A Comprehensive analysis of services towards Data Aggregation, Data Fusion and enhancing security in IoT-based smart home

Authors

DOI:

https://doi.org/10.4108/eetiot.6703

Keywords:

Internet of Things (IoT), Constraint Application Protocol (CoAP), Hash function, Privacy, Security, ChaCha, Data fusion

Abstract

 

Data aggregation and sensors data fusion would be very helpful in a number of developing fields, including deep learning, driverless cars, smart cities, and the Internet of Things (IoT). An advanced smart home application will test the upgraded Constrained Application Protocol (CoAP) using Contiki Cooja. Smart home can enhance people’s comfort. Secure authentication between the transmitter and recipient nodes is essential for providing IoT services. In many IoT applications, device data are critical. Current encryption techniques use complicated arithmetic for security. However, these arithmetic techniques waste power. Hash algorithms can authenticate these IoT applications. Mobile protection issues must be treated seriously, because smart systems are automatically regulated. CoAP lets sensors send and receive server data with an energy-efficient hash function to increase security and speed. SHA224, SHA-1, and SHA256 were tested by the CoAP protocol. Proposed model showed that SHA 224 starts secure sessions faster than SHA-256 and SHA-1. The ChaCha ci. This study proposed enhanced ChaCha, a stream cipher for low-duty-cycle IoT devices. For wireless connections between the IoT gateway and sensors with a maximum throughput of 1.5 Mbps, the proposed model employs a wireless error rate (WER) of 0.05; the throughput rises with an increase in the transmission data rate.

Downloads

Download data is not yet available.
<br data-mce-bogus="1"> <br data-mce-bogus="1">

References

Braghin, C.; Lilli, M.; Riccobene, E. A Model-based approach for Vulnerability Analysis of IoT Security Protocols: The Z-Wave case study. Comput. Secur. 2022, 127, 103037. DOI: https://doi.org/10.1016/j.cose.2022.103037

Mashau, N.L.; Kroeze, J.H.; Howard, G.R. Key Factors for Assessing Small and Rural Municipalities’ Readiness for Smart City Implementation. Smart Cities 2022, 5, 1742–1751. https://doi.org/10.3390/smartcities5040087. DOI: https://doi.org/10.3390/smartcities5040087

Qin, Y.; Li, X.; Wu, J.; Yu, K. A management method of chronic diseases in the elderly based on IoT security environment. Comput. Electr. Eng. 2022, 102, 108188.https://doi.org/10.1016/j.compeleceng.2022.108188. DOI: https://doi.org/10.1016/j.compeleceng.2022.108188

de Melo, P.H.A.D.; Miani, R.S.; Rosa, P.F. FamilyGuard: A Security Architecture for Anomaly Detection in Home Networks. Sensors 2022, 22, 2895. https://doi.org/10.3390/s22082895. DOI: https://doi.org/10.3390/s22082895

Dhawan, S.; Chakraborty, C.; Frnda, J.; Gupta, R.; Rana, A.K.; Pani, S.K. SSII: Secured and High-Quality Steganography Using Intelligent Hybrid Optimization Algorithms for IoT. IEEE Access 2021, 9, 87563–87578. https://doi.org/10.1109/access.2021.3089357. DOI: https://doi.org/10.1109/ACCESS.2021.3089357

Aboshosha, B.; Dessouky, M.; Ramadan, R.; El-Sayed, A.A. LCA- Lightweight Cryptographic Algorithm for IoT Constraint Resources. Menoufia J. Electron. Eng. Res. 2019, 28, 374–380. https://doi.org/10.21608/mjeer.2019.67379. DOI: https://doi.org/10.21608/mjeer.2019.67379

Xu, R., Jin, W., & Kim, D. H. (2022). Knowledge-based edge computing framework based on CoAP and HTTP for enabling heterogeneous connectivity. Personal and Ubiquitous Computing, 1-16. DOI: https://doi.org/10.1007/s00779-020-01466-4

Stolojescu-Crisan, C.; Crisan, C.; Butunoi, B.P. An IoT-based smart home automation system. Sensors 2021, 21, 3784. DOI: https://doi.org/10.3390/s21113784

Mahdi, M.S.; Hassan, N.F.; Abdul-Majeed, G.H. An improved chacha algorithm for securing data on IoT devices. SN Appl. Sci. 2021, 3, 1–9. https://doi.org/10.1007/s42452-021-04425-7.

