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Abstract

The Beetle Antennae Search algorithm is a relatively one of the recent optimization approach inspired by the
foraging behavior of long-horn beetles, that copy how they use their antennae to explore the environment.

This algorithm due to its simple structure and derivative-free nature, is well suited for robotic applications
with limited computational resources. Despite many BAS-based navigation studies still handle path planning
and control independently, or apply BAS only as an offline tr ajectory op timization to ol. As a re sult, less

attention has been given to implement it in the real-time navigation framework. On the other hand, Mobile
robots, in an unseen environment cannot work these problems separately rather they must continuously
detect obstacles, update their environment model, keep re-planning safe routes, adjust control gains,
and follow a predetermined reference trajectory. An integrated BAS-enabled navigation combining
Simultaneous Localization and Mapping framework for an omnidirectional mobile robot in CoppeliaSim is
presented in this research. A LiDAR-based occupancy grid is updated continually during motion, and
obstacle detection via SLAM is used to improve safety. A modified A* algorithm is used to create collision-
free avoidance pathways, which are then smoothed. At the same time, a BAS-driven adaptive PID controller
is used to adjust the gains by using trajectory deviation as a feedback signal. To enable precise path
following, a nine-sensor infrared array is used for line tracking. The integrated system can follow
smoothed avoidance paths, calculate safe bypasses, identify impediments, and return to the original path.
In the experiments, the system was tested in two scenarios - no obstacles and with three levels of obstacles.
The results indicated higher performance when SLAM and BAS used together than conventional PID based
navigation while software simulation of SLAM often hurting the performance as well.
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1. Introduction

Autonomous mobile robots that are deployed in indus-
trial, logistics, and service environments has to navigate
safely and efficiently through obstacle filled areas while
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tracking their desired path. In practice, this requires
the robot to continuously sense its surroundings for
the said obstacles and maintain a map of free and
occupied regions. The robot also must detect previously
unknown obstacles, and react to them without aban-
doning their original task. The controller associated
with multiple sensors and planning mechanisms must
remain robust to errors, sensing noise, and sudden
changes in the reference path induced by the frequent
recalculation of paths. [1]. These requirements become
more challenging when strong constraints are placed
on computational budget and real-time responsiveness
[2][3]-

Robot control methods can be broadly categorized into
several classes. Classical control approaches include
proportional-integral-derivative (PID) control [4] and
state-space control techniques [5]. Model-based meth-
ods, such as Model Predictive Control (MPC) [6] and
sliding mode control [7], explicitly exploit system
dynamics to achieve robust and optimal performance.
Intelligent control approaches, including fuzzy logic
[8] and neural network-based control [9], are designed
to handle nonlinearities and uncertainties in complex
robotic systems. Optimization-based algorithms are
widely used for controller tuning and trajectory opti-
mization, including Genetic Algorithms (GA) [10] [11],
Particle Swarm Optimization (PSO) [12], and enhanced
variants of PSO. For example, Song in 2021 [13] formu-
lated automated guided vehicle (AGV) path planning as
a multi-objective optimization problem and proposed
an improved PSO-based method combined with an
inductive steering strategy. Simulation results demon-
strated superior performance in generating shorter and
smoother paths while effectively avoiding obstacles
in both static and dynamic environments. Liao et al.
[14] in 2020 proposed SARSA- and DQN-based rein-
forcement learning approaches for AGV path planning,
addressing instability in complex state spaces by intro-
ducing a DQN with a potential-field-based reward.
Simulation and hardware experiments on a KUKA AGV
showed that the DQN achieved an 88.62% success rate
in complex environments, outperforming SA-SARSA,
which achieved 87.82% in simpler scenarios.Between
the various attempt, Beetle Antennae Search (BAS) [15]
has attracted increasing attention due to its simplicity,
fast convergence, and low computational cost.

This algorithm known as a derivative-free nature-
inspired optimization algorithm that mimics the for-
aging behavior of beetles and is mainly applicable to
real-time robotic applications and can be used to tune
various controller parameters,such as PID [16]for more
accurate trajectory tracking over obstacle avoidance
[12].A review of prior research on the implementation
of BAS in robotic systems indicates that this approach
has demonstrated promising performance in controller
tuning, path planning, and real-time navigation tasks.

A.T. Khan et al. [17] in 2020 introduced a new model-
free control algorithm for home automation. They uni-
fied the problems of obstacle avoidance and trajectory
tracking of redundant-manipulators into a single con-
strained optimization problem to be solved via a ZNN
with BAS. They introduced a penalty function to reward
the optimizer for obstacle avoidance while tracking the
reference. Experiments were conducted using the 7-
DOF KUKA LBR IIWA-14 model provided by MATLAB
in a 3D environment with obstacles where they used
to GJK Algorithm to determine distances between 3D
objects. The results showed that the system converges
very fast towards the reference trajectory and success-
fully avoids objects while doing so.

In 2021 Jianning et al. [18] integrated the BAS into the
RRT* algorithm for efficient path planning in complex
and tight spaces like the GIS maintenance scenarios.
BASL-RRT* uses BAS in addition to random point sam-
pling in the RRT* algorithm and then uses a weighted
lazy extension method to discard BAS nodes[19]. They
modelled the GIS cavity surface as a 2D plane with
circles indicating holes and foreign obstacles. Experi-
ments in this environment showed massive reductions
in computation time and number of nodes created com-
pared to RRT*. The authors report that RRT* required
133.15 s with 8,487 nodes, while BASL-RRT* reduced
the runtime to 29.53 s using only 1,302 nodes.

In 2022, Qian Q. et al. [20] in their paper demonstrated
the Enhanced BAS (EBAS) algorithm, an upgraded ver-
sion of the classical BAS method tailored for complex
and high-dimensional optimization tasks. EBAS incor-
porates a curve-based adaptive step size mechanism
to better balance global exploration with local conver-
gence, preventing premature stagnation. The algorithm
was tested using the CEC’17 benchmark suite. In one
notable case - the 10D F1 function - EBAS reduced the
fitness value dramatically to 3.0x10e6, a clear leap over
the original BAS’s 1.1x10e7. Overall, EBAS consistently
outperformed state-of-the-art algorithms such as Grey
Wolf Optimizer (GWO) and Slime Mould Algorithm
(SMA), establishing itself as a strong contender for
tackling unbiased and complex optimization problems.
Liang, et al. [21] introduced an improved BAS path
planning algorithm for vehicles in 2022. It uses map
safety thresholds around obstacles, proposes the use
of virtual target points and path-smoothening using
B-Spline. The use of virtual target points improves
the ability of the bot to fall into local extrema. The
experiments were carried out of simulated 2D map
with static obstacles on MATLAB. Compared to APF
algorithm, VBAS generated shorter paths in much faster
computation time in both single and multi-obstacle
environments. The authors report that for multiple reg-
ular obstacles, VBAS achieved a path length of 860.56
m in 0.198 s compared to APF’s 958.11 m in 2.326 s,
while for multiple irregular obstacles VBAS produced
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a 1123.15 m path in 0.205 s versus APF’s 1272.00 m in
1.220 s.In the paper by Zha et al. [22] in 2023, they have
introduced a method to solve the strong randomness
and poor stability of the BAS path planning algorithm
for Unmanned Surface Vehicles. They put a constraint
on the maximum turning angle and incorporated this
into the fitness function. The also improved the step-
size selection to reduce falls to the local minima. They
simulated their approach on a 2D MATLAB environ-
ment with circular obstacles. The algorithm saw a 50%
reduction in cumulative angle changes and also pro-
duced a shorter path length, reduced by almost 17
units. Yu, et al. [23] proposed combining water flow
potential method with BAS for better path planning.
They started by dividing paths into segments. They
used the water flow potential field method for local path
planning between waypoints, avoiding obstacles and
iteratively optimise waypoints with BAS for shortest,
collision-free path. Experiments were done is a custom
2D environment with static obstacles showed that the
combined algorithm generally reduced optimal path
length and showed faster convergence when compared
with other heuristic algorithms. The authors report that
WPFBAS achieved the shortest optimal path length
of 28.62 with the lowest average runtime of 0.24 s,
outperforming PSO at 29.45 and 3.68 s and GA at
31.57 and 0.42 s.Also authors Lyu et al. [24] proposed
an Improved Beetle Swarm Optimization (IBSO) algo-
rithm for efficient, collision-free path planning in static
environments. Inspired by the Artificial Bee Colony
algorithm, IBSO introduces multiple beetle agents for
diversified global search and a Levy Flight step-size
strategy to avoid local minima. Experiments on a 2D
MATLAB map with circular obstacles demonstrate that
IBSO achieves the shortest path length (542.01 m) and
lowest runtime (1.31 s), outperforming ABC (549.68 m,
2.20s) and PSO (553.03 m, 3.15 s).

In 2024 Chen C. et al. [25] in their paper presented a
survey examining the convergence behavior and real-
world applications of the BAS algorithm. While BAS
is known for its simplicity and low computational
overhead, the study identifies a key limitation that it
has relatively slow convergence in high-dimensional
optimization tasks. The authors investigated the signifi-
cant influence of parameters tuning on the convergence
behavior, to the end that, provided the appropriate
values are chosen, BAS can certainly be used to arrive
at optimal solutions. It is also observed in the study
that hybrid methods especially such as BAS-PSO are
methods that integrate the directional search nature of
BAS with global learning nature of Particle Swarm Opti-
mization. Such hybrid methods were said to work better
in cases like path planning of robots and scheduling
of resources. In particular, with electric load dispatch
problems, BAS-PSO performed better when compared
to the standalone PSO and Genetic Algorithms, which

implies that the basis of hybrid approaches of BAS-
based will perform well on complex and real-time opti-
mization problems.

