EAIl Endorsed Transactions
on Al and Robotics Research Article EALLEU

A Stacking Based Ensemble Learning Approach for
Accurate Identification of Tumor Homing Peptides in
Precision Cancer Therapeutics

Jahid Hassan Akash!, Rajib Mia', Abu Kowshir Bitto!, Abdul Kadar Muhammad Masum?®, Jobaer
Ahmed?, Fokrul Islam Khan*

"Department of Software Engineering, Daffodil International University, Dhaka, Bangladesh
2Department of Computer Science and Engineering, Southeast University, Dhaka, Bangladesh
3College of Technology & Engineering, Westcliff University, California, United States
4College of Business, Westcliff University, California, United States

Abstract

The identification of tumor-homing peptides (THPs) plays a pivotal role in the development of targeted cancer therapies and
precision medicine. Current THP identification methods still suffer from limited feature representation, moderate predictive
performance, and insufficient generalization, highlighting the need for more robust ensemble frameworks. In this study, we
propose STHPP, an innovative stacking-based ensemble machine learning approach designed to improve the accuracy and
reliability of THP discovery. Two benchmark datasets, referred to as the "main" and "small" datasets of Shoombuatong were
collected, merged, and pre-processed in preparation to create a large dataset and then split for training and testing. The
STHPP model applies a two-layer ensemble architecture: first layer that aggregates three heterogenous baseline classifiers,
Random Forest (RF), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and then
second layer applies CatBoost as a meta-classifier for post-processing predictive results of the base models. The two-layer
architecture uses model diversity and concepts in ensemble learning to enhance generalization performance. The STHPP
framework proposed got outstanding performance with accuracy 0.98, precision 0.97, sensitivity 0.99, specificity 0.97, and
a Matthews Correlation Coefficient (MCC) of 0.98. These are better than the performances of current state-of-the-art
approaches, which illustrates the effectiveness of using the stacking strategy in complicated peptide classification problems.
The finding showcases the potential of STHPP as a strong and scalable computational platform for propelling peptide-based
drug discovery research and targeted oncology.
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1. Introduction

Cancer is a complex and life-threatening disease  multiply, they invade and destroy surrounding healthy
characterized by the uncontrolled growth and proliferation of  tissues, ultimately impairing organ function and disrupting
abnormal cells that deviate from the normal regulatory  physiological systems. A particularly dangerous feature of
mechanisms governing cell division. As these malignant cells ~ cancer is its ability to metastasize—spreading from its
original site to distant organs via the lymphatic system or
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bloodstream—making treatment increasingly difficult.
Globally, cancer is one of the leading causes of mortality,
second only to cardiovascular disease, and it imposes
significant emotional, physical, and financial burdens on
patients, families, and healthcare systems [1].

According to WHO/IARC 2022, cancer caused
approximately 9.7 million deaths and 20 million new cases
globally. These numbers are projected to increase
dramatically by 2040, with an estimated 16 million deaths and
29.4 million new cases anticipated [2] [3]. Despite substantial
advancements in early detection and treatment, current
therapeutic strategies, particularly chemotherapy, remain
limited by significant challenges. Chemotherapeutic agents
often lack specificity, targeting both cancerous and healthy
cells alike. This non-selectivity results in severe side effects,
limits treatment duration and dosage, and ultimately
compromises therapeutic efficacy. Therefore, developing
methods that improve tumor-specific targeting while
minimizing off-target toxicity is a critical objective in cancer
research [4].

In this context, peptides have emerged as promising
candidates for targeted drug delivery. Various peptide-based
systems—such as cell-penetrating peptides (CPPs), homing
peptides (HPs), and cell-penetrating homing peptides—have
been proposed to enhance delivery precision [5]. Among
these, tumor-homing peptides (THPs), a subclass of HPs,
have shown significant potential as selective delivery agents
[6]. THPs are short peptide sequences, typically comprising
3 to 30 amino acid residues, engineered to bind specifically
to tumor cells or associated vasculature. They often feature
motifs such as Arg-Gly-Asp (RGD) and Asn-Gly-Arg
(NGR), which enable selective binding to tumor-associated
antigens and blood vessels with poor antigenicity [7]. These
characteristics make THPs a powerful tool for the selective
delivery of therapeutic agents to various tumor types,
including melanoma, colon, breast, lung, and prostate
cancers.