Sarker, A., Kermani, M.M., Azarderakhsh, R. Error Detection Architectures for Ring Polynomial Multiplication and Modular Reduction of Ring-LWE in $boldsymbol {frac {mathbb {Z}/pmathbb {Z}[x]}{x^{n}+ 1}} $ Benchmarked on ASIC. IEEE Trans. Reliab. 2021, 70, 362–370. DOI: https://doi.org/10.1109/TR.2020.2991671

Ahn, J.; Kwon, H.-Y.; Ahn, B.; Park, K.; Kim, T.; Lee, M.-K.; Kim, J.; Chung, J. Toward Quantum Secured Distributed Energy Resources: Adoption of Post-Quantum Cryptography (PQC) and Quantum Key Distribution (QKD). Energies 2022, 15, 714. https://doi.org/10.3390/en15030714. DOI: https://doi.org/10.3390/en15030714

Desnanjaya, I.G.M.N.’ Arsana, I.N.A. Home security monitoring system with IoT-based Raspberry Pi. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1295. DOI: https://doi.org/10.11591/ijeecs.v22.i3.pp1295-1302

Bassoli, M.; Bianchi, V.; De Munari, I. A Plug and Play IoT Wi-Fi Smart Home System for Human Monitoring. Electronics 2018, 7, 200. https://doi.org/10.3390/electronics7090200. DOI: https://doi.org/10.3390/electronics7090200

Wenbo, Y.; Quanyu, W.; Zhenwei, G. Smart home implementation based on Internet and WiFi technology. In Proceedings of the 2015 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015; pp. 9072–9077. https://doi.org/10.1109/chicc.2015.7261075. DOI: https://doi.org/10.1109/ChiCC.2015.7261075

Sarker, A.; Kermani, M.M.; Azarderakhsh, R. Fault Detection Architectures for Inverted Binary Ring-LWE Construction Benchmarked on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2020, 68, 1403–1407. https://doi.org/10.1109/tcsii.2020.3025857. DOI: https://doi.org/10.1109/TCSII.2020.3025857

Peng, J.Y.; Zhang, D.; Deng, Y.W.; Li, R.Y.M. A Review on Sustainable Smart Homes and Home Automation in TMall, Baidu and Know the Topic: Big Data Analytics Approach. In Current State of Art in Artificial Intelligence and Ubiquitous Cities; Springer: Singapore, Singapore, 2022; pp. 155–167. DOI: https://doi.org/10.1007/978-981-19-0737-1_10

Li, R.Y.M.; Shi, M.; Abankwa, D.A.; Xu, Y.; Richter, A.; Ng, K.T.W.; Song, L. Exploring the Market Requirements for Smart and Traditional Ageing Housing Units: A Mixed Methods Approach. Smart Cities 2022, 5, 1752–1775. DOI: https://doi.org/10.3390/smartcities5040088

Guin, U.; Singh, A.; Alam, M.; Canedo, J.; Skjellum, A. A secure low-cost edge device authentication scheme for the internet of things. In Proceedings of the 31st International Conference on VLSI Design and 2018 17th International Conference on Em-bedded Systems (VLSID), Pune, India, 8–10 January 2018; pp. 85–90. DOI: https://doi.org/10.1109/VLSID.2018.42

Pirbhulal, S.; Zhang, H.; Alahi, M.E. A novel secure IoT-based smart home automation system using a wireless sensor network. Sensors 2017, 17, 69. DOI: https://doi.org/10.3390/s17010069

Kang, W.M.; Moon, S.Y.; Park, J.H. An enhanced security framework for home appliances in smart home. Hum.-Centric Comput. Inf. Sci. 2017, 7, 1–12. https://doi.org/10.1186/s13673-017-0087-4. DOI: https://doi.org/10.1186/s13673-017-0087-4