In 2025 Dwivedi et al. [26] studied a comparative
analysis between BAS and Particle Swarm Optimization
(PSO) for optimizing image transformation parameters
relevant to navigation. Using BAS and PSO algorithm:s,
the study fine-tuned BAS parameters for optimal per-
formance in tasks such as 2D translation, rotation, and
scaling. Error metrics based on pixel intensity were
used to assess performance. BAS outperformed PSO,
achieving 12.5% faster convergence and an 8.3% lower
final alignment error. The study concluded that BAS
effectively avoids local minima and is computationally
efficient for image-based optimization tasks relevant
to path planning. In the same year, Jiang et al. [27]
designed an improved FOPID controller (FBPA-FOPID)
for efficient and accurate path tracking on a 6 DOF
robotic arm. They used a Fractional Order PID con-
troller to make it more adaptive to complex systems and
proposed using BAS along with Particle Swarm Opti-
mization to tune the controller. Experiments were done
on the UR5 robotic arm in Simulink/MATLAB envi-
ronment. Results showed that their controller had the
smallest overshoot, fastest response and lowest tracking
error when compared to PID and FOPID controllers.
Although numerous studies have been reported on
robotic path tracking, most existing works lack experi-
mental validation on omni-directional robot platforms.
Omni-directional robots are particularly important
because they enable independent control of motion
in longitudinal, lateral, and rotational directions with-
out requiring platform reorientation. This holonomic
mobility significantly enhances maneuverability in con-
fined and cluttered environments such as warehouses,
hospitals, and industrial facilities, while also enabling
smoother trajectory tracking and faster responses
to dynamic obstacles. Consequently, omni-directional
platforms are well suited for advanced autonomous
navigation and high-precision AGV applications. Prior
work shows that BAS-based and hybrid optimiza-
tion methods significantly improve convergence speed
and path efficiency in robotic and vehicle naviga-
tion, though their application to high-dimensional and
omni-directional platforms remains relatively underex-
plored. In contrast, a mobile robot deployed in real-
istic scenarios must coordinate multiple tasks simul-
taneously. It must build or update an environment
map from onboard sensors, detect collisions or near-
collisions in real time [28], compute avoidance trajecto-
ries, follow them with sufficient smoothness, and then
rejoin its nominal mission path. The control gains that
work well during nominal line following may be sub-
optimal when the robot is executing sharp avoidance
maneuvers in the vicinity of obstacles. This creates a
coupled problem: path planning and controller tuning
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cannot be considered in isolation if the goal is end-to-
end robust navigation [29].To address this challenge, an
integrated navigation framework is required in which
perception, replanning, and control adaptation operate
within a unified online loop. In this type of frame-
work, the planner is required to consider the dynamic
response of the robot, while the controller adjusts
its gains based on how much the trajectory deviates
and the surrounding environment. This close coupling
helps the robot to keep stability, smooth movement,
and good tracking accuracy, even when operating in
cluttered and partly unknown environments.

Although Moshayedi et al. [30] evaluated an omnidi-
rectional robot in CoppeliaSim, focusing on naviga-
tion accuracy, efficiency, and safety across diverse path
conditions using SLAM. As the metrics time, velocity,
body orientation, and tracking error were analyzed,
and results shows that higher speeds increase deviation
and require improved speed control. These findings
support optimizing AGV performance in real-world
applications including automation, healthcare, and ser-
vice robotics while reducing development cost and risk
through virtual prototyping and Niu et al. in 2024
[10] addressed AGV path planning using mechanum-
wheeled omnidirectional platforms by improving the
traditional Genetic Algorithm. They employed Ant
Colony Optimization-based initialization for higher-
quality initial paths and incorporated path smoothness
constraints, along with advanced selection, crossover,
and mutation strategies, to reduce redundant nodes,
avoid local minima [31], and accelerate convergence.
Experiments using a ROS-based software stack show
that the improved algorithm reduces path length by
almost 30%, convergence count by 50%, and turn
counts by over 75%.There are relatively few studies that
have implemented control and navigation strategies on
AGV platforms with omni-directional wheels ; however,
these platforms are expected to play a crucial role in the
future of robotics due to their superior maneuverability,
holonomic motion capability, precise positioning, and
ability to operate efficiently in constrained and dynamic
environments [32]

And as a lightweight single-agent metaheuristic with
minimal parameterization, BAS offers competitive per-
formance across a wide range of optimization prob-
lems while maintaining strong real-time capability. Its
derivative-free structure and online adaptability make
it especially suitable for automated guided vehicle
(AGV) control, including dynamic obstacle avoidance
and controller tuning. Recent studies indicate that BAS
can reduce path length, improve convergence speed,
and lower computational complexity compared with
more computationally intensive optimization meth-
ods, although many existing works apply BAS primar-
ily as an offline planner or gain tuner[12].Integrating
BAS directly into the online navigation and control

loop enables more robust, adaptive, and efficient robot
operation in dynamic and partially unknown envi-
ronments. In parallel, learning-based approaches, par-
ticularly deep reinforcement learning, have enabled
robots to exhibit adaptive and autonomous behaviors
in complex and dynamic environments. Hybrid control
strategies that combine classical, optimization-based,
and learning-based methods are increasingly adopted
to balance stability, adaptability, and computational
efficiency.Considering the objective of demonstrating
the efficiency and potential of the BAS algorithm, as
well as its effectiveness when combined with obstacle
detection techniques on an omni-directional robotic
platform, the objectives of this paper are as follows:

1. To design and implement an integrated nav-
igation and control framework for an omni-
directional mobile robot operating in environ-
ments with unknown static obstacles.

2. To demonstrate the effectiveness of the BAS
algorithm for real-time adaptive tuning of PID
controller gains during path tracking.

3. To employ the BAS algorithm as a path-smoothing
and trajectory refinement method to transform
discrete A*-based paths into dynamically feasible
motions, in conjunction with SLAM-based map-

ping.

4. To test the online obstacle detection and local map
updating using onboard sensors without prior
knowledge of the environment.

5. To test and ensure smooth obstacle avoidance and
reliable rejoining of the original reference path
with bounded deviation.

6. To evaluate and study the proposed framework
using measurable performance metrics such as
path deviation, total distance traveled, execution
time, and changes in angular motion.

7. To check the practical feasibility of integrating
BAS into both the planning and control lay-
ers when implemented on an omni-directional
robotic platform.

The using of Simultaneous Localization and Mapping
(SLAM), BAS, and the A* search algorithm give a
good opportunity for autonomous robotic navigation
and global optimization. SLAM serves as the primary
mechanism for real-time environment mapping and
state estimation, while BAS offers a computationally
efficient, gradient-free metaheuristic for searching
optimal solutions based on the biological sensing
mechanics of beetle antennae. When coupled with
the A* algorithm the standard for deterministic
pathfinding and cost-minimal trajectory planning.
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These technologies enable a multilayered approach to
navigation, balancing local obstacle avoidance, global
path optimization, and efficient search in complex
multidimensional spaces. The remainder of this paper
is organized as follows. Following the introduction
and statement of objectives, Section 2 describes the
proposed methodology, including an overview of the
BAS algorithm and detailed specifications of the
environment, robot platform, and sensor hardware
and software. Section 3 reports the simulation and
testing results, accompanied by a detailed analysis and
discussion. Finally, Section 4 concludes the paper by
summarizing the findings and outlining the limitations
of the study and directions for future work.

2. Methodology

As mentioned , the main algorithms employed in this
work are the BAS algorithm and a modified A* search
method along with SLAM , which are described in the
following sections.SLAM and A* search are chosen in
this work because they play complementary roles in
autonomous navigation. SLAM allows the robot to build
a map of an unknown environment while at the same
time estimating its own position using onboard sensors,
which is important for stable and reliable operation
in dynamic environments. Accurate localization and
mapping support effective obstacle avoidance and
informed decision-making [30]. A* search provides
an efficient and optimal path-planning mechanism
by computing collision-free paths between start and
goal states, and when combined with SLAM-generated
maps, it ensures safe and optimal navigation [32]

2.1. Beetle Antenna Search (BAS)

BAS is inspired from the exploratory behavior of
beetles when sensing and moving toward food sources.
The algorithm works by updating positions in an
iterative manner using local comparisons of objective
function values, which allows the search space to
be explored and exploited efficiently with relatively
low computational cost. [25] Let the solution space
be defined in RY, where each beetle represents a
candidate solution vector p; € Rd, for k=1,2,...,M.
At initialization, all beetles are randomly distributed
within the feasible domain. The quality of a candidate
solution is evaluated using an objective function J(p),
which is problem-dependent and maps a position
vector to a scalar fitness value. A key component of
BAS is the perception range, denoted by p(t), which
specifies the spatial neighborhood within which a beetle
can sense alternative solutions at iteration t. This
sensing range is initialized to a predefined maximum
value py and is progressively reduced to promote
convergence.Meanwhile of each iteration, every beetle
px(t) samples a neighboring candidate p,(t) within

its sensing radius. If the neighboring beetle exhibits
superior fitness, i.e.,

T (pe(t) > T (pk(t)),

the beetle updates its position by moving in the
direction of the superior solution according to

pi(t +1) = pi(t) + @ (pe(t) — pi(t)) (1)

where @ > 0 denotes the motion gain controlling the
step magnitude.If no improvement is detected, the
beetle performs exploratory motion within its local
neighborhood to avoid premature stagnation. This
random perturbation is modeled as

Pi(t + 1) = pi(t) + &(t), (2)

where &(t) is a bounded stochastic vector sampled
uniformly within the sensing radius.Optionally, a
refinement operator may be applied after the movement
phase to further enhance solution quality. This
operator encapsulates problem-specific heuristics and
is expressed as

pi(t+1) = ®(px(t +1)), (3)

where @(-) denotes a local improvement mapping.

To balance global exploration and local exploitation,
the sensing radius is updated over time using a decay
rule:

p(t+1)=yp(t), 0<y<l, (4)

ensuring a gradual transition from coarse search to fine
optimization. If p(t) falls below a predefined threshold
Pmin, it may be reinitialized to p to restore diversity.

The iterative process continues until a stopping
condition is met, such as reaching a maximum number
of iterations or observing negligible improvement in the
objective function. Upon termination, the best solution
obtained across all beetles is reported as

p'= argnng(pk)- (5)

2.2. Modified A* Pathfinding

The A* algorithm is a widely-used path finding
algorithm that finds the shortest path from a start node
to a goal node in a weighted graph. The algorithm 1 as it
shown, maintains a priority queue of nodes to explore,
where each node # is assigned a cost function:

f(n) = g(n) + hin) (6)

where, g(n) is the actual cost from the start node to
node n; h(n) is the heuristic estimate of the cost from
node # to the goal; f(#) is the estimated total cost of the
path through node n.The heuristic function used in this
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Algorithm 1 Beetle Antenna Search (BAS) Algorithm

1: Randomly initialize beetle positions py(0) € RY, k =
1,2,..., M, within the feasible domain

2: Set sensing radius p(0) = pg

3: Evaluate objective function [J(pg(0)) for all beetles
4: fort = 0to Ty, — 1 do

5. for each beetle k =1 to M do

6: Select a neighboring beetle p,(t) such that

pe(t) — pe(Hll < p(t)

7: if 7(pe(t)) > T (pk(t)) then

8: Update position using directed motion:

9 pi(t + 1) = pi(t) + a(pe(t) - pi(t))

10: else
11: Generate random perturbation e&(t) with

le(®)l < p(t)

12: pi(t +1) = pi(t) + &(t)

13: end if

14: Apply optional refinement operator:
15: pr(t+1) Z(D(pk(t+1))

16: Evaluate fitness J (px(t + 1))

17:  end for
18:  Update sensing radius: p(t + 1) = y p(t)
19:  if p(t+ 1) < pyin then

20: p(t+1) < po
21:  endif
22: end for

23: Determine best solution: p* = arg maxp, J (px)
24:
25: return p* =0

implementation is the Euclidean distance:

ha,b) = \Jlax = b)? + (@, = by = la = bl (7)

To enhance safety and generate paths that maintain
distance from obstacles, we introduce a modified A*
algorithm that incorporates an obstacle penalty term
into the cost function. The modified cost function
becomes:

f(n) = g(n) +h(n) + A- $(n) (8)

where, A is a weighting factor (set to 1 in this
implementation); ¢(n) is the obstacle penalty function.
The obstacle penalty function ¢(n) counts the number
of occupied cells within a specified radius r around
node n. For a grid G where G(x,y) =1 indicates an
obstacle and G(x, ) = 0 indicates free space, the penalty
is defined as:

r

pm= )

dx=-r
dy=—r
(dx,dy)=(0,0)

9)

2 EA

Ig(ny, + dx, ny + dy) - G(ny + dx, ny + dy)

where, n = (n,, ny) is the position of node 7 in the grid;
r =4 is the inspection radius; Ig(x,v) is an indicator
function that equals 1 if (x, y) is within grid bounds, 0
otherwise The indicator function is defined as:

Iy(x, p) = 1 if0<x<rowsand 0 <y <cols
B Y= 0 otherwise

The algorithm uses a 4-directional movement model,
allowing transitions only in cardinal directions:

(10)

N(n) = {(ny +dx, n, +dy) : (dx,dy) €
{(_1; 0)) (1; O)r (O; _1), (0, 1)}}
(11)
The transition cost between adjacent nodes is

computed as:
c(n,n’) = \Jdx? + dy?

