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Abstract 

Early prediction of chronic diseases using longitudinal electronic health records (EHRs) is critical for enabling timely 
interventions and improving patient outcomes. However, existing deep learning approaches often function as black-box 
models, limiting their clinical adoption due to a lack of transparency and interpretability. This study proposes an explainable 
transformer-based framework for early chronic disease prediction that effectively models temporal dependencies in 
longitudinal EHR data while providing clinically meaningful explanations. The proposed approach integrates a time-aware 
transformer architecture with attention-based interpretability mechanisms to capture complex patient trajectories across 
heterogeneous clinical events, including diagnoses, laboratory results, medications, and demographic attributes. To enhance 
explainability, we incorporate feature-level and temporal attention visualization, enabling identification of influential clinical 
factors and critical time windows contributing to disease onset predictions. Extensive experiments conducted on large-scale 
longitudinal EHR datasets demonstrate that the proposed model consistently outperforms state-of-the-art machine learning 
and deep learning baselines in terms of predictive accuracy, recall, and early risk detection capability. Furthermore, 
qualitative evaluation with clinician-oriented explanation analyses confirms that the generated explanations align with 
established medical knowledge, enhancing trust and clinical usability. This work advances the integration of explainable 
artificial intelligence in healthcare by offering a robust and interpretable transformer-based solution for early chronic disease 
prediction, supporting data-driven decision-making in real-world clinical settings. 
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1. Introduction

The increasing prevalence of chronic diseases, such as 
cardiovascular disorders, diabetes, autoimmune conditions, 
and neuropsychiatric illnesses, poses a major challenge to 
global healthcare systems. Early prediction of chronic 
disease onset is essential for preventive care, resource 
optimization, and improved patient outcomes.  

*Corresponding author. Email: hewa.zangana@dpu.edu.krd 

With the widespread adoption of electronic health records 
(EHRs), longitudinal clinical data capturing patient 
trajectories over time have become a valuable foundation for 
predictive modeling in healthcare [1], [2]. These records 
encode rich temporal information, including diagnoses, 
laboratory tests, medications, procedures, and demographic 
attributes, offering unprecedented opportunities for data-
driven early disease detection. 
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Recent advances in deep learning have substantially 
improved disease prediction from EHRs, particularly 
through sequence-aware architectures such as recurrent 
neural networks and attention-based models. Among these, 
transformer models have emerged as a dominant paradigm 
due to their ability to capture long-range dependencies and 
heterogeneous temporal patterns in longitudinal data [3], [4], 
[5]. Transformer-based frameworks such as BEHRT, Hi-
BEHRT, and Foresight have demonstrated strong predictive 
performance across various clinical tasks, including 
mortality risk prediction, clinical event forecasting, and 
patient stratification [6], [7], [8]. Extensions incorporating 
multimodality and self-supervision have further enhanced 
representation learning for complex EHR data [9], [10], [11]. 
Despite these advances, most high-performing transformer 
models remain difficult to interpret, operating largely as 
black-box systems. This lack of transparency presents a 
critical barrier to clinical deployment, where explainability, 
accountability, and trust are essential for decision support 
systems [4], [12]. While recent studies have begun 
integrating explainability into deep learning frameworks for 
healthcare—such as attention visualization, pathway 
attribution, and temporal importance scoring—these efforts 
remain fragmented and often secondary to predictive 
accuracy [13], [14]. Consequently, there is a growing 
research imperative to develop models that jointly optimize 
predictive performance and clinically meaningful 
interpretability. 
Although transformer-based models have shown strong 
potential for chronic disease prediction using longitudinal 
EHRs, three critical gaps remain. First, many existing 
approaches focus on point-in-time diagnosis or short-term 
risk assessment, rather than early prediction across extended 
temporal horizons where preventive interventions are most 
effective [15], [16]. Second, explainability is often limited to 
coarse attention weights or post hoc explanations that lack 
temporal granularity and clinical coherence, reducing their 
practical value for clinicians [7], [12]. Third, current models 
rarely provide interpretable insights across heterogeneous 
EHR modalities in a unified framework, despite evidence 
that multimodal longitudinal integration significantly 
enhances predictive power [17], [18]. 
These limitations restrict the translation of transformer-based 
prediction models into real-world clinical workflows, where 
understanding why and when a patient is at risk is as 
important as the prediction itself. Addressing these 
challenges requires an explainable modeling approach that 
preserves the expressive power of transformers while 
delivering transparent, temporally grounded, and clinically 
aligned explanations. 
The primary objective of this research is to develop an 
explainable transformer-based framework for early 
prediction of chronic diseases using longitudinal EHR data. 
Specifically, this study aims to: 

1. Design a time-aware transformer architecture
capable of modeling long-term patient trajectories
across heterogeneous EHR components.

2. Integrate built-in explainability mechanisms that
provide feature-level and temporal-level
interpretation of model predictions.

3. Enable early risk detection by identifying clinically
relevant time windows and factors preceding
disease onset.

4. Empirically evaluate the proposed model against
state-of-the-art baselines on chronic disease
prediction tasks using longitudinal EHR datasets.

