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Abstract 

The identification of tumor-homing peptides (THPs) plays a pivotal role in the development of targeted cancer therapies and 
precision medicine. Current THP identification methods still suffer from limited feature representation, moderate predictive 
performance, and insufficient generalization, highlighting the need for more robust ensemble frameworks. In this study, we 
propose STHPP, an innovative stacking-based ensemble machine learning approach designed to improve the accuracy and 
reliability of THP discovery. Two benchmark datasets, referred to as the "main" and "small" datasets of Shoombuatong were 
collected, merged, and pre-processed in preparation to create a large dataset and then split for training and testing. The 
STHPP model applies a two-layer ensemble architecture: first layer that aggregates three heterogenous baseline classifiers, 
Random Forest (RF), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and then 
second layer applies CatBoost as a meta-classifier for post-processing predictive results of the base models. The two-layer 
architecture uses model diversity and concepts in ensemble learning to enhance generalization performance. The STHPP 
framework proposed got outstanding performance with accuracy 0.98, precision 0.97, sensitivity 0.99, specificity 0.97, and 
a Matthews Correlation Coefficient (MCC) of 0.98. These are better than the performances of current state-of-the-art 
approaches, which illustrates the effectiveness of using the stacking strategy in complicated peptide classification problems. 
The finding showcases the potential of STHPP as a strong and scalable computational platform for propelling peptide-based 
drug discovery research and targeted oncology. 
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1. Introduction

Cancer is a complex and life-threatening disease
characterized by the uncontrolled growth and proliferation of 
abnormal cells that deviate from the normal regulatory 
mechanisms governing cell division. As these malignant cells 
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multiply, they invade and destroy surrounding healthy 
tissues, ultimately impairing organ function and disrupting 
physiological systems. A particularly dangerous feature of 
cancer is its ability to metastasize—spreading from its 
original site to distant organs via the lymphatic system or 
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bloodstream—making treatment increasingly difficult. 
Globally, cancer is one of the leading causes of mortality, 
second only to cardiovascular disease, and it imposes 
significant emotional, physical, and financial burdens on 
patients, families, and healthcare systems [1]. 

According to WHO/IARC 2022, cancer caused 
approximately 9.7 million deaths and 20 million new cases 
globally. These numbers are projected to increase 
dramatically by 2040, with an estimated 16 million deaths and 
29.4 million new cases anticipated [2] [3]. Despite substantial 
advancements in early detection and treatment, current 
therapeutic strategies, particularly chemotherapy, remain 
limited by significant challenges. Chemotherapeutic agents 
often lack specificity, targeting both cancerous and healthy 
cells alike. This non-selectivity results in severe side effects, 
limits treatment duration and dosage, and ultimately 
compromises therapeutic efficacy. Therefore, developing 
methods that improve tumor-specific targeting while 
minimizing off-target toxicity is a critical objective in cancer 
research [4]. 

In this context, peptides have emerged as promising 
candidates for targeted drug delivery. Various peptide-based 
systems—such as cell-penetrating peptides (CPPs), homing 
peptides (HPs), and cell-penetrating homing peptides—have 
been proposed to enhance delivery precision [5]. Among 
these, tumor-homing peptides (THPs), a subclass of HPs, 
have shown significant potential as selective delivery agents 
[6]. THPs are short peptide sequences, typically comprising 
3 to 30 amino acid residues, engineered to bind specifically 
to tumor cells or associated vasculature. They often feature 
motifs such as Arg-Gly-Asp (RGD) and Asn-Gly-Arg 
(NGR), which enable selective binding to tumor-associated 
antigens and blood vessels with poor antigenicity [7]. These 
characteristics make THPs a powerful tool for the selective 
delivery of therapeutic agents to various tumor types, 
including melanoma, colon, breast, lung, and prostate 
cancers. 

Accurate identification of tumor-homing peptides is vital 
for advancing cancer diagnosis, prognosis, and personalized 
treatment. Traditional laboratory-based identification 
methods are time-consuming, resource-intensive, and costly. 
These challenges emphasize the urgency of developing 
computational systems capable of accurately identifying 
tumor-specific peptides while reducing false predictions. To 
overcome these limitations, researchers have increasingly 
adopted computational approaches, particularly machine 
learning (ML) and deep learning (DL) techniques, which 
offer rapid, scalable, and highly accurate alternatives. These 
models can process complex biological datasets to predict 
tumor-specific biomarkers and identify THPs with 
significantly improved efficiency and precision. 