For the 4-directional model, this simplifies to
c(n,n’) =1 for all valid transitions. The following 2
shows the modified A* search algorithm tuned with
obstacle avoidance.

(12)

Algorithm 2 Modified A* with Obstacle Avoidance

1: Input: Grid G, Start s, Goal g, Radius r

2: Output: Path from sto g

3: Initialize OPENSET « {(f'(s), £(5), 5, [s])}

4: Initialize VisITED « 0

5. while OprenSEeT = () do

6:  (f’, Qeostr 1, path) « PoPMin(OPENSET)

7. if n = g then

8:

9: return path
10: end if
11:  if n € Visitep then
12: continue
13:  endif
14:  VisiTED « Visitep U {n}
15:  forall n’ € N(n) where G(n’) = 0 and n’ € VisiTED

do

Le: Znew < Scost + (1, 1’)

17: ¢(n’) « CountObstaclesInRadius(G, #’, 1)
18: f/(n') & gnew + h(n, ) + p(n)

19: OPENSET « OPENSET U {(f'(1’), gnew, ', path +

(']}

20:  end for

21: end while

22:

23: return ( {No path found} =0

In Algorithm 2, standard A* algorithm is extended by
augmenting the evaluation function with an obstacle-
density penalty, discouraging paths that pass close to
cluttered regions. At each expansion, only collision-
free neighboring nodes are considered, and their costs
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are updated using the accumulated path cost, heuristic
distance to the goal, and a local obstacle term within a
specified radius. The search terminates when the goal
is reached with a feasible path or when no valid nodes
remain to be explored. This work develops an inte-
grated autonomous navigation framework for a mobile
robot operating in cluttered and partially unknown
environments. The proposed system adopts a closed-
loop architecture that fuses local perception, online
occupancy-grid mapping, global replanning, and adap-
tive control. The primary objective is to enable the robot
to track a predefined reference path while robustly
responding to unexpected obstacles, reconstructing the
local environment, computing collision-free trajectories
using a modified A* search algorithm, and smoothly
rejoining the original route.

2.3. Integrated BAS—SLAM Navigation

The complete execution flow of the integrated frame-
work is summarized in Algorithm 3.

BAS-PID Line Following. Trajectory tracking is per-
formed using a PID controller whose gains (K, K;, Kj)
are adapted online through the BAS metaheuristic as
shown in Algorithm 3. This strategy allows the con-
troller to deal with nonlinear dynamics and chang-
ing tracking requirements that occur during obstacle
avoidance. BAS imitates the sensing behavior of long-
horned beetles by creating mirrored perturbed values
around the current gain vector, which represent the left
and right antennae. At every two control iterations, the
deviation of the robot’s trajectory is measured and used
as the fitness value. Based on this, the PID gains are
updated toward the direction that gives better tracking
performance. An exponentially decreasing step size is
used so that convergence is achieved while keeping the
closed-loop system stable.

Obstacle Avoidance and Global Re-planning. The normal
line-following behavior is stopped once an obstacle is
detected by the forward LiDAR within a predefined
safety distance. At this point, the robot is forced
to halt and a global replanning process is started.
First, a suitable rejoining point on the original global
path is chosen outside the detected obstacle areas.
This selection is mainly based on geometric closeness
and basic reachability constraints.Next, path planning
is carried out on the filled occupancy grid using a
modified A* search. Here the cost function f(n) is
developed as a result of integrating the Euclidean path
length, a heuristic parameter that is the distance that
is left to be covered to reach the target and another
penalty factor that is a local congestion. This hybrid
action plan would direct the planner on safer and
more dependable directions, especially on situations
that are crowded with clutters. On obtaining the first
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Algorithm 3 Integrated BAS-SLAM Navigation

Require: Initial pose xg, reference path P, occupancy
grid G, PID gains (Kp, K;, K;), BAS parameters

(dOr dincr ddecay)-
1: Preprocessing: Fill closed regions in G; inflate
obstacles by 3 cells.
2: Initialize BAS: d < dg, D < dgecay - d, b ~ N(0,I3)
3: while simulation active do
4 Acquire LiDAR scan £; acquire vision sensors;
compute line error e.
50 if min(dist(Leont)) < Tops and SLAM  enabled

then
6: Suspend robot motion: v « 0
7: Determine rejoin target g on P (forward-biased
selection).

8: Modified A* Pathfinding:
9: Initialize priority queue: f(xq) = h(xq, g)

10: while queue not empty do
11: Pop node n with minimum f(n)
12: if n = g then
break
13: end if
14: .
f f hb "of nd
15: or alliizes neighbors 1 of i do () =
0-1wops Clrs4 ]IG(n’Jrr):l
16: PrioriZy: f(n') = g(n’)+ h(n', g) + Pp(n')
17: end for
18: end while
19: Extract path I'; subsample to waypoints (step
. ~|T|/6).
20: Smooth: I'” « BAS-Smooth(I'; & = 15,8 =
5,97 = 0.01, 150 iter)
21 Waypoint Tracking:
22f for al]l waypoint w € I'’ do
23: while [[W — X;opotll > Tarrival dO
24: Transform w to robot frame; compute
heading a
25: Apply: v (0.8Varge, 0, —8a° — 16a
26: endli«}r)h}ille ( target )
27: end for
28: Align orientation to 6g; reset integral I « 0
29:  else
30: BAS-PID Line Following:
31: if iteration mod 2 = 1 then
32 Sample direction: b ~ N(0, I3); normalize
33 Left antenna: K; = [K), K, K4] + d - b; mea-
sure e
34: else
35: Right antenna: Ky = [K,, K, K;] — d - b; mea-
sure eg
36: Update: (K, K, Kg] < [K,, Ki, Kg] +
sign(eg —e)-D-b
37: Decay: d « dgecay - d + dine) D < dgecay - D
38: end if
39: Compute PID: u = Kpe + K;I + Ky(e — eprev)
40:

Apply velocities: v « (v ,0,u
41: endI;F Y (arger )

42: end while=0
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path likely generated by the AST algorithm, the path is
down sampled and then refined to a solution obtained
via a smoothing process that is inspired by the BAS
algorithm. The step of refinement minimizes spikes
in directional change and undesired oscillations and
produces a smooth curve to provide a much improved
fit to the kinematic and dynamic constraints of the
robot.

Trajectory Execution and Path Rejoining:. The optimized
avoidance trajectory is carried out by converting the
planned waypoints into the robot’s local coordinate
frame and then generating the required linear and
angular velocity commands. During this phase, the
BAS-tuned PID controller stays active to continuously
correct tracking errors. After the robot reaches the
selected rejoin point, its yaw is aligned again with the
original reference path, and normal line-following oper-
ation is smoothly resumed.All components of the pro-
posed framework, including BAS-based gain adapta-
tion, SLAM-based mapping, and A*-based replanning,
operate within a fixed-rate simulation control loop.
Due to the lightweight, single-agent formulation of BAS
and the limited dimensionality of the PID gain space,
the additional computational overhead introduced by
online optimization remains low compared to mapping
and global replanning. While the present study focuses
on navigation performance rather than detailed timing
analysis, the framework was executed without observ-
able control-loop violations in simulation, supporting
its suitability for real-time operation. Quantitative pro-
filing of replanning latency, control-cycle timing, and
CPU usage is left for future hardware-based evaluation.

2.4. Used platform Overview and Architecture

As mentioned earlier, although various robotic con-
figurations have been explored in the literature, rela-
tively limited work has been reported on the imple-
mentation and experimental validation of navigation
and control frameworks on omni-directional AGV plat-
forms. Addressing this gap is the primary focus of
this paper. To this end, the KUKA YouBot-an omni-
directional AGV equipped (Figure 1) with mecanum
wheels-is selected as the experimental platform due to
its flexibility, maneuverability, and relevance to real-
world industrial applications. The detailed hardware
specifications of the KUKA YouBot platform, as mod-
eled in the simulation environment, are summarized in
Table 1.

SLAM is then applied to project both the LiDAR
endpoints and intermediate points into a global 2D
occupancy grid. In simulation this is done via ray-
casting. Cells crossed by a ray are marked as free space,
the end points are labeled as occupied, and unknown
areas are initialized first and gradually updated as the
robot moves. The line-tracking subsystem is basing on a

1

¥
N

—

Figure 1. Components and sections of the omni-directional
KUKA robot equipped with perception sensors: (A) omni-wheel,
(B) robot arm, (C) Hokuyo URG 04LX (approx. 5.6 m range)
LiDAR, and (D) nine-vision-sensor array configured as a line
sensor.

vision sensor array mounted at the front that constantly
supplies data on the lateral offset that the robot has of
the black reference line. The sensors give an averaged
value of grayscale intensity and a symmetric weighted
plan is employed amongst the sensors to compute a
single deviation error. This error signal is subsequently
given to the steering controller and it is the primary
input in controlling the path-tracking behavior.

EAI Endorsed Transactions on
Al and Robotics
| Volume 5 | 2026 |

< EAI 8



An Integrated Beetle Antennae Search—Enabled Navigation Framework for Omnidirectional AGV Mobile Robots in Unknown Environments

Table 1. The KUKA YouBot Platform Specification

Parameter Specification

Dimensions (L x W x H) 580 mm x 376 mm x 140 mm

Total Weight 20 kg

Drive System 4 Mecanum Wheels (Omnidirectional)
Max. Payload 20 kg

Manipulator
LiDAR Sensor
Line Sensors
Communication
Omni-Wheel

5 DoF (not utilized for navigation)

Hokuyo URG-04LX (Range: ~ 5.6 m)

Custom 9-Element IR Array

ZeroMQ Remote API (Simulated Wireless)

2 rims and 9 free-running rollers (mounted @ 45 degree)

2.5. Tested and Simulation Environment

The simulation setup is implemented using the
CoppeliaSim platform (formerly V-REP) [33], where
a KUKA mobile manipulator is utilized, as depicted
in Figure 1. To ensure experimental reliability, all
simulations are carried out in a controlled indoor
environment. The workspace features a rigid ground
plane with dimensions of 10 x 10 x 0.40 m along the
x, v, and z axes, respectively. All the simulations are
done in controlled indoor atmosphere to guarantee the
reliability of the experiments.