The key contributions of this work are summarized as 
follows: 

● We propose a unified explainable transformer
framework tailored for early chronic disease
prediction from longitudinal EHRs.

● We introduce temporally grounded and feature-
aware attention mechanisms that enhance
interpretability without sacrificing predictive
accuracy.

● We demonstrate improved early prediction
performance compared to existing transformer and
deep learning baselines.

● We provide clinically meaningful explanations that
align with known disease progression patterns,
enhancing trust and usability in healthcare settings.

The novelty of the proposed method lies in its joint 
optimization of early prediction accuracy and intrinsic 
explainability within a transformer-based architecture. 
Unlike prior models that treat explainability as an auxiliary 
or post hoc component [7], [13], the proposed framework 
embeds interpretability directly into the model’s attention 
structure, enabling simultaneous learning of predictive and 
explanatory representations. Furthermore, by explicitly 
modeling longitudinal temporal dynamics across extended 
time horizons, the approach supports proactive disease risk 
assessment rather than reactive diagnosis. 

In contrast to existing transformer applications focused 
on single-disease prediction or administrative claims data 
[13], [19], this work emphasizes generalizable early 
prediction for chronic diseases using heterogeneous EHR 
data. By bridging performance, transparency, and clinical 
relevance, the proposed explainable transformer framework 
advances the practical adoption of trustworthy artificial 
intelligence in predictive healthcare. 

2. Literature Review

Artificial intelligence (AI) methods for analyzing 
longitudinal electronic health records (EHRs) have gained 
increasing attention for chronic disease prediction, early 
diagnosis, and risk stratification. This section reviews prior 
work across five key dimensions: (i) traditional deep learning 
for EHR-based disease prediction, (ii) transformer-based 
architectures for longitudinal modeling, (iii) multimodal and 
large-scale representation learning, (iv) explainable AI 
approaches in predictive healthcare, and (v) identified 
research gaps motivating this study. 
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Early applications of deep learning in EHR analysis relied 
heavily on handcrafted features and shallow representations, 
which limited generalizability and temporal modeling 
capacity. [20] highlighted the importance of automated 
feature extraction using deep neural networks for early 
chronic disease diagnosis, demonstrating improved decision 
support performance over classical methods. Similarly, [15] 
focused on early heart failure detection using inpatient 
longitudinal EHR data, illustrating the value of temporal data 
aggregation for pre-diagnostic risk assessment. 
Systematic reviews have confirmed the growing reliance on 
deep learning architectures—particularly recurrent and 
sequence-based models—for disease prediction from 
structured EHR data [1], [2]. However, these reviews also 
emphasize persistent limitations related to interpretability, 
scalability, and long-term temporal dependency modeling. 
Transformer-based architectures have emerged as a powerful 
alternative to recurrent neural networks due to their self-
attention mechanisms and ability to model long-range 
dependencies. BEHRT, introduced by [3], was among the 
first transformer models designed specifically for EHR data, 
demonstrating superior performance in predicting clinical 
events. Subsequent enhancements, such as Hi-BEHRT, 
incorporated hierarchical and multimodal representations, 
further improving predictive accuracy for longitudinal 
clinical outcomes [4]. 
Numerous studies have applied transformers to diverse 
healthcare tasks, including mortality prediction [5], clinical 
diagnosis classification [21], and disease progression 
forecasting [19]. Large-scale pretrained models such as 
Foresight have shown that generative transformers can 
effectively model patient timelines across heterogeneous 
EHR sequences [6]. Claims-based transformer models, such 
as Claimsformer, further demonstrate the scalability of 
transformer architectures across administrative healthcare 
data [22]. 
More recent work has extended transformer modeling 
toward disease trajectory learning and patient stratification. 
[23] proposed generative transformers to model the natural
history of diseases, while [8] introduced transformer-based
patient embeddings to enable progression analysis and
cohort discovery.
Recent advances in artificial intelligence have demonstrated
the effectiveness of hybrid and deep learning–based
approaches across diverse application domains, highlighting
their potential for complex predictive tasks such as early
disease detection from longitudinal EHR data. Hybrid
frameworks that combine traditional techniques with deep
neural networks have shown improved robustness and
accuracy, as evidenced in object detection systems
integrating template matching with Faster R-CNN [24] and
image denoising models that fuse wavelet transforms with
deep learning architectures [25]. Similarly, advanced
preprocessing and segmentation strategies have enhanced
feature extraction in agricultural imaging, leading to more
reliable analysis outcomes [26]. In automation and decision-

