RETRACTED ARTICLE: Monitoring of operational conditions of fuel cells by using machine learning
DOI:
https://doi.org/10.4108/eetiot.5377Keywords:
Testing data, Fuel cell, Performance, AIMLAbstract
This article has been retracted at the request of our research integrity team. You can find the retraction notice at the following link https://doi.org/10.4108/eetiot.7176
Downloads
References
Adithya Legala, Jian Zhao, Xianguo Li, Machine learning modeling for proton exchange membrane fuel cell performance, Energy and AI, Volume 10, 2022, 100183, ISSN 2666-5468,https://doi.org/10.1016/j.egyai.2022.100183. (https://www.sciencedirect.com/science/article/pii/S2666546822000325)
Klass, Lukas and Kabza, Alexander and Sehnke, Frank and Strecker, Katharina and Hölzle, Markus, Lifelong Performance Monitoring of Pem Fuel Cells Using Machine Learning Models. Available at SSRN: https://ssrn.com/abstract=4162772 or http://dx.doi.org/10.2139/ssrn.4162772
Ke Sun, Iñaki Esnaola, Okechukwu Okorie, Fiona Charnley, Mariale Moreno, Ashutosh Tiwari, Data-driven modelling and monitoring of fuel cell performance, International Journal of Hydrogen Energy, Volume 46, Issue 66, 2021, Pages 33206-33217, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2021.05.210.
Derbeli, M.; Napoli, C.; Barambones, O. Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System. Mathematics 2021, 9, 2068. https://doi.org/10.3390/math9172068
Fayyazi, M.; Sardar, P.; Thomas, S.I.; Daghigh, R.; Jamali, A.; Esch, T.; Kemper, H.; Langari, R.; Khayyam, H. Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles. Sustainability 2023, 15, 5249. https://doi.org/10.3390/su15065249
Amogh Gyaneshwar et al 2022 Eng. Res. Express 4 022001 DOI 10.1088/2631-8695/ac5fd9
Ogaji, Stephen & Singh, Rishika & Pilidis, P. & Diacakis, Minas. (2006). Modelling fuel cell performance using artificial intelligence. Journal of Power Sources. 154. 192-197. 10.1016/j.jpowsour.2005.03.226.
Lin, Rongheng & Xi, Xue-Nan & Wang, Pei-Nan & Wu, Bu-Dan & Tian, Shi-Ming. (2018). Review on hydrogen fuel cell condition monitoring and prediction methods. International Journal of Hydrogen Energy. 44. 10.1016/j.ijhydene.2018.09.085.
Hegazy Rezk, Abdul Ghani Olabi, Mohammad Ali Abdelkareem, Enas Taha Sayed, Boosting the power density of two‐chamber microbial fuel cell: Modeling and optimization, International Journal of Energy Research, 10.1002/er.8589, 46, 15, (20975-20984), (2022).
S. Dhanya, S. Anand Hareendran; Validation of the optimum parameter for 500W PEM fuel cell using machine learning tool WEKA. AIP Conference Proceedings 26 March 2021; 2336 (1): 040027. https://doi.org/10.1063/5.0045981
Li Jiawen, Li Yaping, Yu Tao, Temperature Control of Proton Exchange Membrane Fuel Cell Based on Machine Learning, Frontiers in Energy Research, VOLUME 9, 2021, ISSN-2296-598X,10.3389/fenrg.2021.763099
Wang, Y.D., Meyer, Q., Tang, K. et al. Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning. Nat Commun 14, 745 (2023). https://doi.org/10.1038/s41467-023-35973-8
José-Luis Casteleiro-Roca, Antonio Javier Barragán, Francisca Segura, José Luis Calvo-Rolle, José Manuel Andújar, "Fuel Cell Output Current Prediction with a Hybrid Intelligent System", Complexity, vol. 2019, Article ID 6317270, 10 pages, 2019. https://doi.org/10.1155/2019/6317270
Chunheng Zhao, Yi Li, Matthew Wessner, Chinmay Rathod, Pierluigi Pisu, Annual Conference of the PHM Society: Vol. 12 No. 1 (2020): Proceedings of the Annual Conference of the PHM Society 2020
C. Ming and K. Kun, "Integrated Movable System of Fuel Cell with Replaceable Fiber Bipolar Plate," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 399-409. doi: 10.4236/sgre.2011.24046.