Accurate identification of tumor-homing peptides is vital
for advancing cancer diagnosis, prognosis, and personalized
treatment.  Traditional laboratory-based identification
methods are time-consuming, resource-intensive, and costly.
These challenges emphasize the urgency of developing
computational systems capable of accurately identifying
tumor-specific peptides while reducing false predictions. To
overcome these limitations, researchers have increasingly
adopted computational approaches, particularly machine
learning (ML) and deep learning (DL) techniques, which
offer rapid, scalable, and highly accurate alternatives. These
models can process complex biological datasets to predict
tumor-specific biomarkers and identify THPs with
significantly improved efficiency and precision.

This study aims to contribute to this growing body of
research by introducing STHPP, a stacking-based ensemble
machine learning model specifically designed for tumor-
homing peptide identification. The major contributions of this
work are a comprehensive dataset was created by curating
and merging two benchmark datasets, ensuring a richer and
more reliable foundation for robust model training and
evaluation. To further strengthen the dataset, diverse feature
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engineering techniques were applied, enabling the extraction
of informative attributes that not only enhanced predictive
performance but also improved interpretability. Building on
this, a novel stacking-based ensemble framework was
developed, which integrated multiple baseline classifiers with
a meta-classifier. This innovative approach consistently
outperformed existing models across all key evaluation
metrics, demonstrating its effectiveness and superiority.

2. Related Work

In recent years, the identification of tumor-homing
peptides (THPs) has gained significant interest due to their
utility in targeted cancer treatment and site-specific drug
delivery. Because conventional experimental techniques for
peptide identification are labor-intensive, time-consuming,
and costly, numerous computational approaches have been
developed to simplify the prediction process. Several
machine learning-based models have been suggested with
different feature extraction methods and classification
approaches with the aim of enhancing prediction reliability
and accuracy. This section presents key dominant models,
their strategies, feature extraction methods, performance
measures, and key contributions and limitations with the aim
of motivating better ensemble-based methods like the
presented STHPP model.

Guan et al. [8] have suggested a stacking-based model
known as StackTHPred. They used AAC, PAAC, PCP,
BLOSUMG62, and Z-Scale as their feature extraction methods.
The model achieved an accuracy of 0.915 and an MCC of
0.831. Shoombuatong et al. [9] proposed a model named
THPep, developed using an interpretable random forest
classifier that integrates features such as AAC, DPC, and
PAAC. This model achieved an overall accuracy of 0.901 and
an MCC of 0.76. Charoenkwan et al. [10] developed a model
using SCM and the propensity scores of 20 amino acids,
named SCMTHP. It achieved an accuracy of 0.827,
indicating moderate but not highly competitive performance.
Sharma et al. [11] proposed an SVM-based model utilizing
AAC and binary profiles of peptides. The maximum
accuracies were 86.56% for AAC-based features, 82.03% for
dipeptide composition, and 84.19% for binary profiles. Zou
et al. [12] proposed a method to distinguish tumor-homing
peptides (THPs) from non-THPs using PseRECM and PsePC
for encoding, LASSO for feature selection, and SVM for
classification. Their model achieved classification accuracies
of 0.8902, 0.8849, and 0.9458 on the Main, Small, and
Main90 datasets, respectively. Another stacking-based
model, NEPTUNE, was proposed by Charoenkwan et al. [13]
This model employed twelve different feature extractors and
six machine learning classifiers, with SVM serving as the
meta-model in the stacking framework. It achieved an
accuracy of 0.888 and an MCC of 0.777.

Table 1 shows the taxonomy of existing research
conducted on tumor-homing peptide prediction. While each
of the approaches demonstrates specific strengths, they also
come with certain limitations. This study addresses those
limitations by introducing an improved stacking-based
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ensemble model named STHPP, designed to more accurately
and effectively identify tumor-homing peptides compared to
existing prediction models.