making systems, the integration of multi-agent path finding 
and reinforcement learning has enabled efficient 
coordination in complex warehouse environments [27], 
demonstrating the scalability of intelligent models for real-
world applications. Moreover, artificial neural networks 
have been successfully applied to predict critical operational 
parameters in energy systems, such as short-circuit currents 
in wind turbines, underscoring the versatility of data-driven 
prediction models [28]. Collectively, these studies support 
the adoption of advanced deep learning and hybrid 
methodologies in healthcare, where explainable transformer 
models can leverage longitudinal EHR data to provide 
accurate, interpretable, and early predictions of chronic 
diseases. 
To address the heterogeneity of EHR data, several studies 
have explored multimodal and unified representation 
learning approaches. [9] demonstrated the effectiveness of 
bidirectional transformers integrating structured and 
unstructured EHR data for depression prediction. [11] 
extended this concept by employing large language 
multimodal models for new-onset type 2 diabetes prediction 
using multi-year cohort data. 
Unified frameworks such as CURENet aim to combine 
multiple EHR modalities into cohesive latent representations 
to improve chronic disease prediction efficiency [16]. 
Similarly, [17] proposed a knowledge-guided multimodal 
transformer framework for rare disease diagnosis, 
emphasizing medically informed representation learning. 
Automated diagnosis classification using transformer 
models has also gained traction, further validating their 
applicability across diverse clinical tasks [21]. 
Complementary approaches such as self-supervised 
forecasting [10] and temporal graph-based neural networks 
[17] suggest alternative directions for modeling patient
trajectories, though they often lack intrinsic explainability or
require complex graph construction pipelines.
Despite performance gains, the opacity of deep learning
models has raised concerns regarding clinical trust and
adoption. [4] emphasized the importance of explainability
and uncertainty quantification in EHR-based prediction
models. [7] addressed this challenge by introducing an
explainable transformer for incident heart failure prediction,
demonstrating the feasibility of attention-based explanation
mechanisms.
More recent work has focused explicitly on explainable
prediction pathways. [13] proposed a scalable explainable
deep learning framework for population health management,
while [14] introduced RiskPath, a model designed to
generate interpretable multistep predictions from
longitudinal biomedical data. Systematic reviews have
consistently identified explainable AI as a critical research
priority, particularly for chronic disease management and
treatment planning [12], [29].
Causal and representation-based explainability approaches
have also emerged. [30] explored causal representation
learning for autoimmune disease progression prediction,
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highlighting the need for temporally grounded and 
mechanistically interpretable models. Integrative 
perspectives further emphasize combining EHRs with 
genomic and real-time monitoring data to improve early 
detection and preventive care [18]. 
Although transformer-based models have demonstrated 
strong predictive performance across numerous healthcare 
tasks, existing studies exhibit several limitations. First, many 
approaches prioritize accuracy over interpretability, limiting 
clinical usability despite promising results [1], [12]. Second, 
explainability is often treated as a post hoc component rather 
than an intrinsic design objective, reducing temporal and 
feature-level transparency [7], [14]. Third, while multimodal 
learning has advanced, unified explainable frameworks for 
early chronic disease prediction using longitudinal EHRs 
remain underexplored [16], [17]. 
These gaps motivate the development of an explainable 
transformer-based framework that jointly models long-term 
patient trajectories, integrates heterogeneous EHR 
modalities, and provides clinically meaningful explanations 
for early chronic disease prediction. By addressing these 
challenges, the proposed approach aims to advance 
trustworthy and actionable AI solutions for real-world 
healthcare applications. 

3. Method

This section presents the proposed explainable transformer 
framework for early prediction of chronic diseases using 
longitudinal electronic health records (EHRs). We first 
formalize the problem definition, followed by descriptions of 
data representation, model architecture, temporal encoding 
strategy, explainability mechanisms, training procedure, and 
implementation details. 
Fig. 1 illustrates the overall architecture of the proposed 
explainable transformer-based framework for early chronic 
disease prediction using longitudinal electronic health 
records. The framework comprises data preprocessing, 
temporal embedding, transformer-based representation 
learning, prediction, and integrated explainability 
components, enabling both accurate early risk estimation and 
clinically interpretable insights. 

Fig. 1.  Overall architecture of the proposed 
explainable transformer-based framework 

3.1 Problem Formulation 

Let D={(Xi,yi)}i=1N denote a longitudinal EHR dataset with 
N patients. Each patient i is represented by a temporally 
ordered sequence of clinical visits: 
𝑋𝑋𝑖𝑖 =  � 𝑣𝑣{𝑖𝑖,1}, 𝑣𝑣{𝑖𝑖,2}, . . . , 𝑣𝑣{𝑖𝑖,𝑇𝑇𝑖𝑖}�                                           (1) 

where Ti denotes the number of visits and each visit vi,t  
consists of heterogeneous clinical features, including 
diagnosis codes, procedure codes, laboratory results, 
medications, and demographic attributes. The outcome label 
yi∈{0,1} indicates whether the patient develops a target 
chronic disease within a predefined prediction horizon. 
The objective is to learn a function: 
𝑓𝑓: 𝑋𝑋𝑖𝑖 →  ŷ𝑖𝑖             (2) 

that predicts disease onset at an early stage while providing 
interpretable explanations regarding influential clinical 
features and temporal periods contributing to the prediction. 

