RETRACTED ARTICLE: Monitoring of operational conditions of fuel cells by using machine learning

Authors

  • Andip Babanrao Shrote MIT ADT University
  • K Kiran Kumar Chalapathi Institute of Engineering and Technology
  • Chamandeep Kaur Jazan University image/svg+xml
  • Mohammed Saleh Al Ansari University of Bahrain image/svg+xml
  • Pallavi Singh Graphic Era University image/svg+xml
  • Bramah Hazela Amity University image/svg+xml
  • Madhu G C Mohan Babu University

DOI:

https://doi.org/10.4108/eetiot.5377

Keywords:

Testing data, Fuel cell, Performance, AIML

Abstract

This article has been retracted at the request of our research integrity team. You can find the retraction notice at the following link https://doi.org/10.4108/eetiot.7176

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

References

Adithya Legala, Jian Zhao, Xianguo Li, Machine learning modeling for proton exchange membrane fuel cell performance, Energy and AI, Volume 10, 2022, 100183, ISSN 2666-5468,https://doi.org/10.1016/j.egyai.2022.100183. (https://www.sciencedirect.com/science/article/pii/S2666546822000325) DOI: https://doi.org/10.1016/j.egyai.2022.100183

Klass, Lukas and Kabza, Alexander and Sehnke, Frank and Strecker, Katharina and Hölzle, Markus, Lifelong Performance Monitoring of Pem Fuel Cells Using Machine Learning Models. Available at SSRN: https://ssrn.com/abstract=4162772 or http://dx.doi.org/10.2139/ssrn.4162772 DOI: https://doi.org/10.2139/ssrn.4162772

Ke Sun, Iñaki Esnaola, Okechukwu Okorie, Fiona Charnley, Mariale Moreno, Ashutosh Tiwari, Data-driven modelling and monitoring of fuel cell performance, International Journal of Hydrogen Energy, Volume 46, Issue 66, 2021, Pages 33206-33217, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2021.05.210. DOI: https://doi.org/10.1016/j.ijhydene.2021.05.210

Derbeli, M.; Napoli, C.; Barambones, O. Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System. Mathematics 2021, 9, 2068. https://doi.org/10.3390/math9172068 DOI: https://doi.org/10.3390/math9172068

Fayyazi, M.; Sardar, P.; Thomas, S.I.; Daghigh, R.; Jamali, A.; Esch, T.; Kemper, H.; Langari, R.; Khayyam, H. Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles. Sustainability 2023, 15, 5249. https://doi.org/10.3390/su15065249 DOI: https://doi.org/10.3390/su15065249

Amogh Gyaneshwar et al 2022 Eng. Res. Express 4 022001 DOI 10.1088/2631-8695/ac5fd9 DOI: https://doi.org/10.1088/2631-8695/ac5fd9

Ogaji, Stephen & Singh, Rishika & Pilidis, P. & Diacakis, Minas. (2006). Modelling fuel cell performance using artificial intelligence. Journal of Power Sources. 154. 192-197. 10.1016/j.jpowsour.2005.03.226. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.226

Lin, Rongheng & Xi, Xue-Nan & Wang, Pei-Nan & Wu, Bu-Dan & Tian, Shi-Ming. (2018). Review on hydrogen fuel cell condition monitoring and prediction methods. International Journal of Hydrogen Energy. 44. 10.1016/j.ijhydene.2018.09.085. DOI: https://doi.org/10.1016/j.ijhydene.2018.09.085

Hegazy Rezk, Abdul Ghani Olabi, Mohammad Ali Abdelkareem, Enas Taha Sayed, Boosting the power density of two‐chamber microbial fuel cell: Modeling and optimization, International Journal of Energy Research, 10.1002/er.8589, 46, 15, (20975-20984), (2022). DOI: https://doi.org/10.1002/er.8589