3. Methodology

In this research we adopted a systematic and structured
multi-stage methodology, beginning with data collection and
consolidation. The two benchmark datasets were initially
prepared as one main dataset and one secondary (small)
dataset, and subsequently merged to create a rich and
comprehensive data source. Merging was done to ensure
enhanced data heterogeneity and robustness so that there
could be a more solid foundation for model training and
testing. Following the consolidation of datasets, the next
important step was the application of various feature
extraction techniques. These played an important role in
identifying and isolating the most informative and useful

considerations of useful statistical and biological
characteristics, the process of feature extraction was
optimized to use the learning capacity of the following
machine learning models and improve overall prediction
accuracy. Following this, different machine learning
algorithms were deployed on the cleaned data. The models
were evaluated based on how they predicted tumor-homing
peptides (THPs), with particular emphasis on generalizability
and reliability. The final step of the methodology was
comprised of a comprehensive performance analysis. Several
performance measurements, including accuracy, precision,
recall, specificity, and Matthews Correlation Coefficient,
were computed to assess each model's performance in an
unbiased way. The comparison allowed us to determine the
best-performing structure of the models and inform the
design of our proposed stacking-based ensemble model,
STHPP. Figure 1 displays the overall structure and workflow
of the suggested STHPP model, with every step from
preprocessing to final prediction indicated.

features from the consolidated dataset. Based on
Table 1. Taxonomy of Existing Research in Tumor-Homing Peptide Prediction
Author Method Feature Extractor Accuracy
Guan [8] StackTHPred AAC, PAAC, PCP, BLOSUM®62, and Z-Scale 0.92
Shoombuatong [9] THPep AAC, DPC, and PAAC 0.90
Charoenkwan [10] SCMTHP AAC, DPC, PAAC 0.82
Sharma [11] SVM AAC, DPC, Binary Profile 0.86
Zou [12] SVM PseRECM, PsePC, LASSO 0.94
AAC, DPC, AAI, APAAC, CTD, PAAC, PCP, RSs,
Charoenkwan [13] NEPTUNE RScharge, RSDHP, RSpolar, RSsecond 0.88
|, __________ \| |, _________ \| : I, ____________ \I: |, __________ \|
| |
| y ) e |
[ 1
[ ro [ [ [
: = | G e,
I s S P S T S I I
: : : DPC : i " Stacking(STHPP) | : :
o D Sl 20 ED
I L - : ': XGB  — Score — ] :' I I
[ Lol T iy [
: Train Test : : PAAC : :: —+Sear - I :: : :
: : : : :Isnnm—) I: :ww:
| | | | |I\ Base Model M'“MII | | Perf Evaluati |
| Data Set , | FeatureExtraction k&= “-- —— - —- - -—— - - [ TIOAMANGR EVRlAtion

Figure 1. Working Procedure to Construct STHPP

Table 2. Description of Feature Encoding Method

Feature Extraction Method

Full Name of Descriptor

Feature Dimension

AAC

Amino Acid Composition

21
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DPC Di-Peptide Composition 400
CTDC Composition, Transition, Distribution 39
PAAC Pseudo-Amino Acid Composition 22
3.1. Dataset the representation of peptide structures for improved machine
learning performance.
During this investigation, two publicly available

benchmark datasets referred to as the “main” and “small”
datasets were compiled from the repository maintained at
https://github.com/Shoombuatong/THPep [9]. The main
dataset consists of 651 tumor-homing peptides (THPs) and an
equal number of non-THPs, offering a balanced and extensive
dataset for comprehensive model development. In contrast,
the small dataset, derived as a representative subset of the
main dataset, contains 469 THPs and 469 non-THPs. To
enrich the training process and enhance model
generalizability, both datasets were merged to construct a
unified, high-quality dataset. To prevent data leakage , prior
to merging, both datasets were checked for duplicate peptide
sequences, no duplication is found. This consolidated dataset
was then partitioned into distinct training and testing sets. A
stratified sampling technique was applied during the train—
test partition to ensure proportional representation of THPs
and non-THPs. The training set comprises 959 THPs and 959
non-THPs, ensuring balanced class representation. The
testing set includes 161 THPs and 161 non-THPs, facilitating
robust model evaluation and unbiased performance
assessment.