3.2 Data Representation and Preprocessing 

Each clinical event within the EHR is encoded using 
standard medical coding systems (e.g., ICD codes for 
diagnoses, LOINC for laboratory tests, and ATC for 
medications). Continuous variables such as laboratory values 
are normalized using z-score normalization, while missing 
values are handled through masking mechanisms rather than 
imputation to preserve temporal integrity. 
Specifically, a binary observation mask is associated with 
each continuous and categorical feature, where mi,t,k∈{0,1} 
indicates whether feature k of patient iii at visit t is observed. 
Missing values are zero-filled but remain explicitly 
identifiable through their corresponding mask embeddings, 
which are concatenated with the original feature embeddings 
before being passed to the transformer. This allows the 
model to distinguish between truly absent information and 
measured zero values, thereby preserving the temporal and 
clinical integrity of longitudinal EHR records and avoiding 
the bias introduced by statistical imputation. 
For each patient visit, discrete codes are mapped to dense 
embeddings via trainable embedding layers. Let Ed, Em, and 
El represent diagnosis, medication, and laboratory 
embeddings, respectively. The visit-level representation is 
constructed by concatenation: 
𝑒𝑒{𝑖𝑖,𝑡𝑡} =  �𝐸𝐸{𝑖𝑖,𝑡𝑡}

{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} ∥  𝐸𝐸{𝑖𝑖,𝑡𝑡}
{𝑚𝑚𝑚𝑚𝑚𝑚} ∥  𝐸𝐸{𝑖𝑖,𝑡𝑡}

{𝑙𝑙𝑙𝑙𝑙𝑙} ∥  𝐸𝐸{𝑖𝑖}
{𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}�  (3) 

3.3 Temporal Encoding of Longitudinal 
Information 

To model irregular time intervals between visits, we 
integrate time-aware positional encoding. Each visit vi,t  is 
assigned a time stamp Δti,t representing the elapsed time 
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since the previous visit. A learnable time embedding 
function Et(Δt) is added to the visit embedding: 
𝑧𝑧{𝑖𝑖,𝑡𝑡}  =  𝑒𝑒{𝑖𝑖,𝑡𝑡}  +  𝐸𝐸𝑡𝑡�𝛥𝛥{𝑖𝑖,𝑡𝑡}�        (4) 

This design allows the model to distinguish between recent 
and distant clinical events and supports early prediction by 
emphasizing temporally relevant periods. 

3.4 Explainable Transformer Architecture 

The core of the proposed framework is a multi-layer 
transformer encoder tailored for longitudinal EHR data. 
Given the input sequence Zi={zi,1,…,zi,Ti}, self-attention is 
applied as: 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉)  =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄 𝐾𝐾𝑇𝑇 / √(𝑑𝑑𝑘𝑘)) 𝑉𝑉    (5) 

where Q, K, and V are linear projections of Zi, and dk is the 
dimensionality of the key vectors. 
Multi-head attention enables the model to capture diverse 
temporal dependencies and interactions among clinical 
features. Transformer layers are stacked with residual 
connections and layer normalization to enhance convergence 
and stability. 
To model long-term dependencies in patient histories while 
maintaining interpretability, the proposed framework 
employs a multi-head self-attention mechanism. Fig. 2 
visualizes how the transformer learns weighted relationships 
between historical clinical visits, allowing identification of 
influential time periods for early disease prediction. 

Fig. 2. Temporal self-attention mechanism over 
longitudinal patient visits 

3.5 Classification and Early Prediction Head 

The transformer encoder outputs a sequence of 
contextualized visit representations. A global patient 
representation is obtained through attention-based pooling: 
ℎ𝑖𝑖  =  ∑_{𝑡𝑡 = 1}{𝑖𝑖,𝑡𝑡}

{𝑇𝑇𝑖𝑖}𝛼𝛼𝑧𝑧{𝑖𝑖,𝑡𝑡}  (6) 
where attention weights αi,t indicate the importance of each 
visit. 
The pooled representation is passed through a fully 
connected classification head with dropout regularization: 
ŷ𝑖𝑖 =  𝜎𝜎(𝑊𝑊 ℎ𝑖𝑖 +  𝑏𝑏)         (7) 

where σ(⋅) is the sigmoid activation function. 
Early prediction is enabled by truncating longitudinal 
sequences at earlier time points during training and 
evaluation, allowing the model to learn disease risk 
progression patterns before clinical diagnosis. 

3.6 Explainability Mechanisms 

Explainability is natively embedded into the architecture 
through attention-based interpretation at both feature and 
temporal levels: 

• Temporal Explainability: Visit-level attention
weights reveal critical time windows influencing
predictions.

• Feature-Level Explainability: Feature contributions
are derived by aggregating attention scores over
diagnosis, medication, and laboratory embeddings.

• Clinical Pathway Tracing: Sequential attention
patterns allow visualization of disease progression
pathways.

Unlike post hoc explanation methods, these mechanisms are 
intrinsic to the model and directly influence learning. 

