Constructing an Intelligent Environmental Monitoring and Forecasting System: Fusion of Deep Neural Networks and Gaussian Smoothing

Authors

DOI:

https://doi.org/10.4108/eetiot.6519

Keywords:

Environmental monitoring Forecast, smoothing,, Gaussian smoothing, CNN, LSTM, GRU, Temperature, Humidity, CO2

Abstract

To enhance monitoring of environmental indicators like temperature, humidity, and carbon dioxide (CO 2) concentration in data centers, this study evaluates various deep neural network (DNN) models and improves their forecast accuracy using Gaussian smoothing. Initially, multiple DNN architectures were assessed. Following these evaluations, the optimal algorithm was selected for each indicator: CNN for
temperature, LSTM for humidity, and a hybrid LSTM-GRU model for CO 2 concentration. These models underwent further refinement through Gaussian smoothing and re-training to enhance their forecasting capabilities. The results demonstrate that Gaussian smoothing significantly enhanced forecast accuracy across all indicators. For instance, R 2 values notably increased: the temperature forecast improved from 0.59925 to 0.98012, humidity from 0.63305 to 0.99628, and CO 2 concentration from 0.71204 to 0.99855. Thus, this study highlights the potential of DNN models in environmental monitoring after Gaussian smoothing, providing precise forecasting tools and real-time monitoring support for informed decision-making in the future.

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

References

[1] Ahmed, Md Mohiuddin, Suraiya Banu, and Bijan Paul. Real-time air quality monitoring system for Bangladesh's perspective based on Internet of Things. In: 2017 3rd International conference on electrical information and communication technology (EICT). IEEE, 2017. p. 1-5. doi:10.1109/EICT.2017.8275161

[2] Sarun Duangsuwan, Aekarong Takarn, Rachan Nujankaew, Punyawi Jamjareegulgarn. A Study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0," 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 2018, pp. 206-209. doi:10.1109/KST.2018.8426195.

[3] Ting Yang, Mattia Gentile, Ching-Fen Shen, Orcid, Chao-Min Cheng. (2020). Combining point-of-care diagnostics and internet of medical things (IoMT) to combat the COVID-19 pandemic. Diagnostics, 10(4), 224. doi:10.3390/diagnostics10040224

[4] Mengda Jia , Ali Komeily , Yueren Wang , Ravi S. Combining point-of-care diagnostics and internet of medical things (IoMT) to combat the COVID-19 pandemic. Diagnostics, 2020, 10.4: 224. doi:10.1016/j.autcon.2019.01.023

[5] Ullo, Silvia Liberata; SINHA, Ganesh Ram. Advances in smart environment monitoring systems using IoT and sensors. Sensors, 2020, 20.11: 3113. doi:10.3390/s20113113

[6] Y. Lecun, L. Bottou, Y. Bengio and P. Haffne. Gradient-based learning applied to docu-ment recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. doi:10.1109/5.726791

[7] Alex Krizhevsky, Ilya Sutskever, G E Hinton (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM 60.6 (2017): 84-90. doi:10.1145/3065386

[8] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. doi:10.1145/3065386

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

[10] Goodfellow, Ian, Yoshua Bengio, Aaron Courville. Deep learning. MIT press, 2016.

[11] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780. doi:10.1162/neco.1997.9.8.1735

[12] Gers, Felix A., Jürgen Schmidhuber, Fred Cummins. "Learning to forget: Continual prediction with LSTM." Neural computation 12.10 (2000): 2451-2471. doi:10.1162/089976600300015015

[13] Graves, Alex, Abdel-rahman Mohamed, Geoffrey Hinton. Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. p. 6645-6649. doi:10.1109/ICASSP.2013.6638947

[14] Sutskever, Ilya, Oriol Vinyals, Quoc V. Le. Sequence to sequence learning with neural networks. Advances in neural information processing systems, 2014, 27. https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[15] Klaus Greff, Rupesh K. Srivastava, Jan Koutník, Bas R. Steunebrink, Jürgen Schmidhuber. LSTM: A Search Space Odyssey. in IEEE Transactions on Neural Networks and Learning Systems. 2017; 28(10): pp. 2222-2232. doi:10.1109/TNNLS.2016.2582924.

[16] Kun Wang, Jun Mi, Chenhan Xu, Qingquan Zhu, Lei Shu, Der-Jiunn Deng. Real-Time Load Reduction in Multimedia Big Data for Mobile Internet. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM). 2016; 12(5s): pp. 1-20. doi:10.1145/2990473

[17] Basharat Hussain, Muhammad Khalil Afzal, Shafiq Ahmad, Almetwally M. Mostafa. Intelligent Traffic Flow Prediction Using Optimized GRU Model. in IEEE Access. 2021; vol. 9: pp. 100736-100746. doi: 10.1109/ACCESS.2021.3097141.

[18] Shuai Gao, Yuefei Huang, Shuo Zhang, Jingcheng Han, Guangqian Wang, Meixin Zhang, Qingsheng Lin. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. Journal of Hydrology. 2020; 589: 125188. doi:10.1016/j.jhydrol.2020.125188

[19] Andrew P. Witkin. IJCAI'83: Proceedings of the Eighth international joint conference on Artificial intelligence. Volume 2. August 1983. Pages 1019–1022

[20] Marr, D., & Hildreth, E. Theory of edge detection. Proceedings of the Royal Society of London. Series B. Biological Sciences. 1980; 207(1167):187-217. doi:10.5555/1623516.1623607

[21] Jan J. Koenderink. The structure of images. Biol. Cybern. 1984; 50:363–370. doi:10.1007/BF00336961

[22] Jaya Brindha G., Gopi E.S. An hierarchical approach for automatic segmentation of leaf images with similar background using kernel smoothing based Gaussian process regression. Ecological Informatics. 2021; 63: 101323. doi:10.1016/j.ecoinf.2021.101323

[23] J. Canny. A Computational Approach to Edge Detection. in IEEE Transactions on Pattern Analysis and Machine Intelligence; Nov. 1986; vol. PAMI-8, no. 6, pp. 679-698. doi: 10.1109/TPAMI.1986.4767851

[24] Rafael Corsino González, Richard E Woods. Digital Image Processing. 3rd Edition. United States: Prentice-Hall, Inc.; 2006.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.2011;12: pp.2825-2830. https://arxiv.org/abs/1201.0490

[26] Yellow Zhisheng. Statistical Foundations of Machine Learning: Core Technologies Behind Deep Learning: Flag Technology Publishing; 2021.

[27] Sebastian Raschka.Python Machine Learning: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics. Packt Publishing Ltd. 2015. pp.169-198.

[28] Trevor Hastie , Robert Tibshirani , Jerome Friedman. The Elements of Statistical Learning (2nd ed.). Springer; 2013.

[29] Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons; 2021.

[30] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media; 2013.

Downloads

Published

08-08-2024

How to Cite

[1]
R.-C. Wu, “Constructing an Intelligent Environmental Monitoring and Forecasting System: Fusion of Deep Neural Networks and Gaussian Smoothing ”, EAI Endorsed Trans IoT, vol. 10, Aug. 2024.