S. Dhanya, S. Anand Hareendran; Validation of the optimum parameter for 500W PEM fuel cell using machine learning tool WEKA. AIP Conference Proceedings 26 March 2021; 2336 (1): 040027. https://doi.org/10.1063/5.0045981 DOI: https://doi.org/10.1063/5.0045981

Li Jiawen, Li Yaping, Yu Tao, Temperature Control of Proton Exchange Membrane Fuel Cell Based on Machine Learning, Frontiers in Energy Research, VOLUME 9, 2021, ISSN-2296-598X,10.3389/fenrg.2021.763099 DOI: https://doi.org/10.3389/fenrg.2021.763099

Wang, Y.D., Meyer, Q., Tang, K. et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning. Nat Commun 14, 745 (2023). https://doi.org/10.1038/s41467-023-35973-8 DOI: https://doi.org/10.1038/s41467-023-35973-8

José-Luis Casteleiro-Roca, Antonio Javier Barragán, Francisca Segura, José Luis Calvo-Rolle, José Manuel Andújar, "Fuel Cell Output Current Prediction with a Hybrid Intelligent System", Complexity, vol. 2019, Article ID 6317270, 10 pages, 2019. https://doi.org/10.1155/2019/6317270 DOI: https://doi.org/10.1155/2019/6317270

Chunheng Zhao, Yi Li, Matthew Wessner, Chinmay Rathod, Pierluigi Pisu, Annual Conference of the PHM Society: Vol. 12 No. 1 (2020): Proceedings of the Annual Conference of the PHM Society 2020 DOI: https://doi.org/10.36001/phmconf.2020.v12i1.1291

C. Ming and K. Kun, "Integrated Movable System of Fuel Cell with Replaceable Fiber Bipolar Plate," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 399-409. doi: 10.4236/sgre.2011.24046. DOI: https://doi.org/10.4236/sgre.2011.24046

Ghosh, H., Tusher, M.A., Rahat, I.S., Khasim, S., Mohanty, S.N. (2023). Water Quality Assessment Through Predictive Machine Learning. In: Intelligent Computing and Networking. IC-ICN 2023. Lecture Notes in Networks and Systems, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-99-3177-4_6 DOI: https://doi.org/10.1007/978-981-99-3177-4_6

Rahat IS, Ghosh H, Shaik K, Khasim S, Rajaram G. Unraveling the Heterogeneity of Lower-Grade Gliomas: Deep Learning-Assisted Flair Segmentation and Genomic Analysis of Brain MR Images. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Sep. 29 [cited 2023 Oct. 2];9. https://doi.org/10.4108/eetpht.9.4016 DOI: https://doi.org/10.4108/eetpht.9.4016

Ghosh H, Rahat IS, Shaik K, Khasim S, Yesubabu M. Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks. EAI Endorsed Scal Inf Syst [Internet]. 2023 Sep. 21 https://doi.org/10.4108/eetsis.3937 DOI: https://doi.org/10.4108/eetsis.3937

Mandava, S. R. Vinta, H. Ghosh, and I. S. Rahat, “An All-Inclusive Machine Learning and Deep Learning Method for Forecasting Cardiovascular Disease in Bangladeshi Population”, EAI Endorsed Trans Perv Health Tech, vol. 9, Oct. 2023. https://doi.org/10.4108/eetpht.9.4052 DOI: https://doi.org/10.4108/eetpht.9.4052

Mandava, M.; Vinta, S. R.; Ghosh, H.; Rahat, I. S. Identification and Categorization of Yellow Rust Infection in Wheat through Deep Learning Techniques. EAI Endorsed Trans IoT 2023, 10. https://doi.org/10.4108/eetiot.4603 DOI: https://doi.org/10.4108/eetiot.4603

Khasim, I. S. Rahat, H. Ghosh, K. Shaik, and S. K. Panda, “Using Deep Learning and Machine Learning: Real-Time Discernment and Diagnostics of Rice-Leaf Diseases in Bangladesh”, EAI Endorsed Trans IoT, vol. 10, Dec. 2023 https://doi.org/10.4108/eetiot.4579 DOI: https://doi.org/10.4108/eetiot.4579