3.2. Feature Extraction

Feature extraction plays a pivotal role in machine learning
(ML), as it converts raw biological sequences into structured
numerical representations that are suitable for computational
modeling. By isolating the most informative and
discriminative features from the input data, ML models
become not only more accurate but also more interpretable
and generalizable [14]. In this study, we employed the
iLearnPlus platform for feature extraction, leveraging four
well-established encoding techniques: Amino Acid
Composition (AAC), Di-Peptide Composition (DPC),
Composition/Transition/Distribution Composition (CTDC),
and Pseudo-Amino Acid Composition (PAAC). Each
technique encapsulates distinct biological properties and is
briefly described in the subsequent subsections.

Table 2 provides a simple summary of the feature
encoding schemes applied in this study. Each of these
schemes captures varied biochemical or structural
information of the peptide sequences and varies in the
dimension of the resulting feature vectors. AAC documents
the overall frequency of amino acids, while DPC considers
local pairwise residue patterns. CTDC encodes
physicochemical properties via statistical measurements, and
PAAC incorporates sequence-order information, improving

3.3. Amino Acid Composition

The Amino Acid Composition (AAC) encoding process
involves determining the frequency of each amino acid type
within a protein or peptide sequence. This calculation
encompasses the frequencies of all 20 naturally occurring
amino acids.

f="2, te{acp,..v} (1)

Here, N is the length of a protein or peptide sequence, and
N(t) denotes the count of amino acid type 7. The AAC
descriptor has demonstrated efficacy in various applications,
including the classification of nuclear receptors and the

anticipation of anticancer peptides [15].

3.4. Di-Peptide Composition

The Dipeptide Composition (DPC) creates 400 descriptors
and is formulated as follows:

D(rs) = %,

N-—

r,s €{A4,C,D,.., Y} (2)

In this context, N represents the count of dipeptides
formed by amino acid types r and s [16].

3.5. Composition, Transition, Distribution,
Composition

Using Composition, Transition, Distribution, Composition
(CTDC), bioinformatics techniques are applied to extract
characteristics from protein sequences and convert them into
numerical representations. It includes the recording of
physical and chemical characteristics, which helps with
assignments such as protein categorization and structural
forecasting.

Nr

cr ==

N )

r € {polar, neutral, hydrophobic} (3)

Here, N stands for the length of the sequence and N(r) for
the count of amino acid type 7 in the encoded sequence [17].

3.6. Pseudo-Amino Acid Composition
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The PAAC technique is utilized to transform protein
sequences into numerical representations. This method
captures a more extensive set of information than traditional
amino acid composition, leading to improved performance in
applications.

fc
Xo=—r72te — _ (1<c<20 4
[ 3'0:1(fT+WZ?=19j) ( c ) ( )
X, W20 (21<c<20+1) (5

~ 52, (fewsi,6))

The weight assigned to the sequence-order effect,
represented as w, is commonly established at 0.05 in
iLearnPlus, following the recommendation in [18].

3.7. Machine Learning Classifiers

In this research, we constructed identification models
employing diverse ensemble learning classification methods,
such as Random Forest, XGBoost, LGBM, CatBoost and
Stacking (STHPP). The subsequent section provides an
overview of each technique.

1) Random Forest (RF): The ensemble classifier known as
Random Forest (RF) averages decision tree model
outcomes across various dataset sub-samples to increase
accuracy and reduce overfitting. The eventual result is
predicted by majority vote. [19].

2) Light Gradient Boosting Method (LGBM): Light
Gradient Boosting Method, or LightGBM, is a
distributed architecture that uses tree-based training
techniques to achieve gradient boosting efficiency.
Through advanced techniques such as Exclusive Feature
Bundling (EFB) and Gradient-based One-Side Sampling
(GOSS), LightGBM overcomes the limitations of
histogram-based strategies used in other gradient
boosting decision tree (GBDT) frameworks. The
model’s efficiency is significantly enhanced by these
combined techniques, giving it an edge over other GBDT
architectures [20].