This study aims to contribute to this growing body of 
research by introducing STHPP, a stacking-based ensemble 
machine learning model specifically designed for tumor-
homing peptide identification. The major contributions of this 
work are a comprehensive dataset was created by curating 
and merging two benchmark datasets, ensuring a richer and 
more reliable foundation for robust model training and 
evaluation. To further strengthen the dataset, diverse feature 

engineering techniques were applied, enabling the extraction 
of informative attributes that not only enhanced predictive 
performance but also improved interpretability. Building on 
this, a novel stacking-based ensemble framework was 
developed, which integrated multiple baseline classifiers with 
a meta-classifier. This innovative approach consistently 
outperformed existing models across all key evaluation 
metrics, demonstrating its effectiveness and superiority. 

2. Related Work

In recent years, the identification of tumor-homing
peptides (THPs) has gained significant interest due to their 
utility in targeted cancer treatment and site-specific drug 
delivery. Because conventional experimental techniques for 
peptide identification are labor-intensive, time-consuming, 
and costly, numerous computational approaches have been 
developed to simplify the prediction process. Several 
machine learning-based models have been suggested with 
different feature extraction methods and classification 
approaches with the aim of enhancing prediction reliability 
and accuracy. This section presents key dominant models, 
their strategies, feature extraction methods, performance 
measures, and key contributions and limitations with the aim 
of motivating better ensemble-based methods like the 
presented STHPP model. 

Guan et al. [8] have suggested a stacking-based model 
known as StackTHPred. They used AAC, PAAC, PCP, 
BLOSUM62, and Z-Scale as their feature extraction methods. 
The model achieved an accuracy of 0.915 and an MCC of 
0.831. Shoombuatong et al. [9] proposed a model named 
THPep, developed using an interpretable random forest 
classifier that integrates features such as AAC, DPC, and 
PAAC. This model achieved an overall accuracy of 0.901 and 
an MCC of 0.76. Charoenkwan et al. [10] developed a model 
using SCM and the propensity scores of 20 amino acids, 
named SCMTHP. It achieved an accuracy of 0.827, 
indicating moderate but not highly competitive performance. 
Sharma et al. [11] proposed an SVM-based model utilizing 
AAC and binary profiles of peptides. The maximum 
accuracies were 86.56% for AAC-based features, 82.03% for 
dipeptide composition, and 84.19% for binary profiles. Zou 
et al. [12] proposed a method to distinguish tumor-homing 
peptides (THPs) from non-THPs using PseRECM and PsePC 
for encoding, LASSO for feature selection, and SVM for 
classification. Their model achieved classification accuracies 
of 0.8902, 0.8849, and 0.9458 on the Main, Small, and 
Main90 datasets, respectively. Another stacking-based 
model, NEPTUNE, was proposed by Charoenkwan et al. [13] 
This model employed twelve different feature extractors and 
six machine learning classifiers, with SVM serving as the 
meta-model in the stacking framework. It achieved an 
accuracy of 0.888 and an MCC of 0.777.  

Table 1 shows the taxonomy of existing research 
conducted on tumor-homing peptide prediction. While each 
of the approaches demonstrates specific strengths, they also 
come with certain limitations. This study addresses those 
limitations by introducing an improved stacking-based 
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ensemble model named STHPP, designed to more accurately 
and effectively identify tumor-homing peptides compared to 
existing prediction models. 

3. Methodology

In this research we adopted a systematic and structured
multi-stage methodology, beginning with data collection and 
consolidation. The two benchmark datasets were initially 
prepared as one main dataset and one secondary (small) 
dataset, and subsequently merged to create a rich and 
comprehensive data source. Merging was done to ensure 
enhanced data heterogeneity and robustness so that there 
could be a more solid foundation for model training and 
testing. Following the consolidation of datasets, the next 
important step was the application of various feature 
extraction techniques. These played an important role in 
identifying and isolating the most informative and useful 
features from the consolidated dataset. Based on 