Ghosh, H., Tusher, M.A., Rahat, I.S., Khasim, S., Mohanty, S.N. (2023). Water Quality Assessment Through Predictive Machine Learning. In: Intelligent Computing and Networking. IC-ICN 2023. Lecture Notes in Networks and Systems, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-99-3177-4_6
Rahat IS, Ghosh H, Shaik K, Khasim S, Rajaram G. Unraveling the Heterogeneity of Lower-Grade Gliomas: Deep Learning-Assisted Flair Segmentation and Genomic Analysis of Brain MR Images. EAI Endorsed Trans Perv Health Tech [Internet]. 2023 Sep. 29 [cited 2023 Oct. 2];9. https://doi.org/10.4108/eetpht.9.4016
Ghosh H, Rahat IS, Shaik K, Khasim S, Yesubabu M. Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks. EAI Endorsed Scal Inf Syst [Internet]. 2023 Sep. 21 https://doi.org/10.4108/eetsis.3937
Mandava, S. R. Vinta, H. Ghosh, and I. S. Rahat, “An All-Inclusive Machine Learning and Deep Learning Method for Forecasting Cardiovascular Disease in Bangladeshi Population”, EAI Endorsed Trans Perv Health Tech, vol. 9, Oct. 2023. https://doi.org/10.4108/eetpht.9.4052
Mandava, M.; Vinta, S. R.; Ghosh, H.; Rahat, I. S. Identification and Categorization of Yellow Rust Infection in Wheat through Deep Learning Techniques. EAI Endorsed Trans IoT 2023, 10. https://doi.org/10.4108/eetiot.4603
Khasim, I. S. Rahat, H. Ghosh, K. Shaik, and S. K. Panda, “Using Deep Learning and Machine Learning: Real-Time Discernment and Diagnostics of Rice-Leaf Diseases in Bangladesh”, EAI Endorsed Trans IoT, vol. 10, Dec. 2023 https://doi.org/10.4108/eetiot.4579
Khasim, H. Ghosh, I. S. Rahat, K. Shaik, and M. Yesubabu, “Deciphering Microorganisms through Intelligent Image Recognition: Machine Learning and Deep Learning Approaches, Challenges, and Advancements”, EAI Endorsed Trans IoT, vol. 10, Nov. 2023. https://doi.org/10.4108/eetiot.4484
Mohanty, S.N.; Ghosh, H.; Rahat, I.S.; Reddy, C.V.R. Advanced Deep Learning Models for Corn Leaf Disease Classification: A Field Study in Bangladesh. Eng. Proc. 2023, 59, 69. https://doi.org/10.3390/engproc2023059069
Alenezi, F.; Armghan, A.; Mohanty, S.N.; Jhaveri, R.H.; Tiwari, P. Block-Greedy and CNN Based Underwater Image Dehazing for Novel Depth Estimation and Optimal Ambient Light. Water 2021, 13, 3470. https://doi.org/10.3390/w13233470
Ashraf, H., Abdellatif, S.O., Elkholy, M.M. et al. Computational Techniques Based on Artificial Intelligence for Extracting Optimal Parameters of PEMFCs: Survey and Insights. Arch Computat Methods Eng 29, 3943–3972 (2022). https://doi.org/10.1007/s11831-022-09721-y
G. T. Le et al 2022 J. Electrochem. Soc. 169 034530 DOI 10.1149/1945-7111/ac59f4
Li, Z., Zheng, Z., Xu, L. et al. A review of the applications of fuel cells in microgrids: opportunities and challenges. BMC Energy 1, 8 (2019). https://doi.org/10.1186/s42500-019-0008-3
Shakeri N, Rahmani Z, Ranjbar Noei A, Zamani M. Direct methanol fuel cell modelling based on the norm optimal iterative learning control. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2021;235(1):68-79. doi:10.1177/0959651820904800
Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modelling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C).
P. Patro, R. Azhagumurugan, R. Sathya, K. Kumar, T. R. Kumar and M. V. S. Babu, "A hybrid approach estimates the real-time health state of a bearing by accelerated degradation tests, Machine learning," 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 2021, pp. 1-9, doi: 10.1109/ICSTCEE54422.2021.9708591.