3.7 Model Training and Optimization 

The model is trained using binary cross-entropy loss: 
𝐿𝐿 =  −  �1

𝑁𝑁
�∑  {𝑁𝑁}[ 𝑦𝑦𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙(ŷ𝑖𝑖)+ (1 − 𝑦𝑦𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙(1 − ŷ𝑖𝑖)]

{𝑖𝑖=1}  (8) 
Optimization is performed using the Adam optimizer with 
learning rate scheduling and early stopping based on 
validation loss. Class imbalance is handled through weighted 
loss functions. 

3.8 Evaluation Protocol 

Data are split at the patient level into training, validation, and 
test sets to prevent temporal leakage. Performance is 
assessed using accuracy, precision, recall, F1-score, and area 
under the ROC curve (AUC). Early prediction performance 
is evaluated across multiple time horizons preceding disease 
onset. 

3.9 Implementation Details 

The proposed framework is implemented using PyTorch. 
Transformers are configured with multiple attention heads 
and embedding dimensions optimized through grid search. 
All experiments are conducted on GPU-enabled 
environments to ensure scalability for large-scale EHR 
datasets. 

4. Results and Discussion

This section presents the experimental results of the 
proposed explainable transformer-based framework and 
provides a detailed discussion of its predictive performance, 
early prediction capability, and interpretability. The results 
are compared against state-of-the-art baselines to 
demonstrate the effectiveness and novelty of the proposed 
approach. 
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4.1 Experimental Setup Recap 

Experiments were conducted on longitudinal EHR datasets 
containing heterogeneous clinical information, including 
diagnosis codes, medications, laboratory results, and 
demographic features. Patient-level splits were applied to 
avoid information leakage. Performance was evaluated using 
accuracy, precision, recall, F1-score, and area under the ROC 
curve (AUC). Early prediction was assessed across multiple 
prediction horizons preceding disease onset. 
The proposed model (denoted as X-TransEHR) was 
compared against traditional machine learning models and 
modern deep learning baselines, including recurrent models 
and transformer-based architectures. 

4.2 Baseline Models 

The following baselines were used for comparison: 
• Logistic Regression (LR)
• Random Forest (RF)
• Long Short-Term Memory (LSTM)
• Gated Recurrent Unit (GRU)
• BEHRT
• Hi-BEHRT
• Explainable Transformer (X-Transformer)

4.3 Overall Prediction Performance 

Table I summarizes the predictive performance of all models 
on the test dataset. 

Table 1. 
Overall chronic disease prediction performance 

Model Accuracy Precision Recall F1-
score AUC 

LR 0.741 0.728 0.702 0.715 0.781 
RF 0.764 0.751 0.733 0.742 0.803 

LSTM 0.801 0.793 0.778 0.785 0.841 
GRU 0.808 0.800 0.786 0.793 0.848 

BEHRT 0.832 0.826 0.812 0.819 0.873 
Hi-BEHRT 0.846 0.839 0.827 0.833 0.886 

X-Transformer 0.851 0.845 0.834 0.839 0.892 
X-TransEHR
(Proposed) 0.874 0.868 0.859 0.863 0.917 

The proposed X-TransEHR model outperforms all baseline 
methods across every evaluation metric. Traditional machine 
learning models suffer from limited temporal modeling 
capacity, while recurrent networks struggle with long-range 
dependencies. Transformer-based models achieve superior 
performance, with X-TransEHR demonstrating the highest 
AUC, confirming its effectiveness in capturing complex 
longitudinal disease trajectories. 
Fig. 3 compares the predictive performance of the proposed 
explainable transformer model with traditional machine 
learning and deep learning baselines, highlighting consistent 

improvements in AUC and F1-score for early chronic disease 
prediction. 

Fig. 3.  AUC performance comparison across different 
models 

Beyond predictive performance, the proposed model 
provides intrinsic explainability by highlighting influential 
clinical features and critical time periods that contribute to 
disease risk estimation. Fig. 4 presents an illustrative 
visualization of feature-level and temporal attention scores 
generated by the model. 

Fig. 4.  Feature-level and temporal importance scores 
for early prediction of type-2 diabetes in the MIMIC-IV 
cohort, derived from the intrinsic attention weights of 

the proposed X-TransEHR model 

4.4 Early Prediction Performance Analysis 
Early prediction capability is critical for preventive 
healthcare. To evaluate this aspect, disease onset was 
predicted at different time horizons prior to clinical 
diagnosis. 

Table 2. 
Early prediction performance across prediction 

horizons (auc) 

Prediction 
Horizon LSTM BEHRT Hi-

BEHRT 
X-

Transformer 
X-

TransEHR 
3 months 

before 0.801 0.842 0.854 0.861 0.889 

6 months 
before 0.787 0.828 0.843 0.851 0.878 

12 months 
before 0.761 0.809 0.823 0.836 0.862 

24 months 
before 0.732 0.781 0.798 0.812 0.841 
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Performance naturally declines as the prediction horizon 
extends further before disease onset. However, X-TransEHR 
consistently maintains a strong advantage over all baselines, 
especially at longer horizons. This indicates that the 
proposed time-aware encoding and attention mechanisms 
enable more reliable early-risk estimation, which is essential 
for proactive chronic disease management. 