Lachner, C.; Dustdar, S. A Performance Evaluation of Data Protection Mechanisms for Resource Constrained IoT Devices. In Proceedings of the2019 IEEE International Conference on Fog Computing (ICFC), Prague, Czech Republic, 24–26 June 2019; pp. 47–52. https://doi.org/10.1109/icfc.2019.00015. DOI: https://doi.org/10.1109/ICFC.2019.00015

Patil, S.; Joshi, S.; Patil, D. Enhanced Privacy Preservation Using Anonymization in IOT-Enabled Smart Homes. In Smart Intelligent Computing and Applications, Smart Innovation System, and Technologies; Springer: Singapore, Singapore, 2020; https://doi.org/10.1007/978-981-13-9282-5_42. DOI: https://doi.org/10.1007/978-981-13-9282-5_42

Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K. BEPO: A novel binary emperor penguin opti-mizer for automatic feature selection. Knowl.-Based Syst. 2020, 211, 106560. https://doi.org/10.1016/j.knosys.2020.106560. DOI: https://doi.org/10.1016/j.knosys.2020.106560

Kponyo, J.J.; Agyemang, J.O.; Klogo, G.S.; Boateng, J.O. Lightweight and host-based denial of service (DoS) detection and defense mechanism for resource-constrained IoT devices. Internet Things 2020, 12, 100319. https://doi.org/10.1016/j.iot.2020.100319. DOI: https://doi.org/10.1016/j.iot.2020.100319

Rana, A.K.; Mullana, H.I.S.A.M.; Sharma, S. Enhanced Energy-Efficient Heterogeneous Routing Protocols in Wsns for IOT Application. Int. J. Eng. Adv. Technol. 2019, 9, 4418–4425. https://doi.org/10.35940/ijeat.a1342.109119. DOI: https://doi.org/10.35940/ijeat.A1342.109119

Bonkra, A.; Bhatt, P.K.; Rosak-Szyrocka, J.; Muduli, K.; Pilař, L.; Kaur, A.; Chahal, N.; Rana, A.K. Apple Leave Disease De-tection Using Collaborative ML/DL and Artificial Intelligence Methods: Scientometric Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3222. https://doi.org/10.3390/ijerph20043222. DOI: https://doi.org/10.3390/ijerph20043222

Douiba, M.; Benkirane, S.; Guezzaz, A.; Azrour, M. An improved anomaly detection model for IoT security using decision tree and gradient boosting. J. Supercomput. 2022, 79, 3392–3411. https://doi.org/10.1007/s11227-022-04783-y. DOI: https://doi.org/10.1007/s11227-022-04783-y

Dhawan, S.; Gupta, R.; Bhuyan, H.K.; Vinayakumar, R.; Pani, S.K.; Rana, A.K. An efficient steganography technique based on S2OA & DESAE model. Multimedia Tools Appl. 2022, 82, 14527–14555. https://doi.org/10.1007/s11042-022-13798-9. DOI: https://doi.org/10.1007/s11042-022-13798-9

Apostu, S.A.; Vasile, V.; Vasile, R.; Rosak-Szyrocka, J. Do Smart Cities Represent the Key to Urban Resilience? Rethinking Urban Resilience. Int. J. Environ. Res. Public Health 2022, 19, 15410. https://doi.org/10.3390/ijerph192215410. DOI: https://doi.org/10.3390/ijerph192215410

Fotohi, R., & Aliee, F. S. (2021). Securing communication between things using blockchain technology based on authentication and SHA-256 to improving scalability in large-scale IoT. Computer Networks, 197, 108331. DOI: https://doi.org/10.1016/j.comnet.2021.108331

Rana, S.K.; Rana, S.K.; Nisar, K.; Ibrahim, A.A.A.; Rana, A.K.; Goyal, N.; Chawla, P. Blockchain Technology and Artificial Intelligence Based Decentralized Access Control Model to Enable Secure Interoperability for Healthcare. Sustainability 2022, 14, 9471. https://doi.org/10.3390/su14159471. DOI: https://doi.org/10.3390/su14159471

Mahdi, M. S., Hassan, N. F., & Abdul-Majeed, G. H. (2021). An improved chacha algorithm for securing data on IoT devic-es. SN Applied Sciences, 3(4), 429. DOI: https://doi.org/10.1007/s42452-021-04425-7

Farooqi, N., Gutub, A., & Khozium, M. O. (2019). Smart community challenges: enabling IoT/M2M technology case study. Life Science Journal, 16(7), 11-17.