P. Patro, R. Azhagumurugan, R. Sathya, K. Kumar, T. R. Kumar and M. V. S. Babu, "A hybrid approach estimates the real-time health state of a bearing by accelerated degradation tests, Machine learning," 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 2021, pp. 1-9, doi: 10.1109/ICSTCEE54422.2021.9708591.
Keith, John A., et al. "Deeper learning in electrocatalysis: realizing opportunities and addressing challenges." Current Opinion in Chemical Engineering 36 (2022): 100824.
Johnston, Craig, and Craig Johnston. "Platforming AIML." Advanced Platform Development with Kubernetes: Enabling Data Management, the Internet of Things, Blockchain, and Machine Learning (2020): 431-495.
Mostafa, Mohamed M., and Ahmed A. El-Masry. "Oil price forecasting using gene expression programming and artificial neural networks." Economic Modelling 54 (2016): 40-53.
Mostafa, Mohamed M., and Ahmed A. El-Masry. "Oil price forecasting using gene expression programming and artificial neural networks." Economic Modelling 54 (2016): 40-53.
Sai, Na, et al. "StomaAI: an efficient and user‐friendly tool for measurement of stomatal pores and density using deep computer vision." New Phytologist 238.2 (2023): 904-915.
Sai, N., Bockman, J. P., Chen, H., Watson‐Haigh, N., Xu, B., Feng, X., ... & Gilliham, M. (2023). StomaAI: an efficient and user‐friendly tool for the measurement of stomatal pores and density using deep computer vision. New Phytologist, 238(2), 904-915.
Dennis, B., & Muthukrishnan, S. (2014). AGFS: Adaptive Genetic Fuzzy System for medical data classification. Applied Soft Computing, 25, 242-252.
Ghassemzadeh, S., et al. "Modelling hydraulically fractured tight gas reservoirs with an Artificial Intelligence (AI)-based simulator, Deep Net Simulator (DNS)." First EAGE Digitalization Conference and Exhibition. Vol. 2020. No. 1. EAGE Publications BV, 2020.
Molina, Maria J., David John Gagne, and Andreas F. Prein. "A benchmark to test generalization capabilities of deep learning methods to classify severe convective storms in a changing climate." Earth and Space Science 8.9 (2021): e2020EA001490.
Darapaneni, Narayana, et al. "A machine learning approach to predicting COVID-19 cases amongst suspected cases and their category of admission." 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2020.
Dougherty Jr, N. S., and C. A. Rafferty. Altitude Developmental Testing of the J-2 Rocket Engine in Propulsion Engine Test Cell (J-4)(Tests J4-1801-39 Through J4-1801-41). ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AFB TN, 1969.
Le, Tan, and Sachin Shetty. "Artificial intelligence-aided privacy preserving trustworthy computation and communication in 5G-based IoT networks." Ad Hoc Networks 126 (2022): 102752.
Schumaker, Robert P., and Hsinchun Chen. "Leveraging Question Answer technology to address terrorism inquiry." Decision Support Systems 43.4 (2007): 1419-1430.
Zidoun, Youness, et al. "Contextual Conversational Agent to Address Vaccine Hesitancy: Protocol for a Design-Based Research Study." JMIR Research Protocols 11.8 (2022): e38043.
Meyer, Veronika R. Practical high-performance liquid chromatography. John Wiley & Sons, 2013.
El-Masry, A. A., and M. Mostafa. "Oil price forecasting using gene expression programming and artificial neural networks." (2016).
Ghassemzadeh, Shahdad, et al. "A data-driven reservoir simulation for natural gas reservoirs." Neural Computing and Applications 33.18 (2021): 11777-11798.
Hamlili, Boubakeur, Khelifa Benahmed, and Brahim Gasbaoui. "Behaviour of solar wireless sensor network in Saharan region under different scenarios consideration." International Journal of Electrical & Computer Engineering (2088-8708) 10.3 (2020).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 EAI Endorsed Transactions on Internet of Things

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
This is an open-access article distributed under the terms of the Creative Commons Attribution CC BY 4.0 license, which permits unlimited use, distribution, and reproduction in any medium so long as the original work is properly cited.