Khasim, H. Ghosh, I. S. Rahat, K. Shaik, and M. Yesubabu, “Deciphering Microorganisms through Intelligent Image Recognition: Machine Learning and Deep Learning Approaches, Challenges, and Advancements”, EAI Endorsed Trans IoT, vol. 10, Nov. 2023. https://doi.org/10.4108/eetiot.4484 DOI: https://doi.org/10.4108/eetiot.4484

Mohanty, S.N.; Ghosh, H.; Rahat, I.S.; Reddy, C.V.R. Advanced Deep Learning Models for Corn Leaf Disease Classification: A Field Study in Bangladesh. Eng. Proc. 2023, 59, 69. https://doi.org/10.3390/engproc2023059069 DOI: https://doi.org/10.3390/engproc2023059069

Alenezi, F.; Armghan, A.; Mohanty, S.N.; Jhaveri, R.H.; Tiwari, P. Block-Greedy and CNN Based Underwater Image Dehazing for Novel Depth Estimation and Optimal Ambient Light. Water 2021, 13, 3470. https://doi.org/10.3390/w13233470 DOI: https://doi.org/10.3390/w13233470

Ashraf, H., Abdellatif, S.O., Elkholy, M.M. et al. Computational Techniques Based on Artificial Intelligence for Extracting Optimal Parameters of PEMFCs: Survey and Insights. Arch Computat Methods Eng 29, 3943–3972 (2022). https://doi.org/10.1007/s11831-022-09721-y DOI: https://doi.org/10.1007/s11831-022-09721-y

G. T. Le et al 2022 J. Electrochem. Soc. 169 034530 DOI 10.1149/1945-7111/ac59f4 DOI: https://doi.org/10.1149/1945-7111/ac59f4

Li, Z., Zheng, Z., Xu, L. et al. A review of the applications of fuel cells in microgrids: opportunities and challenges. BMC Energy 1, 8 (2019). https://doi.org/10.1186/s42500-019-0008-3 DOI: https://doi.org/10.1186/s42500-019-0008-3

Shakeri N, Rahmani Z, Ranjbar Noei A, Zamani M. Direct methanol fuel cell modelling based on the norm optimal iterative learning control. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2021;235(1):68-79. doi:10.1177/0959651820904800 DOI: https://doi.org/10.1177/0959651820904800

Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modelling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C). DOI: https://doi.org/10.1016/j.apenergy.2022.119137

P. Patro, R. Azhagumurugan, R. Sathya, K. Kumar, T. R. Kumar and M. V. S. Babu, "A hybrid approach estimates the real-time health state of a bearing by accelerated degradation tests, Machine learning," 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 2021, pp. 1-9, doi: 10.1109/ICSTCEE54422.2021.9708591.

P. Patro, R. Azhagumurugan, R. Sathya, K. Kumar, T. R. Kumar and M. V. S. Babu, "A hybrid approach estimates the real-time health state of a bearing by accelerated degradation tests, Machine learning," 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 2021, pp. 1-9, doi: 10.1109/ICSTCEE54422.2021.9708591. DOI: https://doi.org/10.1109/ICSTCEE54422.2021.9708591

Keith, John A., et al. "Deeper learning in electrocatalysis: realizing opportunities and addressing challenges." Current Opinion in Chemical Engineering 36 (2022): 100824. DOI: https://doi.org/10.1016/j.coche.2022.100824

Johnston, Craig, and Craig Johnston. "Platforming AIML." Advanced Platform Development with Kubernetes: Enabling Data Management, the Internet of Things, Blockchain, and Machine Learning (2020): 431-495. DOI: https://doi.org/10.1007/978-1-4842-5611-4_11

Mostafa, Mohamed M., and Ahmed A. El-Masry. "Oil price forecasting using gene expression programming and artificial neural networks." Economic Modelling 54 (2016): 40-53.