4.5 Explainability and Interpretation Results 

Unlike black-box models, X-TransEHR provides 
interpretable insights through intrinsic attention 
mechanisms. 

Table 3. 
Example interpretability outputs of the proposed 

model 

Explanation 
Level Observed Insight Clinical Relevance 

Temporal 
attention 

High importance assigned 
to visits 6–12 months prior 

to diagnosis 

Aligns with clinical 
pre-symptomatic 

phase 

Diagnosis 
features 

Elevated weights for 
comorbid hypertension and 

dyslipidemia 

Known chronic 
disease risk factors 

Laboratory 
markers 

Gradual increase in glucose 
and inflammatory markers 

Reflects early 
disease progression 

Medication 
patterns 

Long-term medication 
adherence changes 

Indicates treatment 
response patterns 

The explainability results demonstrate that the proposed 
model does not rely on spurious correlations. Instead, it 
focuses on clinically meaningful patterns that align with 
established medical knowledge. Temporal attention 
visualization highlights critical pre-diagnostic windows, 
while feature-level explanations identify influential clinical 
attributes, supporting clinician trust and adoption. 

4.5.1 Case Study: Interpretable Early Risk 
Trajectory 
To illustrate how X-TransEHR generates clinically 
meaningful explanations, we present a representative high-
risk patient case from the test cohort. This patient was 
diagnosed with type-2 diabetes at month 0. When evaluated 
18 months prior to diagnosis, the model produced a predicted 
risk score of 0.86, indicating a high probability of future 
disease onset. 
Temporal attention maps showed that visits occurring 
between 12 and 6 months before diagnosis received the 
highest attention weights, corresponding to the patient’s pre-
symptomatic metabolic deterioration phase. Feature-level 
attention revealed elevated importance for gradually 
increasing fasting glucose, rising HbA1c, and the emergence 
of hypertension and dyslipidemia diagnoses. Medication 
attention highlighted the introduction of antihypertensive 
and lipid-lowering drugs, which clinically align with early 
metabolic syndrome progression. 

By jointly analyzing visit-level and feature-level attention, 
clinicians can trace how the model detected the convergence 
of metabolic risk factors long before formal diabetes 
diagnosis. This case demonstrates how X-TransEHR 
provides transparent, temporally grounded clinical reasoning 
rather than opaque risk scores. 

4.6 Ablation Study 

An ablation study was conducted to evaluate the contribution 
of each major component. 

Table 4. 
Ablation study results (AUC) 

Model Variant AUC 
Full X-TransEHR 0.917 

Without time-aware encoding 0.889 
Without feature-level attention 0.882 

Without explainability constraints 0.893 
Standard transformer only 0.879 

The observed performance drop when removing the 
explainability constraints indicates that intrinsic 
interpretability contributes not only to transparency but also 
to predictive accuracy. By forcing the model to attend to 
clinically meaningful and temporally stable features, the 
attention-based explainability mechanism acts as a form of 
regularization that suppresses spurious correlations and 
overfitting. As a result, the full X-TransEHR model 
generalizes better to unseen patient trajectories, which 
explains its superior AUC compared to the unconstrained 
transformer variant. 
Removing time-aware encoding or explainability 
components leads to noticeable performance degradation. 
This confirms that both temporal modeling and intrinsic 
interpretability play critical roles in improving predictive 
accuracy and model robustness. 

4.7 Comparative Discussion with Prior Work 

Compared with prior transformer-based models such as 
BEHRT, Hi-BEHRT, and Claimsformer, the proposed 
framework offers three key advantages: 

1. Earlier prediction capability across extended
horizons.

2. Built-in explainability rather than post hoc
interpretation.

3. Unified handling of heterogeneous longitudinal
EHR data.

While prior studies demonstrate strong predictive 
performance, they often lack transparent reasoning 
pathways. X-TransEHR bridges this gap by integrating 
explainability directly into the transformer architecture, 

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 5 | 2026 | 



H. M. Zangana & M. A. Sulaiman

8 

making it more suitable for real-world clinical decision 
support systems. 

4.8 Clinical and Practical Implications 

The results indicate that X-TransEHR can support early 
chronic disease risk stratification, enabling timely 
intervention and personalized treatment planning. The 
explainable outputs can assist clinicians in understanding 
disease progression patterns, improving trust, accountability, 
and regulatory compliance. 

4.9 Limitations and Future Directions 

Despite its strong performance, this study has limitations. 
The model was evaluated on retrospective EHR data, and 
prospective validation is required. Additionally, integration 
with unstructured clinical notes and genomic data may 
further enhance predictive power. Future work will also 
explore causal explainability and real-time deployment in 
clinical settings. 
In a prospective deployment setting, X-TransEHR can be 
integrated into a real-time clinical decision support 
dashboard connected to hospital EHR systems. As new 
patient visits are recorded, the model would continuously 
update risk trajectories and attention-based explanations, 
allowing clinicians to monitor when and why a patient’s risk 
becomes elevated and to intervene before irreversible disease 
progression occurs. 
While incorporating unstructured clinical notes or genomic 
features will increase embedding dimensionality and 
memory requirements, the visit-level attention aggregation 
ensures that computational complexity scales primarily with 
the number of visits rather than raw feature size, keeping the 
approach feasible for large-scale clinical deployment. 