The workstation has such a surface ground plane
dimensions of 10x 10 x 0.40 m along the x, y, and
z axis. One of its workspaces has a predetermined
reference trajectory which is held fixed during all
experiments. The trajectory has a total length of
32.3 m and a uniform width of 0.04 m making it
impose a uniform geometrical assumption on the
assessment of the path-following performance. There
are two experimental conditions, which include the
environment free of obstacles and one with obstacles.
The sensing set up, the control settings and the
reference trajectory, as well as the robot model, are
maintained in both instances.

Scene A: Obstacle-Free Environment:. In the obstacle-
free configuration, the workspace contains no external
objects. This scene serves as a baseline to evaluate path-
following section only and motion control performance
without the sensing-driven interference.

Scene B: Obstacle Environment:. In the obstacle-based
configuration, the environment is populated with static
cubic obstacles, each with identical dimensions of
0.50 x 0.50 x 0.50 m. The obstacles are placed at prede-
fined locations to introduce spatial constraints and per-
ception challenges. Different experimental runs activate
subsets of these obstacles to realize environments with
increasing obstacle density, specifically three, seven,
and nine obstacles.All obstacle locations used across
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the experiments are summarized in Table 2. For all
obstacles, the vertical coordinate is fixed at z = 0.25 m.

Table 2. Obstacle(OBS)locations for different obstacle-density
scenes. all obstacle with the size of 0.50m x 0.50m x 0.50m.

Three-Obstacle(OBS) Scene

OBS x(m) p(m) z(m)
OB1 7.50 -1.35 0.25
OB2 -3.775 0.625 0.25
OB3 2.550 1.850 0.25
Seven-Obstacle(OBS) Scene
Obstacle x(m) y(m) z(m)
OB1 -1.475 -1.100 0.25
OB2 0.750 -1.375 0.25
OB3 2.400 -1.725 0.25
OB4 2.700  0.925 0.25
OB5 1.275  3.050 0.25
OB6 -2.550 3.550 0.25
OB7 -3.800 0.425 0.25
Nine-Obstacle(OBS) Scene
Obstacle x(m) y(m) z(m)
OB1 -1.625 -1.325 0.25
OB2 0.700 -1.650 0.25
OB3 1.575 -3.775 0.25
OB4 2900 -1.250 0.25
OB5 2.750 1.125 0.25
OB6 1.275  3.050 0.25
OB7 -1.600 4.025 0.25
OB8 -3.750 2.025 0.25
OB9 -3.650 -0.800 0.25

Obstacle geometry and dimensions are held constant
across all experiments, and only the number and
spatial distribution of active obstacles vary. This
controlled design ensures that observed differences in
navigation performance arise solely from changes in
environmental complexity.
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2.6. Performance Metrics

To quantify navigational quality, the system records
several performance metrics during simulation ( Table
3), including the total distance traveled, total elapsed
time and average velocity, angular stability measured
through cumulative, maximum, and minimum yaw-
rate variations, and path deviation quantified as the
minimum distance to a predefined reference trajectory.
In addition, the evolution and convergence behavior
of the PID controller parameters optimized using
the BAS algorithm are monitored throughout the
navigation process. After each simulation run, all
generated maps, motion logs, and controller state
variables are exported for post-simulation analysis. The
recorded results include the navigation type, target
speed, traveled distance, elapsed time, average speed,
minimum, maximum, and average yaw-rate variations,
and average path deviation errors, task success status,
and the final converged values of the PID gains (Kp, Ki,
and Kd).

Trajectory Tracking Accuracy The average lateral
deviation is computed as

_ 1 N
d= ;mjinnpi I,
1=

Here p; shows the robot position at time step i and t;
represents the reference trajectory points. Along with
this, the maximum and minimum lateral deviations
are recorded to capture worst-case tracking errors and
closest path adherence, respectively.

Control Smoothness Control smoothness is evaluated
through changes in the robot’s heading angle. The
average angular change between consecutive time steps
is calculated as

1 N
N0 = ;wi ~0;1l,
1=

where 6; is the normalized heading angle at time step
i. Maximum and minimum angular deviations are also
reported to quantify abrupt control actions and stable
tracking intervals.

Efficiency Metrics Task efficiency is measured using
the total distance traveled, total execution time,
and average velocity. The total traveled distance is
computed as

N
Dtotal = ZHPi - Pi—l”f
Figure 2. Kuka Robot with in different scenarios in CoppeliaSim: i=2
A: Line Follower Scenario without obstacle; B: Seven-Obstacle while execution time is defined as Ty, = ty — t;. The

Scene ; C: Seven-Obstacle Scene D:Nine-Obstacle Scene average velocity is then given by ¥ = Dyosar/Troral-
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Task Success Criteria Each experimental run is
evaluated in a clear and consistent manner by
classifying it as either a success or a failure. A run
is considered successful when the robot is able to
complete the full closed-loop trajectory, return to
within 0.3 m of its initial starting position after
traveling at least 2.0 m, and maintain stable tracking
behavior by keeping its lateral deviation below 1.5 m
for the entire duration of the task. In contrast, a run
is labeled as a failure if the robot collides with any
obstacle, deviates excessively from the reference path
beyond the specified threshold, or becomes effectively
stuck. Immobilization is identified when the robot’s
displacement falls below 0.05 m over a continuous 3-
second interval, indicating a loss of meaningful forward
progress. Finally, if the robot largely crosses the total
path length of 32 meters then it is designated as failure
also. .

Adaptive Parameter Analysis For configurations
employing BAS optimization, the final converged PID
gains (K!J,(mal, Kifmal, Kﬁmal) are recorded. These values
are compared against the initial manually tuned gains
to analyze the adaptive behavior of the controller and

its influence on tracking performance.

3. Experimentation and Results

Table 4 presents the hyperparameter values used
in the integrated BAS-SLAM navigation system,
covering SLAM navigation, BAS optimization, path
smoothing, control and tracking, environmental setup,
and termination logic. Obstacle avoidance is handled
using a 0.5 m detection threshold, with A* planning
that applies a weighted obstacle penalty of 5 over a 4-
cell neighborhood, along with a 3-cell grid inflation to
keep a safe clearance. For BAS, a relatively small initial
step size of 0.0015 is used together with an exponential
decay factor of 0.95 to keep the adaptive PID tuning
stable. Path smoothing gives more importance to
obstacle clearance than to trajectory smoothness, with
only limited curvature regularization, and typically
converges within 150 iterations. Waypoint tracking
applies a cubic-linear heading correction rule with
velocity scaled to 80%, which helps achieve better
transient response.

3.1. Experimental Configurations

The experimental research takes in consideration
four varied control settings, which each depicts a
gradual advancement in freedom, adaptability, and
consciousness to the environment around. All the
configurations are experimented in the predefined
scenes that are proposed above and this will enable
a direct comparison of behavior of controllers as the

environment becomes intricate. The configuration is
deliberately made to allow observing the individual
effects of the adaptive control, obstacle avoidance and
their combined effect on the performance of navigation
to a greater degree.

Experiment 1: Baseline PID Control (Conven-
tional) The first experiment uses a standard
proportional-integral-derivative ~ (PID)  controller

with empirically tuned gains (K, = 0.01, K; = 0.0006,
K; =0.002) [1]. In this case, the robot performs
only trajectory tracking along a predefined path. No
adaptive gain tuning or obstacle avoidance is included.
This configuration is treated as the baseline and is used
as a reference point for evaluating all later experiments.

Experiment 2: BAS-Optimized PID Control The
second experiment adds adaptivity by using a BAS-
optimized PID controller. Here, the BAS algorithm
adjusts the PID gains online based on feedback
from trajectory deviation, which allows the controller
to adapt to changes in path curvature and control
disturbances. The initial step size is set to dy = 0.002,
with the antenna distance defined as Dy = 0.9d,. Both
values decay by 95% at each iteration, and the gain
updates are applied every two control cycles. Obstacle
detection and avoidance are not included in this setup,
so the effect of adaptive control can be evaluated on its
own.

Experiment 3: SLAM-Based Obstacle Avoidance The
third experiment focuses on environmental perception
and obstacle avoidance while keeping the PID gains
manually tuned. A 360-degree LiDAR sensor is used
to build an occupancy grid map with a resolution of
0.05 m over a 20 x 20 m workspace. When an obstacle is
detected within a frontal safety zone of 0.8 m and +30°,
a collision-free path is planned using the A* algorithm.
This configuration is used to study how mapping and
replanning affect navigation performance without any
adaptive control optimization.

Experiment 4: BAS-SLAM Integrated Control The
final experiment represents the complete proposed
framework, where BAS-based adaptive PID control
is combined with SLAM-driven obstacle avoidance.
In this setup, the controller gains are continuously
optimized during execution, and the SLAM module
provides real-time perception of the environment along
with dynamic replanning. For safety, obstacles in the
occupancy grid are inflated by a three-cell radius.
Each re-calculated path is further improved using BAS-
based smoothing with parameters a =20, y =0.03,
and 200 optimization iterations before execution. This
experiment is used to evaluate the combined impact
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Table 3. Navigation Performance Metrics, Units, and Significance, Parameter(P),Target Speed(TS),Distance (Dist.),Average Speed
(AS),Minimum Yaw Rate (Min 8),Minimum Yaw Rate (Min 8),Maximum Yaw Rate (Max 6),Average Yaw Rate (Avg 0),Maximum Error

(Max Err),Average Error (Avg Err)

P Definition Unit Significance
TS Desired linear velocity set for the robot m/s  Defines operating conditions and nav-
igation difficulty
Dist Total distance traveled during navigation m Indicates path efficiency; shorter dis-
tances imply more optimal trajectories
Time Total elapsed time to complete the navigation s Reflects navigation efficiency and sys-
task tem responsiveness
AS Mean linear velocity over the entire trajectory m/s  Measures motion smoothness and
velocity consistency
Min 6 Minimum  angular velocity variation rad/s Indicates lower bound of rotational
observed during navigation motion and stability
Max 6 Maximum angular velocity variation rad/s High values may indicate abrupt turns
observed during navigation or instability
Avg O Mean angular velocity variation over the rad/s Represents overall angular stability
trajectory and smoothness
Min Err | Minimum deviation from the reference m Indicates best-case trajectory tracking
trajectory accuracy
Max Err | Maximum deviation from the reference m Reflects worst-case deviation and
trajectory robustness
Avg Err | Mean deviation from the reference trajectory m Primary indicator of path-following
accuracy
Success | Task completion status 0/1  Measures reliability and feasibility of
the navigation system
K, Proportional gain after BAS convergence - Controls responsiveness to instanta-
neous error
K; Integral gain after BAS convergence - Eliminates steady-state error and
improves long-term accuracy
K4 Derivative gain after BAS convergence - Provides damping and reduces oscilla-
tions

of adaptive control and perception-based planning,
especially as obstacle density increases.