Nikolov, N. (2020, September). Research of MQTT, CoAP, HTTP and XMPP IoT communication protocols for embedded sys-tems. In 2020 XXIX International Scientific Conference Electronics (ET) (pp. 1-4). IEEE. DOI: https://doi.org/10.1109/ET50336.2020.9238208

Sharad, Kaur, E. N., & Aulakh, I. K. (2020). Evaluation and implementation of cluster head selection in WSN using Conti-ki/Cooja simulator. Journal of Statistics and Management Systems, 23(2), 407-418. DOI: https://doi.org/10.1080/09720510.2020.1736324

Mostafa, A., Lee, S. J., & Peker, Y. K. (2020). Physical unclonable function and hashing are all you need to mutually authenticate iot devices. Sensors, 20(16), 4361. DOI: https://doi.org/10.3390/s20164361

Rao, V., & Prema, K. V. (2019, December). Comparative study of lightweight hashing functions for resource constrained devices of IoT. In 2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/CSITSS47250.2019.9031038

Anastasova, M.; Azarderakhsh, R.; Kermani, M.M.; Beshaj, L. Time-Efficient Finite Field Microarchitecture Design for Curve448 and Ed448 on Cortex-M4. In International Conference on Information Security and Cryptology; Springer: Cham, Swit-zerland, 2023; pp. 292–314. https://doi.org/10.1007/978-3-031-29371-9_15. DOI: https://doi.org/10.1007/978-3-031-29371-9_15

Anastasova, M.; Azarderakhsh, R.; Kermani, M.M. Fast Strategies for the Implementation of SIKE Round 3 on ARM Cortex-M4. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 4129–4141. https://doi.org/10.1109/tcsi.2021.3096916. DOI: https://doi.org/10.1109/TCSI.2021.3096916

Sanal, P.; Karagoz, E.; Seo, H.; Azarderakhsh, R.; Mozaffari-Kermani, M. Kyber on ARM64: Compact implementations of Kyber on 64-bit ARM Cortex-A processors. In Proceedings of the Security and Privacy in Communication Networks: 17th EAI In-ternational Conference, SecureComm 2021, Virtual, 6–9 September 2021; pp. 424–440 DOI: https://doi.org/10.1007/978-3-030-90022-9_23

Niasar, B.M.; Azarderakhsh, R.; Kermani, M.M. Cryptographic accelerators for digital signature based on Ed25519. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1297–1305. DOI: https://doi.org/10.1109/TVLSI.2021.3077885

Verma, R. K., Kumar, A., Pattanayak, P., Chauhan, P. S., Bali, V., & Mathur, S. (2023, November). Design of L-Shape Slot Loaded Rectangular Microstrip Patch Antenna for IoT/WLAN/WiMAX Applications. In International Conference on Trends in Computa-tional and Cognitive Engineering (pp. 487-497). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-97-1923-5_37

Bali, V., Bali, S., Gaur, D., Rani, S., & Kumar, R. (2023). Commercial-off-the shelf vendor selection: A multi-criteria deci-sion-making approach using intuitionistic fuzzy sets and TOPSIS. Operational research in engineering sciences: Theory and appli-cations, 6(2).

Verma, R. K., Bali, V., Kumar, A., Pattanayak, P., & Sabat, D. (2024, April). Design of Compact T-Shape Slot and Notch Loaded Dual Band Microstrip Antenna for 5G/WLAN Application in S and C-Band. In 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT) (pp. 88-93). IEEE. DOI: https://doi.org/10.1109/CSNT60213.2024.10546049

Downloads

Published

02-10-2024

How to Cite

[1]
A. Rana, “A Comprehensive analysis of services towards Data Aggregation, Data Fusion and enhancing security in IoT-based smart home ”, EAI Endorsed Trans IoT, vol. 10, Oct. 2024.

Issue

Section

Blockchain-Based Digital Trust in IoT for Edge Computing