considerations of useful statistical and biological 
characteristics, the process of feature extraction was 
optimized to use the learning capacity of the following 
machine learning models and improve overall prediction 
accuracy. Following this, different machine learning 
algorithms were deployed on the cleaned data. The models 
were evaluated based on how they predicted tumor-homing 
peptides (THPs), with particular emphasis on generalizability 
and reliability. The final step of the methodology was 
comprised of a comprehensive performance analysis. Several 
performance measurements, including accuracy, precision, 
recall, specificity, and Matthews Correlation Coefficient, 
were computed to assess each model's performance in an 
unbiased way. The comparison allowed us to determine the 
best-performing structure of the models and inform the 
design of our proposed stacking-based ensemble model, 
STHPP. Figure 1 displays the overall structure and workflow 
of the suggested STHPP model, with every step from 
preprocessing to final prediction indicated.

Table 1. Taxonomy of Existing Research in Tumor-Homing Peptide Prediction 

Author Method Feature Extractor Accuracy 
Guan [8] StackTHPred AAC, PAAC, PCP, BLOSUM62, and Z-Scale 0.92 

Shoombuatong [9] THPep AAC, DPC, and PAAC 0.90 
Charoenkwan [10] SCMTHP AAC, DPC, PAAC 0.82 

Sharma [11] SVM AAC, DPC, Binary Profile 0.86 
Zou [12] SVM PseRECM, PsePC, LASSO 0.94 

Charoenkwan [13] NEPTUNE AAC, DPC, AAI, APAAC, CTD, PAAC, PCP, RSs, 
RScharge, RSDHP, RSpolar, RSsecond 0.88 

Figure 1. Working Procedure to Construct STHPP 

Table 2. Description of Feature Encoding Method 

Feature Extraction Method Full Name of Descriptor Feature Dimension 
AAC Amino Acid Composition 21 
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DPC Di-Peptide Composition 400 
CTDC Composition, Transition, Distribution 39 
PAAC Pseudo-Amino Acid Composition 22 

3.1. Dataset 

During this investigation, two publicly available 
benchmark datasets referred to as the “main” and “small” 
datasets were compiled from the repository maintained at 
https://github.com/Shoombuatong/THPep [9]. The main 
dataset consists of 651 tumor-homing peptides (THPs) and an 
equal number of non-THPs, offering a balanced and extensive 
dataset for comprehensive model development. In contrast, 
the small dataset, derived as a representative subset of the 
main dataset, contains 469 THPs and 469 non-THPs. To 
enrich the training process and enhance model 
generalizability, both datasets were merged to construct a 
unified, high-quality dataset. To prevent data leakage , prior 
to merging, both datasets were checked for duplicate peptide 
sequences, no duplication is found. This consolidated dataset 
was then partitioned into distinct training and testing sets. A 
stratified sampling technique was applied during the train–
test partition to ensure proportional representation of THPs 
and non-THPs. The training set comprises 959 THPs and 959 
non-THPs, ensuring balanced class representation. The 
testing set includes 161 THPs and 161 non-THPs, facilitating 
robust model evaluation and unbiased performance 
assessment. 

3.2. Feature Extraction 

Feature extraction plays a pivotal role in machine learning 
(ML), as it converts raw biological sequences into structured 
numerical representations that are suitable for computational 
modeling. By isolating the most informative and 
discriminative features from the input data, ML models 
become not only more accurate but also more interpretable 
and generalizable [14]. In this study, we employed the 
iLearnPlus platform for feature extraction, leveraging four 
well-established encoding techniques: Amino Acid 
Composition (AAC), Di-Peptide Composition (DPC), 
Composition/Transition/Distribution Composition (CTDC), 
and Pseudo-Amino Acid Composition (PAAC). Each 
technique encapsulates distinct biological properties and is 
briefly described in the subsequent subsections. 

Table 2 provides a simple summary of the feature 
encoding schemes applied in this study. Each of these 
schemes captures varied biochemical or structural 
information of the peptide sequences and varies in the 
dimension of the resulting feature vectors. AAC documents 
the overall frequency of amino acids, while DPC considers 
local pairwise residue patterns. CTDC encodes 
physicochemical properties via statistical measurements, and 
PAAC incorporates sequence-order information, improving 

the representation of peptide structures for improved machine 
learning performance. 