3) Extreme Gradient Boosting (XGB): XGBoost, or
eXtreme Gradient Boosting, is a scalable, highly
accurate, and robust gradient boosting algorithm built on
decision trees. It excels in terms of faster training times
and lower memory consumption. XGBoost provides
feature importance scores for better model understanding
and effectively handles large datasets through parallel
processing. XGBoost rapidly and easily applied to
various tasks. [21].

4) Categorical Boosting (CatBoost): CatBoost, short for
Categorical Boosting, is a gradient boosting algorithm
designed specifically for handling categorical features
efficiently. It tackles the limitations of decision tree
models by employing techniques like Ordered Target
Statistics (OTSS), which eliminate the need for one-hot
encoding—reducing memory usage and speeding up
training, particularly on large datasets. CatBoost
achieves competitive accuracy with fewer trees, and
automatic hyperparameter tuning reduces manual effort.
While decision tree models are generally challenging to
interpret, CatBoost provides feature importance scores
and partial dependence plots to offer valuable insights.
Although it may not be optimal for every task, its
categorical data handling capabilities make it useful for
a wide range of machine learning applications. As a
relatively new algorithm, CatBoost continues to improve
through active development [22].

5) Proposed Stacking Model (STHPP): Our proposed
ensemble classifier, denoted as STHPP, adopts a
stacking-oriented methodology shows in figure 2.
Stacking involves the amalgamation of classification or
regression algorithms through a dual-layered estimation
approach. In the initial layer, referred to as baseline
models, specific classification techniques are employed.
We employed RF, LGBM, XGB and CatBoost ML
models as baseline classifier. These baseline models
make predictions based on test datasets. The subsequent
layer introduces the ultimate classifier method, termed
the Meta-Classifier. We employed CatBoost ML
algorithm as Meta-Classifier. Utilizing the predictions
generated by all baseline models as input, the Meta-
Classifier generates novel predictions. When compared
to traditional machine learning models, the stacking-
based prediction model yields higher accuracy. The
combination of different algorithms and the addition of a
two-stage prediction procedure is credited with this
improvement. CatBoost was chosen as the meta-
classifier due to its robustness in handling small to
medium-sized datasets and its built-in support for
overfitting control via Ordered Boosting and Oblivious
Trees. CatBoost can learn complex non-linear
relationships between base learners without requiring
extensive manual feature engineering. Its implicit
handling of categorical variables makes it possible to use
regularization techniques, which makes it less
susceptible to overfitting, which in the meta-learning
phase can result in degraded performance because of
over-aggregation of nearby predictions.
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Figure 2. Proposed STHPP Model Architecture Diagram

3.8. Performance Evaluation

To evaluate the effectiveness of the applied machine
learning classifiers, a variety of statistical assessment metrics
were employed [23-30]. Chief among these are accuracy,
sensitivity (recall), and specificity, all of which are derived
from the confusion matrix. These metrics are particularly
useful when the target classes in the dataset are relatively
balanced. Accuracy evaluates the overall correctness of the
model by measuring the proportion of true results (both true
positives and true negatives) among the total number of cases
examined. It is calculated using Equation (6). Sensitivity
(Recall) refers to the proportion of actual positive cases that
are correctly identified by the model. This metric highlights
the model’s ability to capture positive instances and is crucial
in scenarios where false negatives are costly (Equation (7)).
Specificity, on the other hand, represents the proportion of
actual negatives correctly classified as such. It indicates the
model's capability in recognizing negative instances (Equation
(8)). In addition to these fundamental metrics, we incorporated
Matthews Correlation Coefficient (MCC), it is a robust metric
that considers true and false positives and negatives and
produces a score between -1 and +1. A coefficient near +1
indicates a perfect prediction, 0 indicates a random prediction,
and -1 signifies total disagreement between prediction and
observation. It is beneficial when dealing with imbalanced
datasets [25]. The formulas for the above metrics are provided
below:

TP+ TN

Accuracy = TPITNTENTFP X 100% (6)
. TP

Sensitivity = R 100% @)
i TN

Specificity = v 100% ®)

MCC = (TP X TN)—(FP X FN) x 100% (9)

V(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Here, TP = True Positive, TN = True Negative, FP = False
Positive, and FN = False Negative.