4.10 Summary 

The experimental results demonstrate that the proposed 
explainable transformer framework achieves superior 
accuracy, robust early prediction, and clinically meaningful 
interpretability. These findings highlight its potential as a 
trustworthy AI solution for early chronic disease prediction 
using longitudinal EHRs. 

5. Conclusion

This study presented an explainable transformer-based 
framework for the early prediction of chronic diseases using 
longitudinal electronic health records. By explicitly modeling 
long-term temporal dependencies and heterogeneous clinical 
features, the proposed approach effectively captures complex 
patient trajectories that precede disease onset. The integration 
of time-aware encoding and attention-based mechanisms 
allows the model to leverage clinically relevant historical 

information, enabling accurate risk estimation well before 
formal diagnosis. 
A key contribution of this work is the incorporation of intrinsic 
explainability within the transformer architecture. Rather than 
relying on post hoc interpretation techniques, the model 
provides feature-level and temporal-level explanations that 
reveal influential clinical variables and critical time windows 
contributing to its predictions. The generated explanations 
were shown to align with established medical knowledge and 
disease progression patterns, enhancing model transparency, 
clinician trust, and practical usability in real-world healthcare 
settings. 
Experimental results demonstrated that the proposed 
framework consistently outperforms state-of-the-art machine 
learning and deep learning baselines across multiple 
evaluation metrics, including accuracy, F1-score, and AUC. 
Notably, the model maintained robust performance across 
extended early prediction horizons, highlighting its potential 
to support proactive and preventive care strategies for chronic 
disease management. 
Beyond predictive performance, this work advances the 
broader goal of trustworthy artificial intelligence in healthcare 
by balancing accuracy, interpretability, and clinical relevance. 
The findings suggest that explainable transformer models can 
serve as effective decision support tools for early risk 
stratification, personalized intervention planning, and 
population health management. 
Future research will focus on prospective clinical validation, 
integration of additional data modalities such as unstructured 
clinical notes and genomic information, and the incorporation 
of causal and uncertainty-aware explainability mechanisms. 
These directions aim to further strengthen the reliability, 
generalizability, and real-world impact of explainable 
predictive models in chronic disease prevention and healthcare 
decision-making. 

References
[1] L. A. Carrasco-Ribelles et al., “Prediction models using

artificial intelligence and longitudinal data from
electronic health records: a systematic methodological
review,” Journal of the American Medical Informatics
Association, vol. 30, no. 12, pp. 2072–2082, 2023.

[2] T. Hama et al., “Enhancing patient outcome prediction
through deep learning with sequential diagnosis codes
from structured electronic health record data:
Systematic review,” J. Med. Internet Res., vol. 27, p.
e57358, 2025.

[3] Y. Li et al., “BEHRT: transformer for electronic health
records,” Sci. Rep., vol. 10, no. 1, p. 7155, 2020.

[4] Y. Li et al., “Hi-BEHRT: hierarchical transformer-
based model for accurate prediction of clinical events
using multimodal longitudinal electronic health
records,” IEEE J. Biomed. Health Inform., vol. 27, no.
2, pp. 1106–1117, 2022

[5] E. Antikainen et al., “Transformers for cardiac patient
mortality risk prediction from heterogeneous electronic
health records,” Sci. Rep., vol. 13, no. 1, p. 3517, 2023.

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 5 | 2026 | 



Explainable Transformer Models for Early Prediction of Chronic Diseases Using Longitudinal Electronic Health Records 
(EHRs) 

9 

[6] Z. Kraljevic et al., “Foresight—a generative pretrained 
transformer for modelling of patient timelines using
electronic health records: a retrospective modelling
study,” Lancet Digit. Health, vol. 6, no. 4, pp. e281–
e290, 2024.

[7] S. Rao et al., “An explainable transformer-based deep
learning model for the prediction of incident heart
failure,” IEEE J. Biomed. Health Inform., vol. 26, no.
7, pp. 3362–3372, 2022.

[8] S. Xian et al., “Transformer patient embedding using
electronic health records enables patient stratification
and progression analysis,” NPJ Digit. Med., vol. 8, no.
1, p. 521, 2025.

[9] Y. Meng, W. Speier, M. K. Ong, and C. W. Arnold,
“Bidirectional representation learning from
transformers using multimodal electronic health record 
data to predict depression,” IEEE J. Biomed. Health
Inform., vol. 25, no. 8, pp. 3121–3129, 2021.

[10] Y. Kumar, A. Ilin, H. Salo, S. Kulathinal, M. K.
Leinonen, and P. Marttinen, “Self-supervised
forecasting in electronic health records with attention-
free models,” IEEE Transactions on Artificial
Intelligence, vol. 5, no. 8, pp. 3926–3938, 2024.