3.2. Scene |: No-Obstacle Scene (Baseline Path
Following)

This experiment evaluates the four control configura-
tions in an obstacle-free environment to isolate pure
path-following and control behavior. Although the
dataset label indicates three obstacles, no obstacles are
present in the environment for this experiment. The
reference trajectory remains unchanged, and no replan-
ning or collision avoidance is required.Each controller
is tested over a range of target speeds, from 3.5 m/s to
7.5 m/s, as summarized in Table 5. This set of tests is
mainly used to establish a baseline in terms of stability,
tracking accuracy, and how well performance scales

with speed, before adding environmental complexity in
later obstacle-based experiments.

3.3. Scene Il : Obstacle Scene

The results for Experiment II with three obstacles are
reported in Table 6. Since the obstacle layout is sparse,
all methods show relatively stable navigation behavior.
The Conventional approach achieves consistently high
success rates across most target speeds, along with
low average deviation and narrow minimum-maximum
deviation ranges. This indicates a predictable and some-
what conservative behavior. The BAS-based method
shows moderate performance, where successful runs
are limited to certain speed ranges and the average
deviation is slightly higher. This indicates that BAS
remains sensitive to parameter tuning, even when the
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Table 4. Hyperparameter Configuration for Integrated BAS—SLAM Navigation System

Category Parameter Value Description
Obstacle detection threshold (7,ps) 0.5 m LiDAR distance trigger for path replanning
Waypoint arrival threshold (T, riva1) 0.05m Distance for waypoint completion
Trajectory deviation threshold 1.5m Maximum allowable path deviation
SLAM Navigation  Path subsampling step [Tl/6 Adaptive waypoint reduction factor
Grid inflation thickness 3 cells Obstacle boundary expansion
A* obstacle penalty weight (wqps) 5 Cost multiplier for proximity to obstacles
Obstacle penalty radius 4 cells Neighborhood size for penalty computation
Initial step size (dy) 0.0015 Starting perturbation magnitude
BAS Optimization  Step decay factor (dgecay) 0.95 Exponential decay per iteration
Step increment ratio (diyc) 0.01 Additive step size adjustment
Smoothness weight («) 15 Penalty for path curvature
. Obstacle avoidance weight (f) 5 Penalty for obstacle proximity
Path Smoothing Curvature penalty (y) 0.01 Regularization for sharp turns
Optimization iterations 150 Maximum BAS smoothing cycles
Proportional gain (K},) 0.01 Initial proportional control gain
PID Controller Integral gain (K;) 0.0006 Initial integral control gain
Derivative gain (Kj) 0.002 Initial derivative control gain
. . Velocity scaling factor 0.8 Speed reduction during waypoint following
Waypoint Tracking Nonlinear control law -8a° - 16a Heading correction for angular error «

Grid dimensions

400 x 400 cells Occupancy map resolution

Grid Environment  Cell size 0.05 m Spatial discretization
Workspace coverage 20m x 20 m Total navigable area
Loop completion threshold 0.3m Distance to start for success
Termination Minimum completion distance 2.0m Required travel before loop check
Stuck check interval 3.0s Time window for movement validation

environment has a low density of obstacles. In compari-
son, the SLAM and BAS-SLAM approaches have higher
deviation values of the mean path and higher rotation
of the heading angles. The main cause of this effect is
the extra number of computations involved in terms of
localization and mapping processes that remains even
in the context of limited obstacles. Nevertheless, overall
successes of SLAM-based methods are always relatively
high, which means great robustness, but at the cost of
the generation of relatively complicated trajectories.

In the case of 7 obstacles mentioned in Table 7
the influence on the performance is more significant
and varies widely across the strategies used in control.
Success rate of the conventional PID controller is
greatly reduced especially at low and medium speed
as well as a higher average deviation of the path,
and the response becomes less stable with a bigger
variance and less repeatability of results in the repeated
trials. On the contrary, SLAM shows a similar success
percentage regardless of all the assessed speeds. This
dependability is, however, paired with great increases
in the maximum and average deviations which means
that the trajectories are more lengthy and complex as
opposed to leading to complete failures. BAS-SLAM
approach lies in the middle ground in that it has

2 EA

high success rates yet minimal growth on deviation as
opposed to standalone SLAM. These findings indicate
that incorporation of BAS is a valuable path direction
process within a more cluttered environment.

In the worst-case scenario where there are nine
obstacles as depicted in the Table 8, the drawbacks of
the traditional PID as well as the BAS enhanced PID
controllers are amplified. The traditional PID strategy
has a sharp reduction in the success rate and failures are
observed at almost all-speed settings and less chances
of recovery. In the same sense, the BAS-enhanced
PID technique fails, and the success rate is low with
increased angular variation and path error especially
in high speed where obstacles collision occur more
often.On the other hand, SLAM is the most reliable in
terms of completing a task with the mode of success
rate being high with a significant change in angular
variation and path deviation. This shows the extra
calculation and planning efforts that are involved in
US global mapping in highly cluttered surrounding. A
similar situation can be seen with BAS -SLAM strategy,
which is moderately successful and can partially reduce
the rise in deviation, but its solutions become more
unstable than in less overcrowded settings.There is
also a noticeable trend to the results of the three
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Table 5. Experiment I: No-Obstacle Scene (Baseline Path Following)

ExpType |Spd| Dist | Time | AvgS | AvgA | MinD |MaxD | AvgD | S | Kp | Ki |Kd
3.5 | 32.2099 | 84.566 | 0.3809 | 0.020772 | 0.0176 | 0.9184 | 0.4711 | S 0.01 0.0006 | 0.002
4.0 | 322788 | 80.8188 | 0.3994 | 0.019904 | 0.0204 | 0.9139 | 0.4674 | S 0.01 0.0006 | 0.002
4.5 | 323911 | 72.4722 | 0.4469 | 0.022658 | 0.0125 | 0.9254 | 0.4755 | S 0.01 0.0006 | 0.002
5.0 | 32.4868 | 62.4534 | 0.5202 | 0.023316 | 0.0124 | 0.9463 | 0.4725 | S 0.01 0.0006 | 0.002
Conventional | 5.5 | 32.6263 | 57.5834 | 0.5666 | 0.025775 | 0.0082 | 0.9569 | 0.4715 | S 0.01 0.0006 | 0.002
6.0 | 32.7826 | 56.0861 | 0.5845 | 0.029119 | 0.0131 | 0.9603 | 0.4711 | S 0.01 0.0006 | 0.002
6.5 | 32.9053 | 49.9718 | 0.6585 | 0.03149 | 0.0024 | 0.9762 | 0.4766 | S 0.01 0.0006 | 0.002
7.0 | 33.0074 | 47.3448 | 0.6972 | 0.032467 | 0.0075 | 0.9868 | 0.4766 | S 0.01 0.0006 | 0.002
7.5 | 25.861 | 35.5465 | 0.7275 | 0.033087 | 0.0108 | 1.5083 | 0.5626 | F 0.01 0.0006 | 0.002
Avg | 31.8388 | 60.7603 | 0.5535 | 0.0265 | 0.01165 | 1.0102 | 0.4827 | 88.9 | 0.0l 0.0006 | 0.002
3.5 | 32.2321 | 86.8375 | 0.3712 | 0.020852 | 0.0106 | 0.9152 | 0.4741 | S 0.01 0.0006 | 0.002
4.0 | 322651 | 80.9576 | 0.3985 | 0.01959 | 0.0151 | 0.9196 | 0.4751 | S 0.01 0.0006 | 0.002
4.5 | 32.4333 | 67.3368 | 0.4817 | 0.022885 | 0.0103 | 0.9438 | 0.4762 | S 0.01 0.0006 | 0.002
5.0 | 32.4904 | 62.2868 | 0.5216 | 0.02286 | 0.0073 | 0.9495 | 0.4714 | S 0.01 0.0006 | 0.002
SLAM 5.5 | 32.6267 | 56.9445 | 0.573 | 0.026236 | 0.0057 | 0.9515 | 0.4754 | S 0.01 0.0006 | 0.002
6.0 | 32.7803 | 65.3865 | 0.5013 | 0.028627 | 0.0087 | 0.9567 | 0.4742 | S 0.01 0.0006 | 0.002
6.5 | 32.9135 | 50.0195 | 0.658 | 0.030519 | 0.0146 | 0.9769 | 0.4728 | S 0.01 0.0006 | 0.002
7.0 | 32.9966 | 47.7979 | 0.6903 | 0.031662 | 0.0159 | 0.9907 | 0.475 | S 0.01 0.0006 | 0.002
7.5 | 25.8206 | 35.3885 | 0.7296 | 0.030269 | 0.0279 | 1.5419 | 0.5596 | F 0.01 0.0006 | 0.002
Avg | 31.8398 | 61.4395 | 0.54724 | 0.0259 | 0.0129 | 1.0162 | 0.4837 | 88.9 | 0.01 0.0006 | 0.002
3.5 [ 21.1771 | 37.7285 | 0.5613 | 0.109175 | 0.0226 | 1.5039 | 0.5065 | F [ 0.010045 | 0.006701 [ -0.002852
4.0 | 2.0098 | 47304 | 0.4249 | 0.074898 | 0.0102 | 0.5297 | 0.1892 | S | 0.000941 | -0.002847 | -0.003252
4.5 | 31.9996 | 67.9545 | 0.4709 | 0.021151 | 0.0131 | 0.8668 | 0.4717 | S | 0.020417 | 0.006252 | 0.004821
5.0 | 13.7625 | 24.4988 | 0.5618 | 0.057204 | 0.0478 | 1.5305 | 0.5481 | F | 0.004109 | 0.000574 | 0.006249
BAS+PID 55 | 31.9331 | 55.9335 | 0.5709 | 0.026092 | 0.0169 | 0.8735 | 0.4703 | S | 0.009818 | 0.006986 | 0.00315
6.0 | 32.7305 | 67.0634 | 0.4881 | 0.031139 | 0.0229 | 0.885 | 0.4723 | S | 0.009435 | -0.000916 | 0.003552
6.5 | 21.7079 | 36.3978 | 0.5964 | 0.094513 | 0.0282 | 0.9391 | 0.3585 | F | 0.01011 | -0.003856 | 0.005581
7.0 | 48.8759 | 81.8994 | 0.5968 | 0.115049 | 0.02 | 0.5615 | 0.2739 | F | 0.019023 | -0.007633 | 0.008548
7.5 | 9.8938 | 14.7839 | 0.6692 | 0.049691 | 0.0364 | 1.5165 | 0.5952 | F | 0.016737 | 0.000296 | 0.000499
Avg | 23.7878 | 43.443 | 0.5489 | 0.0643 | 0.0242 | 1.0229 | 0.43174 | 44.4 | 0.0111 0.0006 | 0.0029
35 | 73.866 | 102.8525 | 0.7182 [ 0.166291 | 0.0627 | 1.5034 | 1.0339 | F [ 0.008611 | -0.000964 | -0.003087
4.0 | 6.2473 | 12.0625 | 0.5179 | 0.118092 | 0.0434 | 0.4225 | 0.2291 | F | 0.010126 | -0.007275 | 0.009231
4.5 | 31.9082 | 67.9069 | 0.4699 | 0.021042 | 0.0106 | 0.8633 | 0.4702 | S | 0.010719 | 0.008812 | 0.0074
5.0 | 31.7764 | 61.3877 | 0.5176 | 0.022927 | 0.013 | 0.868 | 0.4693 | S |0.017894 | 0.009042 | 0.011543
BAS_SLAM | 55 | 4.8464 | 8.5399 | 0.5675 | 0.058871 | 0.0733 | 1.5085 | 0.697 | F | 0.006711 | -0.001194 | 0.00012
6.0 | 34.843 | 647123 | 0.5384 | 0.042355 | 0.0172 | 0.8966 | 0.4697 | S | 0.008436 | 0.001298 | 0.006061
6.5 | 32.3748 | 54.6155 | 0.5928 | 0.098192 | 0.0423 | 0.8928 | 0.3623 | F | 0.017141 | 0.00438 | -0.005184
7.0 | 12.8185 | 19.5899 | 0.6543 | 0.060689 | 0.023 | 1.5078 | 0.5826 | F | 0.009695 | -0.00232 | 0.00165
7.5 | 104.5929 | 107.6397 | 0.9717 | 0.15245 | 0.015 | 0.9211 | 0.4295 | F | 0.013515 | 0.00678 | -0.000427
Avg | 37.0303 | 55.4785 | 0.6164 | 0.0823 | 0.0333 | 1.0426 | 0.5270 |33.3 | 0.0114 | 0.0020 | 0.0030