Mostafa, Mohamed M., and Ahmed A. El-Masry. "Oil price forecasting using gene expression programming and artificial neural networks." Economic Modelling 54 (2016): 40-53. DOI: https://doi.org/10.1016/j.econmod.2015.12.014

Sai, Na, et al. "StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision." New Phytologist 238.2 (2023): 904-915.

Sai, N., Bockman, J. P., Chen, H., Watson‐Haigh, N., Xu, B., Feng, X., ... & Gilliham, M. (2023). StomaAI: an efficient and user‐friendly tool for the measurement of stomatal pores and density using deep computer vision. New Phytologist, 238(2), 904-915. DOI: https://doi.org/10.1111/nph.18765

Dennis, B., & Muthukrishnan, S. (2014). AGFS: Adaptive Genetic Fuzzy System for medical data classification. Applied Soft Computing, 25, 242-252. DOI: https://doi.org/10.1016/j.asoc.2014.09.032

Ghassemzadeh, S., et al. "Modelling hydraulically fractured tight gas reservoirs with an Artificial Intelligence (AI)-based simulator, Deep Net Simulator (DNS)." First EAGE Digitalization Conference and Exhibition. Vol. 2020. No. 1. EAGE Publications BV, 2020. DOI: https://doi.org/10.3997/2214-4609.202032052

Molina, Maria J., David John Gagne, and Andreas F. Prein. "A benchmark to test generalization capabilities of deep learning methods to classify severe convective storms in a changing climate." Earth and Space Science 8.9 (2021): e2020EA001490. DOI: https://doi.org/10.1029/2020EA001490

Darapaneni, Narayana, et al. "A machine learning approach to predicting COVID-19 cases amongst suspected cases and their category of admission." 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2020. DOI: https://doi.org/10.1109/ICIIS51140.2020.9342658

Dougherty Jr, N. S., and C. A. Rafferty. Altitude Developmental Testing of the J-2 Rocket Engine in Propulsion Engine Test Cell (J-4)(Tests J4-1801-39 Through J4-1801-41). ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AFB TN, 1969.

Le, Tan, and Sachin Shetty. "Artificial intelligence-aided privacy preserving trustworthy computation and communication in 5G-based IoT networks." Ad Hoc Networks 126 (2022): 102752. DOI: https://doi.org/10.1016/j.adhoc.2021.102752

Schumaker, Robert P., and Hsinchun Chen. "Leveraging Question Answer technology to address terrorism inquiry." Decision Support Systems 43.4 (2007): 1419-1430. DOI: https://doi.org/10.1016/j.dss.2006.04.007

Zidoun, Youness, et al. "Contextual Conversational Agent to Address Vaccine Hesitancy: Protocol for a Design-Based Research Study." JMIR Research Protocols 11.8 (2022): e38043. DOI: https://doi.org/10.2196/38043

Meyer, Veronika R. Practical high-performance liquid chromatography. John Wiley & Sons, 2013.

El-Masry, A. A., and M. Mostafa. "Oil price forecasting using gene expression programming and artificial neural networks." (2016).

Ghassemzadeh, Shahdad, et al. "A data-driven reservoir simulation for natural gas reservoirs." Neural Computing and Applications 33.18 (2021): 11777-11798. DOI: https://doi.org/10.1007/s00521-021-05886-y

Hamlili, Boubakeur, Khelifa Benahmed, and Brahim Gasbaoui. "Behaviour of solar wireless sensor network in Saharan region under different scenarios consideration." International Journal of Electrical & Computer Engineering (2088-8708) 10.3 (2020). DOI: https://doi.org/10.11591/ijece.v10i3.pp2797-2806

Downloads

Published

12-03-2024

How to Cite

[1]
A. B. Shrote, “RETRACTED ARTICLE: Monitoring of operational conditions of fuel cells by using machine learning”, EAI Endorsed Trans IoT, vol. 10, Mar. 2024.