Jahier, J., Eber, F., Cadot, V., Boulineau, F., Salmon, A., Bellis, H., & Manzanares-Dauleux, M. J. (2009). “Aberrant” plants in cauliflower: 2. Aneuploidy and global DNA methylation. Euphytica, 170(3), 275–287. https://doi.org/10.1007/s10681-009-9978-4 DOI: https://doi.org/10.1007/s10681-009-9978-4
Dilorenzo, G., Telegrafo, M., Marano, G., De Ceglie, M., Stabile Ianora, A. A., Angelelli, G., & Moschetta, M. (2016). Uremic lung: The “calcified cauliflower” sign in the end stage renal disease. Respiratory Medicine Case Reports, 19, 159–161. https://doi.org/10.1016/j.rmcr.2016.10.003 DOI: https://doi.org/10.1016/j.rmcr.2016.10.003
dosSantos, C. A., Nelson Moura Brasil doAmaral Sobrinho, Evandro Silva Pereira Costa, Caio Soares Diniz, & Margarida Goréte Ferreira doCarmo. (2017). Liming and biofungicide for the control of clubroot in cauliflower. Pesquisa Agropecuária Tropical, 47(3), 303–311. https://doi.org/10.1590/1983-40632016v4746936 DOI: https://doi.org/10.1590/1983-40632016v4746936
Koike, S. ., Kammeijer, K., Bull, C. ., & O'Brien, D. (2006). First Report of Bacterial Blight of Romanesco Cauliflower (Brassica oleracea var. botrytis) Caused by Pseudomonas syringae pv. alisalensis in California. Plant Disease, 90(12), 1551–1551. https://doi.org/10.1094/PD-90-1551B DOI: https://doi.org/10.1094/PD-90-1551B
Kundu, P. K., & Nandi, B. (1985). Control of Rhizoctonia disease of cauliflower by competitive inhibition of the pathogen using organic amendments in soil. Plant and Soil, 83(3), 357–362. https://doi.org/10.1007/BF02184447 DOI: https://doi.org/10.1007/BF02184447
França, S. C., Spiessens, K., Pollet, S., Debode, J., De Rooster, L., Callens, D., & Höfte, M. (2013). Population dynamics of Verticillium species in cauliflower fields: Influence of crop rotation, debris removal and ryegrass incorporation. Crop Protection, 54, 134–141. https://doi.org/10.1016/j.cropro.2013.08.008 DOI: https://doi.org/10.1016/j.cropro.2013.08.008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Internet of Things
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 3.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.