3.3. Amino Acid Composition 

The Amino Acid Composition (AAC) encoding process 
involves determining the frequency of each amino acid type 
within a protein or peptide sequence. This calculation 
encompasses the frequencies of all 20 naturally occurring 
amino acids. 

𝑓𝑓(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)
𝑁𝑁

, 𝑡𝑡 ∈ {𝐴𝐴,𝐶𝐶,𝐷𝐷, … ,𝑌𝑌}           (1) 

Here, N is the length of a protein or peptide sequence, and 
N(t) denotes the count of amino acid type t. The AAC 
descriptor has demonstrated efficacy in various applications, 
including the classification of nuclear receptors and the 
anticipation of anticancer peptides [15]. 

3.4. Di-Peptide Composition 

The Dipeptide Composition (DPC) creates 400 descriptors 
and is formulated as follows: 

𝐷𝐷(𝑟𝑟, 𝑠𝑠) = 𝑁𝑁𝑟𝑟𝑟𝑟
𝑁𝑁−1

, 𝑟𝑟, 𝑠𝑠 ∈ {𝐴𝐴,𝐶𝐶,𝐷𝐷, … ,𝑌𝑌}        (2) 

In this context, Nrs represents the count of dipeptides 
formed by amino acid types r and s [16]. 

3.5. Composition, Transition, Distribution, 
Composition 

Using Composition, Transition, Distribution, Composition 
(CTDC), bioinformatics techniques are applied to extract 
characteristics from protein sequences and convert them into 
numerical representations. It includes the recording of 
physical and chemical characteristics, which helps with 
assignments such as protein categorization and structural 
forecasting. 

𝐶𝐶(𝑟𝑟) = 𝑁𝑁𝑟𝑟
𝑁𝑁

, 𝑟𝑟 ∈ {polar, neutral, hydrophobic}   (3) 

Here, N stands for the length of the sequence and N(r) for 
the count of amino acid type r in the encoded sequence [17]. 

3.6. Pseudo-Amino Acid Composition 
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The PAAC technique is utilized to transform protein 
sequences into numerical representations. This method 
captures a more extensive set of information than traditional 
amino acid composition, leading to improved performance in 
applications. 

𝑋𝑋𝑐𝑐 = 𝑓𝑓𝑐𝑐
∑ �𝑓𝑓𝑟𝑟+𝑤𝑤∑ 𝜃𝜃𝑗𝑗

𝜆𝜆
𝑗𝑗=1 �20

𝑟𝑟=1
, (1 < 𝑐𝑐 < 20)                (4) 

𝑋𝑋𝑐𝑐 = 𝑤𝑤𝜃𝜃𝑐𝑐−20
∑ �𝑓𝑓𝑟𝑟+𝑤𝑤∑ 𝜃𝜃𝑗𝑗

𝜆𝜆
𝑗𝑗=1 �20

𝑟𝑟=1
, (21 < 𝑐𝑐 < 20 + 𝜆𝜆)       (5)                                                  

The weight assigned to the sequence-order effect, 
represented as w, is commonly established at 0.05 in 
iLearnPlus, following the recommendation in [18]. 

3.7. Machine Learning Classifiers 

In this research, we constructed identification models 
employing diverse ensemble learning classification methods, 
such as Random Forest, XGBoost, LGBM, CatBoost and 
Stacking (STHPP). The subsequent section provides an 
overview of each technique. 
1) Random Forest (RF): The ensemble classifier known as

Random Forest (RF) averages decision tree model
outcomes across various dataset sub-samples to increase
accuracy and reduce overfitting. The eventual result is
predicted by majority vote. [19].

2) Light Gradient Boosting Method (LGBM): Light
Gradient Boosting Method, or LightGBM, is a
distributed architecture that uses tree-based training
techniques to achieve gradient boosting efficiency.
Through advanced techniques such as Exclusive Feature
Bundling (EFB) and Gradient-based One-Side Sampling
(GOSS), LightGBM overcomes the limitations of
histogram-based strategies used in other gradient
boosting decision tree (GBDT) frameworks. The
model’s efficiency is significantly enhanced by these
combined techniques, giving it an edge over other GBDT
architectures [20].