4. Result and Discussion

To test the effectiveness of the classifiers, the model's
performance was evaluated using a variety of performance
metrics. The comprehensive methodology is outlined as
follows. We assessed five different models: RF, LGBM,
XGB, CAT, and STHPP, each applied to features extracted
using iLearnPlus methods—AAC, DPC, CTDC, and PAAC.
A 5-fold cross-validation was conducted on the training
dataset, followed by evaluation on an independent test
dataset. To wverify the significance of the observed
performance differences, we conducted Wilcoxon signed-
rank test between STHPP and the best-performing baseline.
The results showed that the improvements in accuracy and
MCC were statistically significant (p < 0.01), confirming the
robustness of the ensemble approach.

Table 3 displays outcomes for various performance
metrics assessed on the training dataset. Within the five
machine learning algorithms, STHPP attains the highest
accuracy score of 0.9432 in AAC, while CAT records the
lowest accuracy at 0.8725 in DPC. Additionally, STHPP
outperforms in other performance metrics, achieving the
maximum scores for precision (0.9434), f1-score (0.9365),
sensitivity (0.9314), specificity (0.9563), and MCC value
(0.8899).

Table 4 displays the results for several performance
measures on the testing dataset. STHPP demonstrates the
maximum accuracy scores of 0.9884 in PAAC and 0.9807 in
AAC. Moreover, STHPP achieves the highest scores across
other performance metrics in PAAC, including precision
(0.9434), fl1-score (0.9365), sensitivity (0.9314), specificity
(0.9563), and MCC value (0.8899). Conversely, AAC records
scores of 0.9699, 0.9809, 0.9923, 0.9692, and 0.9771 in the
respective metrics for AAC. Despite AAC’s strong
performance in the training dataset, we choose AAC as our
proposed feature extractor method.

Figure 3 presents a detailed performance comparison
conducted on the training dataset across several subplots.
Subplot (A) illustrates the results for the Amino Acid
Composition (AAC), while Subplot (B) focuses on the Di-
Peptide Composition (DPC). Subplot (C) displays the
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outcomes for the Composition, Transition, Distribution,
Composition (CTDC), and Subplot (D) provides insights of
Pseudo-Amino Acid Composition (PAAC). Each subplot
offers a comprehensive view of the respective ML classifiers
performances, facilitating a clearer understanding of the
differences and strengths among with the feature extraction
methods.

Figure 4 offers a comprehensive comparison of
performance on the testing dataset, depicted across multiple
subplots. Subplot (A) highlights the performance of Amino
Acid Composition (AAC), while Subplot (B) focuses on Di-
Peptide Composition (DPC). Subplot (C) presents the results
for Composition, Transition, and Distribution (CTDC), and
Subplot (D) showcases the performance of Pseudo-Amino
Acid Composition (PAAC). Each subplot provides a detailed
overview of the respective ML classifiers, enabling a clearer

understanding of their individual differences and strengths
with our applied feature extraction methods.

Figure 5 provides a comprehensive performance
comparison of various feature extractors. The figure is
divided into two distinct subplots to highlight the
performance on different datasets. Subplot (A) illustrates the
performance metrics obtained from the training dataset,
providing insight into how well each feature extractor
performs during the model’s learning phase. On the other
hand, Subplot (B) focuses on the performance of these feature
extractors on the testing dataset, showcasing how effectively
the model generalizes to unseen data. By examining both
subplots, we can assess the consistency and reliability of each
feature extraction method across both the training and testing
stages.