[11] J.-E. Ding et al., “Large language multimodal models
for new-onset type 2 diabetes prediction using five-
year cohort electronic health records,” Sci. Rep., vol.
14, no. 1, p. 20774, 2024.

[12] H. Hoghooghi Esfahani, S. Toyonaga, and K. Oyibo,
“The application of explainable artificial intelligence
in the prediction, diagnoses, treatment, and
management of chronic diseases: A systematic
review,” Digit. Health, vol. 11, p.
20552076251355668, 2025.

[13] R. Grout et al., “Predicting disease onset from
electronic health records for population health
management: a scalable and explainable Deep
Learning approach,” Front. Artif. Intell., vol. 6, p.
1287541, 2024.

[14] [14] N. de Lacy, M. Ramshaw, and W. Y. Lam,
“RiskPath: Explainable deep learning for multistep
biomedical prediction in longitudinal data,” Patterns,
2025.

[15] I. Drozdov, B. Szubert, C. Murphy, K. Brooksbank,
and D. J. Lowe, “Early detection of heart failure using
in-patient longitudinal electronic health records,”
PLoS One, vol. 19, no. 12, p. e0314145, 2024.

[16] C.-T. Dao et al., “CURENet: combining unified
representations for efficient chronic disease
prediction,” Health Inf. Sci. Syst., vol. 14, no. 1, p. 7,
2025.

[17] A. Abugabah, P. K. Shukla, P. K. Shukla, and A.
Pandey, “An intelligent healthcare system for rare
disease diagnosis utilizing electronic health records
based on a knowledge-guided multimodal transformer
framework,” BioData Min., vol. 18, no. 1, p. 70, 2025.

[18] A. Saxena, S. Z. Hassan, and J. Bhardwaj, “AI Chronic 
Diseases Preventive Care: Integrating Electronic
Health Records, Genomic Data, and Real-Time Patient 
Monitoring with AI for Enhanced Early Detection of
Chronic Diseases and Optimization of Peptide Drug
Manufacturing,” in International Conference of Global 
Innovations and Solutions, Springer, 2025, pp. 424–
434.

[19] M. Lentzen et al., “A transformer-based model trained
on large scale claims data for prediction of severe

COVID-19 disease progression,” IEEE J. Biomed. 
Health Inform., vol. 27, no. 9, pp. 4548–4558, 2023. 

[20] Y. K. Ahmed and A. N. A. Naji, “Smart feature
extraction using deep learning for early diagnosis of
chronic diseases in next-generation medical decision
support systems,” Network Modeling Analysis in
Health Informatics and Bioinformatics, vol. 14, no. 1,
p. 140, 2025.

[21] L. Dai, H. Xu, and Y. Zhang, “Automated
classification of clinical diagnoses in electronic health
records using transformer,” PLoS One, vol. 20, no. 9,
p. e0329963, 2025.

[22] L. Gerrard, X. Peng, A. Clarke, and G. Long,
“Claimsformer: Pretrained Transformer for
Administrative Claims Data to Predict Chronic
Conditions,” in Australasian Joint Conference on
Artificial Intelligence, Springer, 2024, pp. 348–362.

[23] A. Shmatko et al., “Learning the natural history of
human disease with generative transformers,” Nature,
pp. 1–9, 2025.

[24] H. M. Zangana, F. M. Mustafa, and M. Omar, “A
Hybrid Approach for Robust Object Detection:
Integrating Template Matching and Faster R-CNN,”
EAI Endorsed Transactions on AI and Robotics, vol.
3, 2024.

[25] H. M. Zangana and F. M. Mustafa, “Hybrid Image
Denoising Using Wavelet Transform and Deep
Learning,” 2024.

[26] A. Gupta, “Improved hybrid preprocessing technique
for effective segmentation of wheat canopies in
chlorophyll fluorescence images,” EAI Endorsed
Trans. AI Robot., vol. 3, 2024.

[27] S. Mishra and R. K. Dwivedi, “Designing Automation
for Pickup and Delivery Tasks in Modern Warehouses
Using Multi Agent Path Finding (MAPF) and Multi
Agent Reinforcement Learning (MARL) Based
Approaches,” EAI Endorsed Transactions on AI and
Robotics, vol. 3, 2024.

[28] E. Aghajari and A. A. AbdulRahim, “Prediction of
short circuit current of wind turbines based on artificial 
neural network model,” EAI Endorsed Trans. AI
Robot, vol. 3, 2024.

[29] A. Mohamed, R. AlAleeli, and K. Shaalan,
“Advancing Predictive Healthcare: A Systematic
Review of Transformer Models in Electronic Health
Records,” Computers, vol. 14, no. 4, p. 148, 2025.

[30] S. Kaur and H. Sharma, “Causal Representation
Learning for Predicting Autoimmune Disease
Progression from Longitudinal Multimodal Clinical
Data,” IEEE Access, 2025.

EAI Endorsed Transactions on 
AI and Robotics 

| Volume 5 | 2026 | 