3) Extreme Gradient Boosting (XGB): XGBoost, or
eXtreme Gradient Boosting, is a scalable, highly
accurate, and robust gradient boosting algorithm built on
decision trees. It excels in terms of faster training times
and lower memory consumption. XGBoost provides
feature importance scores for better model understanding 
and effectively handles large datasets through parallel
processing. XGBoost rapidly and easily applied to
various tasks. [21].

4) Categorical Boosting (CatBoost): CatBoost, short for
Categorical Boosting, is a gradient boosting algorithm
designed specifically for handling categorical features
efficiently. It tackles the limitations of decision tree
models by employing techniques like Ordered Target
Statistics (OTSS), which eliminate the need for one-hot
encoding—reducing memory usage and speeding up
training, particularly on large datasets. CatBoost
achieves competitive accuracy with fewer trees, and
automatic hyperparameter tuning reduces manual effort.
While decision tree models are generally challenging to
interpret, CatBoost provides feature importance scores
and partial dependence plots to offer valuable insights.
Although it may not be optimal for every task, its
categorical data handling capabilities make it useful for
a wide range of machine learning applications. As a
relatively new algorithm, CatBoost continues to improve
through active development [22].

5) Proposed Stacking Model (STHPP): Our proposed
ensemble classifier, denoted as STHPP, adopts a
stacking-oriented methodology shows in figure 2.
Stacking involves the amalgamation of classification or
regression algorithms through a dual-layered estimation
approach. In the initial layer, referred to as baseline
models, specific classification techniques are employed.
We employed RF, LGBM, XGB and CatBoost ML
models as baseline classifier. These baseline models
make predictions based on test datasets. The subsequent
layer introduces the ultimate classifier method, termed
the Meta-Classifier. We employed CatBoost ML
algorithm as Meta-Classifier. Utilizing the predictions
generated by all baseline models as input, the Meta-
Classifier generates novel predictions. When compared
to traditional machine learning models, the stacking-
based prediction model yields higher accuracy. The
combination of different algorithms and the addition of a
two-stage prediction procedure is credited with this
improvement. CatBoost was chosen as the meta-
classifier due to its robustness in handling small to
medium-sized datasets and its built-in support for
overfitting control via Ordered Boosting and Oblivious
Trees. CatBoost can learn complex non-linear
relationships between base learners without requiring
extensive manual feature engineering. Its implicit
handling of categorical variables makes it possible to use
regularization techniques, which makes it less
susceptible to overfitting, which in the meta-learning
phase can result in degraded performance because of
over-aggregation of nearby predictions.
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Figure 2. Proposed STHPP Model Architecture Diagram 

3.8. Performance Evaluation 

To evaluate the effectiveness of the applied machine 
learning classifiers, a variety of statistical assessment metrics 
were employed [23-30]. Chief among these are accuracy, 
sensitivity (recall), and specificity, all of which are derived 
from the confusion matrix. These metrics are particularly 
useful when the target classes in the dataset are relatively 
balanced. Accuracy evaluates the overall correctness of the 
model by measuring the proportion of true results (both true 
positives and true negatives) among the total number of cases 
examined. It is calculated using Equation (6). Sensitivity 
(Recall) refers to the proportion of actual positive cases that 
are correctly identified by the model. This metric highlights 
the model’s ability to capture positive instances and is crucial 
in scenarios where false negatives are costly (Equation (7)). 
Specificity, on the other hand, represents the proportion of 
actual negatives correctly classified as such. It indicates the 
model's capability in recognizing negative instances (Equation 
(8)). In addition to these fundamental metrics, we incorporated 
Matthews Correlation Coefficient (MCC), it is a robust metric 
that considers true and false positives and negatives and 
produces a score between -1 and +1. A coefficient near +1 
indicates a perfect prediction, 0 indicates a random prediction, 
and -1 signifies total disagreement between prediction and 
observation. It is beneficial when dealing with imbalanced 
datasets [25]. The formulas for the above metrics are provided 
below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

× 100%   (6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%   (7) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

× 100%   (8) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  (𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇)−(𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹)
√(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

× 100%  (9) 

Here, TP = True Positive, TN = True Negative, FP = False 
Positive, and FN = False Negative. 