Table 3. Performance Evaluation of the Applied Classifier on Four Feature Extraction Methods using Cross
Validation

Extractor Classifier = Accuracy Precision F1 Score Sensitivity Specificity MCC
RF 09320 09018  0.9266 0.9460 0.9177 0.8660
XGB 09304 08976 09252  0.9545 0.9106 0.8610
AAC LGBM 09308 08977 09256  0.9554 0.9106 0.8626
CAT 09250  0.8945  0.9191 0.9451 0.9085 0.8505
STHPP 09432 09434 09365  0.9314 0.9563 0.8899
RF 08879 08796  0.8751 0.8697 0.9008 0.7665
XGB 0.9061 0.8660  0.8999  0.9365 0.8811 0.8133
DPC LGBM 08933 08595 08852 09125 0.8776 0.7871
CAT 08725  0.8655  0.8572  0.8491 0.8917 0.7422
STHPP 0.9069  0.8991  0.8964 0.8920 0.9177 0.8127
RF 09258  0.8992 09195  0.9374 0.9099 0.8473
XGB 09223 08933  0.9160 0.9400 0.9078 0.8463
LGBM 09246 08913 09190  0.9485 0.9050 0.8501
cThe CAT 09165  0.8862 009099  0.9348 0.9015 0.8333
STHPP 09312 09387 09224  0.8980 0.9437 0.8479
RF 09258  0.8992 09195  0.9374 0.9099 0.8620
XGB 09223 08933  0.9160 0.9400 0.9078 0.8371
PAAC LGBM 09246  0.8913 09190  0.9485 0.9050 0.8363
CAT 09165  0.8862  0.9099 0.9348 0.9015 0.8336
STHPP 09312 09387 09224  0.8980 0.9437 0.8663
= f) E AI e anel Raboticn
(/< / 7 | Volume 5 | 2026 |



J. H. Akash et al.

(A) AAC Performance on Training Dataset (B) DPC Performance on Training Dataset
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Figure 3. Performance comparison of ML classifiers on training dataset using different feature extraction
methods: (A) Amino Acid Composition (AAC), (B) Di-Peptide Composition (DPC), (C) Composition, Transition,
Distribution Composition (CTDC), and (D) Pseudo-Amino Acid Composition (PAAC)

Table 4. Performance Evaluation of the Applied Classifier on Four Feature Extraction Methods using Independent

Test

Extractor Classifier =~ Accuracy Precision F1 Score Sensitivity Specificity MCC
RF 0.9730 0.9489 0.9737 1.0000 0.9461 0.9730
XGB 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402
AAC LGBM 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548
CAT 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402

STHPP 0.9807 0.9699 0.9809 0.9923 0.9692 0.9771
RF 0.9307 0.9375 0.9302 0.9384 0.9384 0.8773

XGB 0.9653 0.9416 0.9662 0.9923 0.9384 0.9321

DPC LGBM 0.9538 0.9402 0.9545 0.9692 0.9384 0.9081
CAT 0.9153 0.9218 0.9147 0.9076 0.9230 0.8308
STHPP 0.9615 0.9615 0.9615 0.9615 0.9692 0.9307
RF 0.9769 0.9558 0.9774 1.0000 0.9384 0.9475
XGB 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548
cTDhC LGBM 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402
CAT 0.9730 0.9489 0.9737 1.0000 0.9461 0.9475

STHPP 0.9884 0.9774 0.9885 1.0000 0.9769 0.9771
RF 0.9692 0.9420 0.9701 1.0000 0.9538 0.9475
XGB 0.9730 0.9489 0.9737 1.0000 0.9461 0.9548
PAAC LGBM 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548
CAT 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548
STHPP 0.9884 0.9847 0.9885 0.9923 0.9846 0.9769
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Figure 4. Performance comparison of ML classifiers on testing dataset using different feature extraction methods:
(A) Amino Acid Composition (AAC), (B) Di-Peptide Composition (DPC), (C) Composition, Transition, Distribution
Composition (CTDC), and (D) Pseudo-Amino Acid Composition (PAAC).
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Figure 5. Comparative Performance of Different Feature Extractors on (A) Training Dataset and (B) Testing
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Figure 6. Receiver Operating Characteristic (ROC) Curves with Area Under the Curve (AUC) scores of various
classifiers on (A) Training Dataset and (B) Testing Dataset.