result tables together (merged) (Table 6, Table 7, and
Table 8), as autonomous results with obs7, and as
autonomous results with obs9. The performance of
non-SLAM methods worsens as the obstacle density
increases, and the performance of SLAM methods
does not reduce significantly, only increasing more
complicated and lengthy paths. The hybrid BAS-SLAM
scheme always trades-off between the success rate and
trajectory efficiency, achieving better results in dense
environments compared to the conventional and the
BAS controllers and a smaller amount of deviation
overhead as compared to the pure SLAM. The noted
observations highlight the Cy peers importance of
obstacle density in determining the most appropriate
control strategy to use in autonomous navigation.

Some trials took negative or near-zero values of the
integral and derivative gains although this is largely
explained by the fact that the PID tuning of the BAS

is not constrained. Since the optimizer focuses on short-
term error reduction, it can suppress integral buildup
or derivative action, especially during transient phases
or when conditions change quickly. Although these
gain values are mathematically acceptable and did
not cause instability or divergence in the simulations,
they can reduce robustness margins and may introduce
stability risks if applied directly to real hardware.
From a physical point of view, very small or negative
gains can sometimes help limit windup and soften
aggressive corrections when feedback is noisy. At the
same time, their appearance also suggests a degree of
overfitting to short-term or transient behaviors rather
than long-term stability. This observation points to the
need for stability-aware constraints and bounded gain
optimization, which will be addressed in future work to
ensure that the resulting controller parameters remain
physically meaningful and safe for deployment on real
robotic systems.
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Table 6. Experiment II: Obstacle Scene (3 Obstacles)

Exp Type | Spd | Dist | Time | AvgS | AvgA | MinD | MaxD | AvgD | Succ | Kp | Ki | Kd
3.5 7.4493 60.5343 | 0.1232 | 0.08823 | 0.02633 | 0.85973 | 0.3924 F 0.00839 | 0.00105 | 0.00509
4.0 | 11.2219 | 40.7454 | 0.2862 | 0.05355 | 0.01355 | 0.82993 | 0.35863 F 0.00988 | 0.00317 | 0.00573
4.5 | 20.0679 | 71.0671 | 0.2706 | 0.17214 | 0.16953 | 0.88267 | 0.5393 S 0.01060 | -0.00024 | 0.00411
5.0 6.9174 26.9071 | 0.2573 | 0.15200 | 0.22903 | 0.91700 | 0.5628 F 0.01099 | -0.00031 | -0.00276
BAS 5.5 | 7.7625 | 20.7646 | 0.3746 | 0.03697 | 0.01090 | 0.80520 | 0.3248 F 0.01104 | 0.00626 | 0.00183
6.0 | 12.2938 | 35.3638 | 0.3555 | 0.07030 | 0.01543 | 1.02833 | 0.48253 S 0.00996 | 0.00264 | 0.00007
6.5 | 12.6917 | 32.6743 | 0.4004 | 0.08072 | 0.03143 | 1.07383 | 0.38783 S 0.00837 | 0.00199 | 0.00214
7.0 | 22.2447 | 65.2406 | 0.3689 | 0.11934 | 0.01530 | 0.99050 | 0.43497 F 0.00556 | -0.00157 | -0.00050
7.5 5.8249 18.1939 | 0.3471 | 0.07951 | 0.10210 | 0.96367 | 0.6199 F 0.01077 | 0.00776 | -0.00141
Avg | 11.8305 | 41.2768 | 0.3093 | 0.09475 | 0.06818 | 0.92787 | 0.45591 | 33.33 | 0.00951 | 0.00231 | 0.00159
3.5 7.6006 55.8043 | 0.1376 | 0.05819 | 0.02500 | 0.92157 | 0.3828 F 0.01 0.0006 | 0.002
4.0 | 12.7047 | 37.2931 | 0.3406 | 0.02633 | 0.01223 | 0.84513 | 0.3705 S 0.01 0.0006 | 0.002
4.5 | 33.3897 | 89.8016 | 0.3586 | 0.04935 | 0.00850 | 0.93107 | 0.43833 S 0.01 0.0006 | 0.002
5.0 | 12.5739 | 31.6186 | 0.3974 | 0.03116 | 0.00813 | 0.91940 | 0.37077 S 0.01 0.0006 | 0.002
Conventional 5.5 | 13.7548 | 35.2678 | 0.3841 | 0.03581 | 0.00850 | 0.94387 | 0.36567 S 0.01 0.0006 | 0.002
6.0 | 9.0859 | 22.4835 | 0.3985 | 0.03156 | 0.00847 | 0.87927 | 0.35793 F 0.01 0.0006 | 0.002
6.5 | 17.0436 | 34.8000 | 0.4737 | 0.04784 | 0.01103 | 1.13917 | 0.39543 S 0.01 0.0006 | 0.002
7.0 | 16.5471 | 32.1148 | 0.5155 | 0.05097 | 0.00670 | 1.06723 | 0.40857 S 0.01 0.0006 | 0.002
7.5 | 19.3360 | 41.4046 | 0.4919 | 0.05713 | 0.01143 | 1.23557 | 0.43727 S 0.01 0.0006 | 0.002
Avg | 15.7818 | 42.2876 | 0.3887 | 0.04315 | 0.01111 | 0.98692 | 0.39192 | 77.78 0.01 0.0006 | 0.002
3.5 | 24.2039 | 182.1867 | 0.1329 | 0.12803 | 0.01920 | 0.94930 | 0.9440 S 0.01 0.0006 | 0.002
4.0 | 24.1520 | 145.9888 | 0.1654 | 0.11335 | 0.02090 | 0.95910 | 0.9577 S 0.01 0.0006 | 0.002
4.5 | 11.8873 | 67.1640 | 0.1770 | 0.15249 | 0.01090 | 0.82850 | 0.5541 S 0.01 0.0006 | 0.002
5.0 | 12.0384 | 63.8797 | 0.1885 | 0.17445 | 0.01060 | 0.81340 | 0.5534 S 0.01 0.0006 | 0.002
SLAM 5.5 | 10.6880 | 52.9275 | 0.2019 | 0.11277 | 0.00640 | 0.81270 | 0.5439 S 0.01 0.0006 | 0.002
6.0 | 10.5855 | 51.9019 | 0.2040 | 0.12630 | 0.01580 | 0.80810 | 0.5125 S 0.01 0.0006 | 0.002
6.5 | 25.6007 | 100.2224 | 0.2554 | 0.12334 | 0.02110 | 1.24150 | 1.2546 S 0.01 0.0006 | 0.002
7.0 | 13.6213 | 55.7034 | 0.2445 | 0.08779 | 0.03490 | 1.40630 | 0.5520 S 0.01 0.0006 | 0.002
7.5 | 20.4292 | 69.6245 | 0.2934 | 0.15505 | 0.01610 | 1.04260 | 1.0397 S 0.01 0.0006 | 0.002
Avg | 17.0229 | 87.7332 | 0.2070 | 0.13040 | 0.01732 | 0.98461 | 0.76799 | 100 0.01 0.0006 | 0.002
3.5 | 51.4601 | 336.7750 | 0.1528 | 0.70845 | 0.06900 | 0.92010 | 0.7049 S 0.00503 | -0.00648 | 0.00393
4.0 | 30.9795 | 161.2184 | 0.1922 | 0.15251 | 0.00590 | 1.55290 | 1.7550 S 0.00808 | 0.00009 | 0.00195
4.5 | 40.0635 | 207.8815 | 0.1927 | 0.12706 | 0.00940 | 1.55090 | 1.3064 S 0.00781 | -0.00011 | -0.00191
5.0 | 14.1063 | 57.0231 | 0.2474 | 0.13650 | 0.03390 | 1.65730 | 3.9050 S 0.00788 | 0.00054 | 0.00407
BAS SLAM 5.5 7.1845 31.6622 | 0.2269 | 0.04951 | 0.03600 | 1.41150 | 0.5570 F 0.01006 | -0.00022 | -0.00207
- 6.0 | 10.3217 | 51.3752 | 0.2009 | 0.12721 | 0.01700 | 0.85050 | 0.4977 S 0.01757 | 0.00350 | 0.00624
6.5 | 24.7639 | 105.4360 | 0.2349 | 0.21781 | 0.02560 | 1.55530 | 3.2763 S 0.01402 | -0.00047 | 0.00790
7.0 | 10.6358 | 45.2603 | 0.2350 | 0.13338 | 0.00830 | 0.78010 | 0.5220 S 0.00859 | 0.00051 | 0.00107
7.5 | 16.8908 | 59.1310 | 0.2857 | 0.28768 | 0.01050 | 1.55570 | 3.4930 S 0.00943 | 0.00703 | 0.00539
Avg | 22.9340 | 117.3070 | 0.2187 | 0.21557 | 0.02396 | 1.31492 | 1.7797 | 88.89 | 0.00983 | 0.00049 | 0.00295