4. Result and Discussion

To test the effectiveness of the classifiers, the model's
performance was evaluated using a variety of performance 
metrics. The comprehensive methodology is outlined as 
follows. We assessed five different models: RF, LGBM, 
XGB, CAT, and STHPP, each applied to features extracted 
using iLearnPlus methods—AAC, DPC, CTDC, and PAAC. 
A 5-fold cross-validation was conducted on the training 
dataset, followed by evaluation on an independent test 
dataset. To verify the significance of the observed 
performance differences, we conducted Wilcoxon signed-
rank test between STHPP and the best-performing baseline. 
The results showed that the improvements in accuracy and 
MCC were statistically significant (p < 0.01), confirming the 
robustness of the ensemble approach. 

Table 3 displays outcomes for various performance 
metrics assessed on the training dataset. Within the five 
machine learning algorithms, STHPP attains the highest 
accuracy score of 0.9432 in AAC, while CAT records the 
lowest accuracy at 0.8725 in DPC. Additionally, STHPP 
outperforms in other performance metrics, achieving the 
maximum scores for precision (0.9434), f1-score (0.9365), 
sensitivity (0.9314), specificity (0.9563), and MCC value 
(0.8899). 

Table 4 displays the results for several performance 
measures on the testing dataset. STHPP demonstrates the 
maximum accuracy scores of 0.9884 in PAAC and 0.9807 in 
AAC. Moreover, STHPP achieves the highest scores across 
other performance metrics in PAAC, including precision 
(0.9434), f1-score (0.9365), sensitivity (0.9314), specificity 
(0.9563), and MCC value (0.8899). Conversely, AAC records 
scores of 0.9699, 0.9809, 0.9923, 0.9692, and 0.9771 in the 
respective metrics for AAC. Despite AAC’s strong 
performance in the training dataset, we choose AAC as our 
proposed feature extractor method. 

Figure 3 presents a detailed performance comparison 
conducted on the training dataset across several subplots. 
Subplot (A) illustrates the results for the Amino Acid 
Composition (AAC), while Subplot (B) focuses on the Di-
Peptide Composition (DPC). Subplot (C) displays the 
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outcomes for the Composition, Transition, Distribution, 
Composition (CTDC), and Subplot (D) provides insights of 
Pseudo-Amino Acid Composition (PAAC). Each subplot 
offers a comprehensive view of the respective ML classifiers 
performances, facilitating a clearer understanding of the 
differences and strengths among with the feature extraction 
methods. 

Figure 4 offers a comprehensive comparison of 
performance on the testing dataset, depicted across multiple 
subplots. Subplot (A) highlights the performance of Amino 
Acid Composition (AAC), while Subplot (B) focuses on Di-
Peptide Composition (DPC). Subplot (C) presents the results 
for Composition, Transition, and Distribution (CTDC), and 
Subplot (D) showcases the performance of Pseudo-Amino 
Acid Composition (PAAC). Each subplot provides a detailed 
overview of the respective ML classifiers, enabling a clearer 

understanding of their individual differences and strengths 
with our applied feature extraction methods. 

Figure 5 provides a comprehensive performance 
comparison of various feature extractors. The figure is 
divided into two distinct subplots to highlight the 
performance on different datasets. Subplot (A) illustrates the 
performance metrics obtained from the training dataset, 
providing insight into how well each feature extractor 
performs during the model’s learning phase. On the other 
hand, Subplot (B) focuses on the performance of these feature 
extractors on the testing dataset, showcasing how effectively 
the model generalizes to unseen data. By examining both 
subplots, we can assess the consistency and reliability of each 
feature extraction method across both the training and testing 
stages.

Table 3. Performance Evaluation of the Applied Classifier on Four Feature Extraction Methods using Cross 
Validation 