Figure 6 presents the Receiver Operating Characteristic
(ROC) curves, along with the corresponding Area Under the
Curve (AUC) scores, for a variety of classifiers. The figure is
organized into two separate subplots, each serving a specific
purpose in evaluating the classifiers’ performance. Subplot
(A) depicts the ROC curves generated using the training
dataset, which illustrates how well each classifier performs
during the model training process. This provides valuable
insights into the ability of the classifiers to distinguish
between classes during training. Subplot (B), on the other
hand, displays the ROC curves for the testing dataset,
highlighting the classifiers’ performance when applied to
unseen data. By comparing both subplots, one can assess not
only the classifiers’ ability to learn from the training data but
also their generalization performance on new, unseen test
data. The inclusion of AUC scores further enhances this
evaluation by providing a quantitative measure of each
classifier’s overall performance.

Extensive research has been conducted on predicting
THPs; however, there remains scope for further
advancements in this area. In our study, we utilize a THP
sequence dataset for THP prediction. Following dataset
collection, we amalgamated the main and small datasets to
create a unified dataset. Subsequently, we employed four
feature extraction methods—AAC, DPC, CTDC, and PAAC.
Five supervised ML algorithms were applied for precise THP
prediction. Post-application of the ML approaches, we
evaluated the results using various performance metrics,

including accuracy, precision, fl-score, sensitivity,
specificity, and MCC. The models previously implemented
comprised StackTHPred [8], THPep [9], SCMTHP [10],
SVM [11], and NEPTUNE [13]. Among these, our STHPP
demonstrated superior performance in accuracy, specificity,
and MCC. An example, StackTHPred [8], which relies on
gradient boosting-based feature selection before stacking,
STHPP introduces a two-layer heterogeneous ensemble
combining four diverse classifiers (RF, LGBM, XGB,
CatBoost) at the base level and CatBoost at the meta-level.
Additionally, STHPP uses raw fused features from multiple
encoding schemes (AAC, DPC, etc.) without feature filtering,
thereby preserving informative signals that may be removed
in feature selection. The training strategy in STHPP
incorporates a broader diversity of learners and a stratified k-
fold CV at both levels to reduce overfitting.

In Table 5, it is observed that our proposed STHPP model
achieved the highest accuracy score of 0.9807 among the five
machine learning algorithms evaluated. Additionally, STHPP
demonstrated superior performance across other performance
metrics, with scores of 0.9699, 0.9809, 0.9923, 0.9692, and
0.9771 for precision, fl-score, sensitivity, specificity, and
MCC value, respectively. However, this study has some
limitations. First, we used secondary dataset. Secondly, we
applied only four feature extractors and five ML models. In
the future, we will try to collect a primary dataset and apply
more feature extraction methods. In addition, we will apply
some Deep Learning algorithms.

Table 5. Comparison of the proposed model with existing methods.

Method Accuracy Precision F1-Score Sensitivity Specificity MCC
StackTHPred[8] 0.915 N/A N/A 0.915 0.915 0.831
THPep[9] 0.908 N/A N/A 0.918 0.8797 0.77
SCMTHP[10] 0.827 N/A N/A 0.869 0.785 0.656
SVM[11] 0.8656 N/A N/A 0.8063 0.8971 0.70
NEPTUNE[13] 0.888 N/A N/A N/A N/A 0.777
STHPP 0.9807 0.9699 0.9809 0.9923 0.9692 0.9771

5. Conclusion

The research presented in this article showcases the
efficacy of the AAC feature encoding method in the
identification of THPs. The utilization of Stacking Classifiers
STHPP approach has demonstrated promising results,
offering a robust and accurate framework for the prediction
of tumor homing peptides. Incorporating diverse evaluation
metrics such as accuracy, precision, fl-score, sensitivity,
specificity, and MCC offers a thorough evaluation of the
model’s performance. The findings suggest that the proposed
methodology enhances the accuracy and reliability of

identifying tumor homing peptides, contributing valuable
insights to peptide-based drug development and targeted
therapies. The combination of feature encoding techniques
with advanced machine learning strategies, as demonstrated
in this research, paves the way for further advancements in
bioinformatics and computational biology. This work lays a
foundation for future studies aiming to improve the precision
and specificity of peptide identification, ultimately advancing
our understanding of tumor-targeting mechanisms and their
therapeutic.
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