4. Conclusion & Future Work

This paper presented a fully integrated, real-time nav-
igation framework for an omnidirectional mobile robot
that unifies local perception, occupancy-grid mapping,
global replanning, and adaptive control through the
application of the BAS metaheuristic. Unlike tradi-
tional approaches that utilize BAS as a static or offline
optimizer, this work embedded a single-agent BAS
into the online control loop and trajectory smooth-
ing pipeline.To this end, we propose an integrated
BAS-enabled navigation framework implemented on
an omnidirectional robot in CoppeliaSim. The system
combines several components into a single pipeline.
First, a nine-sensor IR array provides a line-tracking
error signal, while a 2D LiDAR sensor is used to
construct a global occupancy grid around the robot.
Unknown cells are progressively classified as free or

occupied, closed regions of unknown space are filled
to avoid spurious voids, and obstacles are inflated to
account for the robot footprint and a safety margin.
When the forward LiDAR arc detects an obstacle within
a pre-specified distance, the robot temporarily aban-
dons pure line following and triggers an avoidance
behavior. A modified A* search is then executed on
the occupancy grid to compute a collision-free path
to a rejoin point selected on the original reference
trajectory. The resulting discrete path is subsampled
and smoothed through a BAS-based optimization rou-
tine that reduces curvature and eliminates unneces-
sary zig-zag segments.In parallel, the low-level tracking
controller is implemented as a PID regulator whose
gains are adapted online using BAS. Rather than fixing
(Kp, Ki, Kg) a priori, the algorithm maintains a single
beetle agent in the PID gain space. At each iteration,
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Table 7. Experiment Il: Obstacle Scene (7 Obstacles)

Exp Type | Spd | Dist | Time | AvgS | AvgA | MinD | MaxD | AvgD | Succ | Kp | Ki | Kd
3.5 4.7494 22.6557 | 0.2109 | 0.04298 | 0.01143 | 0.29863 | 0.11287 S 0.00947 | 0.00152 | 0.00052
4.0 3.8410 22.7126 | 0.1689 | 0.05997 | 0.01268 | 0.27660 | 0.12720 F 0.01071 | 0.00031 | 0.00550
4.5 4.6137 20.4845 | 0.2183 | 0.05647 | 0.00657 | 0.54167 | 0.20380 F 0.01074 | 0.00102 | -0.00023
5.0 | 23.5717 | 65.2458 | 0.3336 | 0.16729 | 0.00887 | 0.66203 | 0.24757 S 0.00701 | -0.00296 | -0.00441
BAS 5.5 | 13.1728 | 41.3683 | 0.2536 | 0.10943 | 0.01190 | 0.67010 | 0.29260 F 0.01097 | -0.00242 | 0.00189
6.0 | 9.1851 | 39.9578 | 0.3108 | 0.12205 | 0.01780 | 1.01543 | 0.47770 F 0.00943 | 0.00016 | 0.00087
6.5 | 4.0156 | 15.1621 | 0.2650 | 0.05684 | 0.01570 | 0.47870 | 0.20627 F 0.00998 | 0.00428 | 0.00098
7.0 8.1918 24.8762 | 0.3296 | 0.09119 | 0.01993 | 0.92630 | 0.37707 S 0.00601 | 0.00366 | 0.00033
7.5 | 13.1505 | 48.6654 | 0.2743 | 0.12692 | 0.00843 | 0.95863 | 0.53717 S 0.01440 | 0.00100 | -0.00075
Avg | 9.3880 33.4587 | 0.2628 | 0.09257 | 0.01259 | 0.64757 | 0.28691 | 44.44 | 0.00986 | 0.00073 | 0.00052
3.5 2.1903 21.9816 | 0.1018 | 0.02903 | 0.00893 | 0.22503 | 0.11083 F 0.01 0.0006 | 0.002
4.0 4.8981 19.1405 | 0.2567 | 0.04290 | 0.00550 | 0.31470 | 0.13057 S 0.01 0.0006 | 0.002
4.5 4.7945 18.7748 | 0.2592 | 0.04003 | 0.00427 | 0.31513 | 0.12330 S 0.01 0.0006 | 0.002
5.0 3.4328 13.2534 | 0.2548 | 0.03160 | 0.00530 | 0.29117 | 0.14190 F 0.01 0.0006 | 0.002
Conventional 5.5 8.4042 22.3932 | 0.3685 | 0.04766 | 0.00467 | 0.87610 | 0.26690 S 0.01 0.0006 | 0.002
6.0 | 6.5749 | 20.7882 | 0.3207 | 0.05036 | 0.00607 | 0.84130 | 0.23690 S 0.01 0.0006 | 0.002
6.5 | 5.9606 | 14.9639 | 0.3805 | 0.04957 | 0.00457 | 0.81300 | 0.26700 S 0.01 0.0006 | 0.002
7.0 | 7.9478 | 20.4572 | 0.3850 | 0.05151 | 0.00470 | 0.91063 | 0.27080 S 0.01 0.0006 | 0.002
7.5 5.9598 18.0509 | 0.3376 | 0.04141 | 0.00800 | 0.56070 | 0.26573 F 0.01 0.0006 | 0.002
Avg | 5.5737 18.8671 | 0.2961 | 0.04267 | 0.00578 | 0.57197 | 0.20155 | 66.67 0.01 0.0006 | 0.002
3.5 | 25.0572 | 112.8654 | 0.2220 | 0.35877 | 0.11520 | 1.60310 | 14.0136 S 0.01 0.0006 | 0.002
4.0 | 25.0957 | 104.7046 | 0.2397 | 0.51103 | 0.12640 | 1.60230 | 13.0315 S 0.01 0.0006 | 0.002
4.5 | 30.0875 | 121.3141 | 0.2480 | 0.66170 | 0.01890 | 1.58140 | 14.1179 S 0.01 0.0006 | 0.002
5.0 | 30.4273 | 115.2417 | 0.2640 | 0.82801 | 0.11660 | 1.60630 | 18.9272 S 0.01 0.0006 | 0.002
SLAM 5.5 | 25.4030 | 84.9669 | 0.2990 | 0.67981 | 0.12670 | 1.60710 | 13.4289 S 0.01 0.0006 | 0.002
6.0 | 25.2238 | 79.0657 | 0.3190 | 0.74735 | 0.01780 | 1.58430 | 9.9544 S 0.01 0.0006 | 0.002
6.5 | 26.0128 | 82.0594 | 0.3170 | 1.00553 | 0.01940 | 1.53010 | 10.2244 S 0.01 0.0006 | 0.002
7.0 | 25.7552 | 75.6562 | 0.3404 | 0.92545 | 0.01750 | 1.54930 | 9.8860 S 0.01 0.0006 | 0.002
7.5 | 24.2461 | 77.3088 | 0.3136 | 1.08091 | 0.02330 | 1.52230 | 9.6842 S 0.01 0.0006 | 0.002
Avg | 26.3676 | 94.7981 | 0.2847 | 0.75539 | 0.06464 | 1.57624 | 12.5853 | 87.50 0.01 0.0006 | 0.002
3.5 | 25.1635 | 117.0608 | 0.2150 | 0.42967 | 0.12600 | 1.59430 | 12.7116 S 0.01336 | 0.00216 | 0.00430
4.0 | 86.1082 | 369.0984 | 0.2333 | 1.14430 | 0.01310 | 1.61420 | 31.3109 F 0.00372 | 0.00036 | 0.00001
4.0 | 24.9911 | 149.9671 | 0.1666 | 0.34753 | 0.12220 | 1.19670 | 1.3761 F 0.00824 | -0.00199 | 0.00048
4.5 | 29.8955 | 118.9916 | 0.2512 | 0.73463 | 0.02420 | 1.58560 | 14.8764 S 0.01274 | 0.00192 | 0.00125
5.0 | 26.2946 | 93.0735 | 0.2825 | 0.21619 | 0.01400 | 1.25670 | 3.6004 S 0.00539 | 0.00063 | 0.00745
BAS_SLAM 5.5 | 24.8504 | 83.6719 | 0.2970 | 0.71138 | 0.01800 | 1.58310 | 9.6071 S 0.01006 | 0.00625 | 0.00249
6.0 | 28.9711 | 122.2886 | 0.2369 | 0.24113 | 0.04370 | 1.57420 | 0.8717 S 0.00935 | -0.00109 | 0.00752
6.5 | 25.0118 | 76.3589 | 0.3276 | 0.82024 | 0.02060 | 1.60220 | 9.7978 S 0.00930 | 0.00999 | 0.00880
7.0 | 24.1488 | 75.0051 | 0.3220 | 0.28092 | 0.01280 | 1.17720 | 3.0404 S 0.00904 | 0.00095 | 0.00215
7.5 | 25.3340 | 72.4251 | 0.3498 | 0.85156 | 0.11550 | 1.60370 | 12.5244 S 0.01478 | 0.00061 | 0.00221
Avg | 32.8451 | 128.9867 | 0.2741 | 0.59421 | 0.04268 | 1.46596 | 9.6672 | 87.50 | 0.00918 | 0.00196 | 0.00359

mirrored perturbations of the gain vector are evalu-
ated using the path deviation with respect to the ref-
erence trajectory as the performance signal.The BAS
update mechanism changes the PID gains towards the
direction that makes tracking performance better and
increasingly reduces the step size such that convergence
remains constant. Thus, the controller dynamically
adjusts its responsiveness and damping characteristics
based on the prevailing operation environment, which
allows it easily to respond to perturbation like obstacle
encounters and properly act appropriately during the
transition between usual path following and avoidance
responses. In this experiment various control and nav-
igation strategies were analyzed in conditions where
the environment became more complex with initially
a no-obstacle baseline to the complex experiment with
3, 7 and 9 obstacles. The displayed success rates show

that the core constraints are to do with the robustness
at the software level, i.e. the stability of the replan-
ning process, the responsiveness of the controllers to
stress, etc. and not with the inherent weaknesses of
the underlying algorithms.In the no-obstacle scenario,
both the Conventional controller and SLAM achieved
a high success rate of 88.9%, indicating stable and
reliable path following under minimal environmen-
tal uncertainty. In contrast, the BAS-based approaches
performed noticeably worse: BAS+PID achieved a suc-
cess rate of only 44.4%, while BAS+SLAM dropped
further to 33.3%. This behavior suggests that BAS-
driven online gain adaptation is particularly sensitive
in simple, unconstrained settings, where limited cor-
rective feedback can amplify issues related to timing,
synchronization, and convergence at the software level.
By comparison, Conventional PID and SLAM rely on
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Table 8. Experiment Il: Obstacle Scene (9 Obstacles)