Extractor Classifier Accuracy Precision F1 Score Sensitivity Specificity MCC 

AAC 

RF 0.9320 0.9018 0.9266 0.9460 0.9177 0.8660 
XGB 0.9304 0.8976 0.9252 0.9545 0.9106 0.8610 

LGBM 0.9308 0.8977 0.9256 0.9554 0.9106 0.8626 
CAT 0.9250 0.8945 0.9191 0.9451 0.9085 0.8505 

STHPP 0.9432 0.9434 0.9365 0.9314 0.9563 0.8899 

DPC 

RF 0.8879 0.8796 0.8751 0.8697 0.9008 0.7665 
XGB 0.9061 0.8660 0.8999 0.9365 0.8811 0.8133 

LGBM 0.8933 0.8595 0.8852 0.9125 0.8776 0.7871 
CAT 0.8725 0.8655 0.8572 0.8491 0.8917 0.7422 

STHPP 0.9069 0.8991 0.8964 0.8920 0.9177 0.8127 

CTDC 

RF 0.9258 0.8992 0.9195 0.9374 0.9099 0.8473 
XGB 0.9223 0.8933 0.9160 0.9400 0.9078 0.8463 

LGBM 0.9246 0.8913 0.9190 0.9485 0.9050 0.8501 
CAT 0.9165 0.8862 0.9099 0.9348 0.9015 0.8333 

STHPP 0.9312 0.9387 0.9224 0.8980 0.9437 0.8479 

PAAC 

RF 0.9258 0.8992 0.9195 0.9374 0.9099 0.8620 
XGB 0.9223 0.8933 0.9160 0.9400 0.9078 0.8371 

LGBM 0.9246 0.8913 0.9190 0.9485 0.9050 0.8363 
CAT 0.9165 0.8862 0.9099 0.9348 0.9015 0.8336 

STHPP 0.9312 0.9387 0.9224 0.8980 0.9437 0.8663 
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Figure 3. Performance comparison of ML classifiers on training dataset using different feature extraction 
methods: (A) Amino Acid Composition (AAC), (B) Di-Peptide Composition (DPC), (C) Composition, Transition, 

Distribution Composition (CTDC), and (D) Pseudo-Amino Acid Composition (PAAC) 

Table 4. Performance Evaluation of the Applied Classifier on Four Feature Extraction Methods using Independent 
Test 

Extractor Classifier Accuracy Precision F1 Score Sensitivity Specificity MCC 

AAC 

RF 0.9730 0.9489 0.9737 1.0000 0.9461 0.9730 
XGB 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402 

LGBM 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548 
CAT 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402 

STHPP 0.9807 0.9699 0.9809 0.9923 0.9692 0.9771 

DPC 

RF 0.9307 0.9375 0.9302 0.9384 0.9384 0.8773 
XGB 0.9653 0.9416 0.9662 0.9923 0.9384 0.9321 

LGBM 0.9538 0.9402 0.9545 0.9692 0.9384 0.9081 
CAT 0.9153 0.9218 0.9147 0.9076 0.9230 0.8308 

STHPP 0.9615 0.9615 0.9615 0.9615 0.9692 0.9307 

CTDC 

RF 0.9769 0.9558 0.9774 1.0000 0.9384 0.9475 
XGB 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548 

LGBM 0.9692 0.9420 0.9701 1.0000 0.9384 0.9402 
CAT 0.9730 0.9489 0.9737 1.0000 0.9461 0.9475 

STHPP 0.9884 0.9774 0.9885 1.0000 0.9769 0.9771 

PAAC 

RF 0.9692 0.9420 0.9701 1.0000 0.9538 0.9475 
XGB 0.9730 0.9489 0.9737 1.0000 0.9461 0.9548 

LGBM 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548 
CAT 0.9769 0.9558 0.9774 1.0000 0.9538 0.9548 

STHPP 0.9884 0.9847 0.9885 0.9923 0.9846 0.9769 
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Figure 4. Performance comparison of ML classifiers on testing dataset using different feature extraction methods: 
(A) Amino Acid Composition (AAC), (B) Di-Peptide Composition (DPC), (C) Composition, Transition, Distribution

Composition (CTDC), and (D) Pseudo-Amino Acid Composition (PAAC). 

Figure 5. Comparative Performance of Different Feature Extractors on (A) Training Dataset and (B) Testing 
Dataset. 
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Figure 6. Receiver Operating Characteristic (ROC) Curves with Area Under the Curve (AUC) scores of various 
classifiers on (A) Training Dataset and (B) Testing Dataset. 