Exp Type | Spd | Dist | Time | AvgS | AvgA | MinD | MaxD | AvgD | Succ | Kp | Ki | Kd
3.5 2.3447 13.3058 | 0.1831 | 0.08081 | 0.10177 | 0.35867 | 0.22917 F 0.01280 | 0.00355 | -0.00016
4.0 4.0593 15.6739 | 0.2402 | 0.10748 | 0.07933 | 0.45280 | 0.21660 F 0.00868 | 0.00529 | -0.00251
4.5 5.3791 21.4226 | 0.2546 | 0.10028 | 0.07960 | 0.74463 | 0.35640 S 0.00893 | 0.00078 | -0.00259
5.0 2.4946 15.1983 | 0.1970 | 0.04217 | 0.06390 | 0.32523 | 0.16807 F 0.01147 | 0.00026 | 0.00065
BAS 5.5 | 9.9706 | 38.2207 | 0.2567 | 0.07135 | 0.09013 | 0.78607 | 0.26040 F 0.00862 | 0.00165 | 0.00459
6.0 | 10.8729 | 64.5105 | 0.1684 | 0.09788 | 0.04997 | 0.92687 | 0.50597 F 0.00672 | 0.00042 | 0.00079
6.5 | 8.0722 | 26.8512 | 0.2857 | 0.08226 | 0.03343 | 0.52140 | 0.21823 F 0.01101 | -0.00254 | 0.00238
7.0 5.4526 17.1516 | 0.3175 | 0.05818 | 0.07233 | 1.03487 | 0.33040 S 0.00733 | 0.00022 | 0.00079
7.5 5.8368 20.1635 | 0.3067 | 0.07354 | 0.06720 | 0.90437 | 0.44853 S 0.01045 | -0.00038 | -0.00003
Avg | 6.0536 25.8331 | 0.2455 | 0.07933 | 0.07085 | 0.67277 | 0.30375 | 33.33 | 0.00956 | 0.00103 | 0.00044
3.5 1.6949 15.2141 | 0.1114 | 0.02774 | 0.10043 | 0.22540 | 0.16670 F 0.01 0.0006 | 0.002
4.0 1.7557 12.2375 | 0.1434 | 0.03743 | 0.09767 | 0.22933 | 0.17743 F 0.01 0.0006 | 0.002
4.5 1.6493 10.2556 | 0.1725 | 0.03170 | 0.09627 | 0.22733 | 0.16793 F 0.01 0.0006 | 0.002
5.0 2.2728 17.2475 | 0.1336 | 0.02525 | 0.09427 | 0.24523 | 0.17400 F 0.01 0.0006 | 0.002
Conventional 5.5 2.2025 15.2075 | 0.1451 | 0.02721 | 0.09047 | 0.24287 | 0.17753 F 0.01 0.0006 | 0.002
6.0 3.5024 29.2713 | 0.1211 | 0.03119 | 0.07207 | 0.27943 | 0.17530 F 0.01 0.0006 | 0.002
6.5 | 2.9323 | 17.8229 | 0.1580 | 0.02979 | 0.07893 | 0.56057 | 0.40010 F 0.01 0.0006 | 0.002
7.0 | 7.3496 | 20.6122 | 0.2507 | 0.03627 | 0.05060 | 0.56280 | 0.25597 F 0.01 0.0006 | 0.002
7.5 6.5346 14.4870 | 0.4297 | 0.06691 | 0.03990 | 0.88727 | 0.37163 S 0.01 0.0006 | 0.002
Avg | 3.3216 16.9284 | 0.1851 | 0.03483 | 0.08007 | 0.38447 | 0.22962 | 11.11 0.01 0.0006 | 0.002
3.5 | 24.3111 | 106.8725 | 0.2275 | 1.59158 | 0.12150 | 1.60290 | 62.2333 S 0.01 0.0006 | 0.002
4.0 | 24.9166 | 126.3872 | 0.1971 | 0.94029 | 0.01690 | 1.59960 | 22.6317 S 0.01 0.0006 | 0.002
4.5 | 24.5180 | 106.0611 | 0.2312 | 2.01613 | 0.11750 | 1.60110 | 56.1192 S 0.01 0.0006 | 0.002
5.0 0.0000 0.3231 0.0000 | 0.00008 | 0.21430 | 0.21430 | 0.21430 F 0.01 0.0006 | 0.002
5.0 | 28.4884 | 105.1486 | 0.2709 | 0.46567 | 0.03120 | 1.60350 | 12.6923 S 0.01 0.0006 | 0.002
SLAM 5.5 | 28.7900 | 99.1844 | 0.2903 | 0.53721 | 0.03130 | 1.60270 | 12.8505 S 0.01 0.0006 | 0.002
6.0 | 28.8432 | 92.1667 | 0.3129 | 0.58034 | 0.04110 | 1.60170 | 12.6876 S 0.01 0.0006 | 0.002
6.5 | 29.4104 | 92.4220 | 0.3182 | 0.73117 | 0.02750 | 1.59740 | 12.9901 S 0.01 0.0006 | 0.002
7.0 | 3.0467 | 10.6049 | 0.2873 | 0.00979 | 0.03420 | 2.29520 | 0.9149 F 0.01 0.0006 | 0.002
7.5 | 26.7282 | 86.8059 | 0.3079 | 0.94434 | 0.12470 | 1.60710 | 11.9550 S 0.01 0.0006 | 0.002
Avg | 21.6379 | 79.9004 | 0.2462 | 0.69167 | 0.07097 | 1.52473 | 15.8951 | 77.78 0.01 0.0006 | 0.002
3.5 | 24.3204 | 112.0670 | 0.2170 | 1.65098 | 0.11400 | 1.60570 | 60.9469 S 0.01124 | -0.00277 | 0.00399
4.0 | 24.2226 | 110.7509 | 0.2187 | 1.73186 | 0.11740 | 1.60290 | 54.6328 S 0.00779 | 0.00137 | 0.00476
4.5 | 14.5247 | 83.6655 | 0.1736 | 0.84033 | 0.08210 | 1.60020 | 15.9307 F 0.00863 | 0.00443 | 0.00295
5.0 | 27.9862 | 103.0170 | 0.2717 | 0.48483 | 0.02550 | 1.60330 | 13.2254 S 0.01376 | 0.00423 | -0.00048
5.5 6.9787 34.6390 | 0.2015 | 0.07698 | 0.02320 | 2.27910 | 0.8946 F 0.01407 | -0.00427 | -0.00434
BAS_SLAM 6.0 | 29.0182 | 83.8885 | 0.3459 | 0.13463 | 0.03340 | 1.82720 | 3.1230 S 0.00891 | -0.00209 | 0.00285
6.5 | 20.7813 | 73.6020 | 0.2823 | 0.24098 | 0.01720 | 2.25210 | 2.5618 F 0.01192 | -0.00309 | -0.00100
7.0 | 2.6025 9.5713 | 0.2719 | 0.02053 | 0.04740 | 1.84900 | 0.7324 F 0.00936 | -0.00061 | 0.00423
7.0 | 28.9745 | 119.3043 | 0.2429 | 0.33037 | 0.12920 | 1.26990 | 1.3492 S 0.01344 | -0.00440 | 0.00373
7.5 | 28.4239 | 84.7526 | 0.3354 | 1.02754 | 0.12460 | 1.58840 | 14.9128 S 0.00897 | -0.00124 | 0.00470
Avg | 19.9113 | 74.0550 | 0.2657 | 0.39452 | 0.06033 | 1.78365 | 6.59124 | 50.00 | 0.01113 | -0.00088 | 0.00158

fixed gains or map-based feedback, which tend to
remain stable in open environments.When constraints
are added to the objective, it becomes more constraint-
based. The situations where the obstacle is met also
lead to more frequent avoidance actions, replanning,
and updates of the localization, which will also pro-
vide more comprehensive feedback to the controller.
These interactions appear to implicitly regularize the
BAS adaptation process by restricting excessive explo-
ration and guiding gain updates toward more mean-
ingful corrective directions. As a result, performance
improves in obstacle-rich scenes, particularly for the
BAS+SLAM configuration. This effect is most evident
in the 3-obstacle scenario, where BAS+SLAM attains an
88.9% success rate compared to only 33.3% in the no-
obstacle case, while SLAM achieves a full 100% success

rate.This stabilizing effects start to be counteracted by
the increasing complexity of the environment as density
of obstacles grows further resulting in increasingly
difficult trade-offs between navigation difficulty and
stability of adaptation.In the 7-obstacle scene, both the
BAS+SLAM and SLAM have 87.5% success and it can
be concluded that with a moderate level of complexity,
structured environmental feedback has full potential of
making up the adaptive instability. In contrast, in the
9-obstacle scenario, the excessive constraints start to
amplify software-level sensitivities. BAS+SLAM success
drops to 50%, while SLAM still maintains 77%. This
shows that although obstacles can initially improve the
stability of adaptive control, very dense environments
expose weaknesses related to software synchronization
and controller switching. Future work will aim to verify
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whether this feedback-driven stabilization effect also
appears beyond simulation by carrying out experiments
on real robotic platforms. Real-world testing is neces-
sary to understand how sensor noise, actuator delays,
and hardware limitations affect BAS-based adaptive
control, especially in low-feedback situations such as
open, obstacle-free spaces. Although a single-beetle
BAS formulation is employed for computational effi-
ciency and real-time feasibility, we acknowledge that
this choice may limit robustness in high-dimensional
or noisy gain spaces. More advanced variants, such
as multi-agent BAS or improved schemes like IBSO,
could offer enhanced exploration and noise resilience,
and are therefore identified as promising directions
for future work to further strengthen robustness and
performance. In addition, improving software robust-
ness through tighter coordination between perception,
planning, and control modules will be important for
reducing failures in dense obstacle scenarios. Adding
explicit stabilization or convergence constraints to the
BAS adaptation process could help limit uncontrolled
exploration in unconstrained environments, improving
overall reliability without depending on environmental
obstacles to provide corrective feedback.
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Table 9. Summary of Prior Research on BAS Applications in Robotic and Optimization Systems

Year Authors Application

BAS Integration

Environment

Key Outcomes

2020 [17] Manipulator control

BAS + ZNN

KUKA TTWA (3D, MATLAB)

Unified obstacle avoidance and tracking;
fast convergence using GJK-based dis-
tance evaluation.

2021 [18] Path planning

BASL-RRT*

2D GIS cavity

Reduced runtime (29.53 s) and nodes
(1,302) versus RRT* (133.15 s, 8,487
nodes).

2022 [20] Optimization

Enhanced BAS (EBAS)

CEC’17 (10-100D)

Adaptive step size improved convergence;
outperformed GWO and SMA on bench-
mark functions.

2022 [21] Vehicle navigation

VBAS + B-Spline

2D MATLAB map

Generated shorter paths faster than APF
in single and multi-obstacle scenarios.

2022 [34] Control optimization

BAS vs PSO, GA

Simulation

Faster convergence in iterations; higher
execution time due to single-agent search.

2023 [22] USV navigation

Improved BAS

2D MATLAB

Reduced turning angle by 50% and
shortened path length by 17 units.

2023 [23] Path planning

WPFBAS

2D static map

Achieved shortest path (28.62) and lowest
runtime (0.24 s), outperforming PSO and
GA.

2024 [25] Survey

BAS & hybrids

Multiple domains

Identified convergence limits; BAS-PSO
hybrids showed superior real-world per-
formance.

2025 [26] Image optimization

BAS vs PSO

2D transformations

12.5% faster convergence and 8.3% lower
error than PSO.

2025 [27] Robot control

BAS + PSO FOPID

UR5 (MATLAB)

Lowest overshoot, fastest response, and
minimal tracking error.
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