Figure 6 presents the Receiver Operating Characteristic 
(ROC) curves, along with the corresponding Area Under the 
Curve (AUC) scores, for a variety of classifiers. The figure is 
organized into two separate subplots, each serving a specific 
purpose in evaluating the classifiers’ performance. Subplot 
(A) depicts the ROC curves generated using the training
dataset, which illustrates how well each classifier performs
during the model training process. This provides valuable
insights into the ability of the classifiers to distinguish
between classes during training. Subplot (B), on the other
hand, displays the ROC curves for the testing dataset,
highlighting the classifiers’ performance when applied to
unseen data. By comparing both subplots, one can assess not
only the classifiers’ ability to learn from the training data but
also their generalization performance on new, unseen test
data. The inclusion of AUC scores further enhances this
evaluation by providing a quantitative measure of each
classifier’s overall performance.

Extensive research has been conducted on predicting 
THPs; however, there remains scope for further 
advancements in this area. In our study, we utilize a THP 
sequence dataset for THP prediction. Following dataset 
collection, we amalgamated the main and small datasets to 
create a unified dataset. Subsequently, we employed four 
feature extraction methods—AAC, DPC, CTDC, and PAAC. 
Five supervised ML algorithms were applied for precise THP 
prediction. Post-application of the ML approaches, we 
evaluated the results using various performance metrics, 

including accuracy, precision, f1-score, sensitivity, 
specificity, and MCC. The models previously implemented 
comprised StackTHPred [8], THPep [9], SCMTHP [10], 
SVM [11], and NEPTUNE [13]. Among these, our STHPP 
demonstrated superior performance in accuracy, specificity, 
and MCC. An example, StackTHPred [8], which relies on 
gradient boosting-based feature selection before stacking, 
STHPP introduces a two-layer heterogeneous ensemble 
combining four diverse classifiers (RF, LGBM, XGB, 
CatBoost) at the base level and CatBoost at the meta-level. 
Additionally, STHPP uses raw fused features from multiple 
encoding schemes (AAC, DPC, etc.) without feature filtering, 
thereby preserving informative signals that may be removed 
in feature selection. The training strategy in STHPP 
incorporates a broader diversity of learners and a stratified k-
fold CV at both levels to reduce overfitting. 

In Table 5, it is observed that our proposed STHPP model 
achieved the highest accuracy score of 0.9807 among the five 
machine learning algorithms evaluated. Additionally, STHPP 
demonstrated superior performance across other performance 
metrics, with scores of 0.9699, 0.9809, 0.9923, 0.9692, and 
0.9771 for precision, f1-score, sensitivity, specificity, and 
MCC value, respectively. However, this study has some 
limitations. First, we used secondary dataset. Secondly, we 
applied only four feature extractors and five ML models. In 
the future, we will try to collect a primary dataset and apply 
more feature extraction methods. In addition, we will apply 
some Deep Learning algorithms. 

Table 5. Comparison of the proposed model with existing methods. 

Method Accuracy Precision F1-Score Sensitivity Specificity MCC 
StackTHPred[8] 0.915 N/A N/A 0.915 0.915 0.831 

THPep[9] 0.908 N/A N/A 0.918 0.8797 0.77 
SCMTHP[10] 0.827 N/A N/A 0.869 0.785 0.656 

SVM[11] 0.8656 N/A N/A 0.8063 0.8971 0.70 
NEPTUNE[13] 0.888 N/A N/A N/A N/A 0.777 

STHPP 0.9807 0.9699 0.9809 0.9923 0.9692 0.9771 

5. Conclusion

The research presented in this article showcases the
efficacy of the AAC feature encoding method in the 
identification of THPs. The utilization of Stacking Classifiers 
STHPP approach has demonstrated promising results, 
offering a robust and accurate framework for the prediction 
of tumor homing peptides. Incorporating diverse evaluation 
metrics such as accuracy, precision, f1-score, sensitivity, 
specificity, and MCC offers a thorough evaluation of the 
model’s performance. The findings suggest that the proposed 
methodology enhances the accuracy and reliability of  

identifying tumor homing peptides, contributing valuable 
insights to peptide-based drug development and targeted 
therapies. The combination of feature encoding techniques 
with advanced machine learning strategies, as demonstrated 
in this research, paves the way for further advancements in 
bioinformatics and computational biology. This work lays a 
foundation for future studies aiming to improve the precision 
and specificity of peptide identification, ultimately advancing 
our understanding of tumor-targeting mechanisms and their 
therapeutic. 
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