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Abstract

Early prediction of chronic diseases using longitudinal electronic health records (EHRs) is critical for enabling timely
interventions and improving patient outcomes. However, existing deep learning approaches often function as black-box
models, limiting their clinical adoption due to a lack of transparency and interpretability. This study proposes an explainable
transformer-based framework for early chronic disease prediction that effectively models temporal dependencies in
longitudinal EHR data while providing clinically meaningful explanations. The proposed approach integrates a time-aware
transformer architecture with attention-based interpretability mechanisms to capture complex patient trajectories across
heterogeneous clinical events, including diagnoses, laboratory results, medications, and demographic attributes. To enhance
explainability, we incorporate feature-level and temporal attention visualization, enabling identification of influential clinical
factors and critical time windows contributing to disease onset predictions. Extensive experiments conducted on large-scale
longitudinal EHR datasets demonstrate that the proposed model consistently outperforms state-of-the-art machine learning
and deep learning baselines in terms of predictive accuracy, recall, and early risk detection capability. Furthermore,
qualitative evaluation with clinician-oriented explanation analyses confirms that the generated explanations align with
established medical knowledge, enhancing trust and clinical usability. This work advances the integration of explainable
artificial intelligence in healthcare by offering a robust and interpretable transformer-based solution for early chronic disease
prediction, supporting data-driven decision-making in real-world clinical settings.
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1. Introduction With the widespread adoption of electronic health records

(EHRs), longitudinal clinical data capturing patient
trajectories over time have become a valuable foundation for
predictive modeling in healthcare [1], [2]. These records
encode rich temporal information, including diagnoses,
laboratory tests, medications, procedures, and demographic
attributes, offering unprecedented opportunities for data-
driven early disease detection.

The increasing prevalence of chronic diseases, such as
cardiovascular disorders, diabetes, autoimmune conditions,
and neuropsychiatric illnesses, poses a major challenge to
global healthcare systems. Early prediction of chronic
disease onset is essential for preventive care, resource
optimization, and improved patient outcomes.
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Recent advances in deep learning have substantially
improved disease prediction from EHRs, particularly
through sequence-aware architectures such as recurrent
neural networks and attention-based models. Among these,
transformer models have emerged as a dominant paradigm
due to their ability to capture long-range dependencies and
heterogeneous temporal patterns in longitudinal data [3], [4],
[5]. Transformer-based frameworks such as BEHRT, Hi-
BEHRT, and Foresight have demonstrated strong predictive
performance across various clinical tasks, including
mortality risk prediction, clinical event forecasting, and
patient stratification [6], [7], [8]. Extensions incorporating
multimodality and self-supervision have further enhanced
representation learning for complex EHR data [9], [10], [11].
Despite these advances, most high-performing transformer
models remain difficult to interpret, operating largely as
black-box systems. This lack of transparency presents a
critical barrier to clinical deployment, where explainability,
accountability, and trust are essential for decision support
systems [4], [12]. While recent studies have begun
integrating explainability into deep learning frameworks for
healthcare—such as attention visualization, pathway
attribution, and temporal importance scoring—these efforts
remain fragmented and often secondary to predictive
accuracy [13], [14]. Consequently, there is a growing
research imperative to develop models that jointly optimize
predictive  performance and clinically meaningful
interpretability.
Although transformer-based models have shown strong
potential for chronic disease prediction using longitudinal
EHRs, three critical gaps remain. First, many existing
approaches focus on point-in-time diagnosis or short-term
risk assessment, rather than early prediction across extended
temporal horizons where preventive interventions are most
effective [15], [16]. Second, explainability is often limited to
coarse attention weights or post hoc explanations that lack
temporal granularity and clinical coherence, reducing their
practical value for clinicians [7], [12]. Third, current models
rarely provide interpretable insights across heterogeneous
EHR modalities in a unified framework, despite evidence
that multimodal longitudinal integration significantly
enhances predictive power [17], [18].
These limitations restrict the translation of transformer-based
prediction models into real-world clinical workflows, where
understanding why and when a patient is at risk is as
important as the prediction itself. Addressing these
challenges requires an explainable modeling approach that
preserves the expressive power of transformers while
delivering transparent, temporally grounded, and clinically
aligned explanations.
The primary objective of this research is to develop an
explainable transformer-based framework for early
prediction of chronic diseases using longitudinal EHR data.
Specifically, this study aims to:

1. Design a time-aware transformer architecture

capable of modeling long-term patient trajectories
across heterogeneous EHR components.

2. Integrate built-in explainability mechanisms that
provide  feature-level and  temporal-level
interpretation of model predictions.

3. Enable early risk detection by identifying clinically
relevant time windows and factors preceding
disease onset.

4. Empirically evaluate the proposed model against
state-of-the-art baselines on chronic disease
prediction tasks using longitudinal EHR datasets.

The key contributions of this work are summarized as
follows:

e We propose a unified explainable transformer
framework tailored for early chronic disease
prediction from longitudinal EHRs.

e We introduce temporally grounded and feature-
aware attention mechanisms that enhance
interpretability without sacrificing predictive
accuracy.

e We demonstrate improved early prediction
performance compared to existing transformer and
deep learning baselines.

e We provide clinically meaningful explanations that
align with known disease progression patterns,
enhancing trust and usability in healthcare settings.

The novelty of the proposed method lies in its joint
optimization of early prediction accuracy and intrinsic
explainability within a transformer-based architecture.
Unlike prior models that treat explainability as an auxiliary
or post hoc component [7], [13], the proposed framework
embeds interpretability directly into the model’s attention
structure, enabling simultaneous learning of predictive and
explanatory representations. Furthermore, by explicitly
modeling longitudinal temporal dynamics across extended
time horizons, the approach supports proactive disease risk
assessment rather than reactive diagnosis.

In contrast to existing transformer applications focused
on single-disease prediction or administrative claims data
[13], [19], this work emphasizes generalizable early
prediction for chronic diseases using heterogeneous EHR
data. By bridging performance, transparency, and clinical
relevance, the proposed explainable transformer framework
advances the practical adoption of trustworthy artificial
intelligence in predictive healthcare.

2. Literature Review

Artificial intelligence (AI) methods for analyzing
longitudinal electronic health records (EHRs) have gained
increasing attention for chronic disease prediction, early
diagnosis, and risk stratification. This section reviews prior
work across five key dimensions: (i) traditional deep learning
for EHR-based disease prediction, (ii) transformer-based
architectures for longitudinal modeling, (iii) multimodal and
large-scale representation learning, (iv) explainable Al
approaches in predictive healthcare, and (v) identified
research gaps motivating this study.
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Early applications of deep learning in EHR analysis relied
heavily on handcrafted features and shallow representations,
which limited generalizability and temporal modeling
capacity. [20] highlighted the importance of automated
feature extraction using deep neural networks for early
chronic disease diagnosis, demonstrating improved decision
support performance over classical methods. Similarly, [15]
focused on early heart failure detection using inpatient
longitudinal EHR data, illustrating the value of temporal data
aggregation for pre-diagnostic risk assessment.

Systematic reviews have confirmed the growing reliance on
deep learning architectures—particularly recurrent and
sequence-based models—for disease prediction from
structured EHR data [1], [2]. However, these reviews also
emphasize persistent limitations related to interpretability,
scalability, and long-term temporal dependency modeling.
Transformer-based architectures have emerged as a powerful
alternative to recurrent neural networks due to their self-
attention mechanisms and ability to model long-range
dependencies. BEHRT, introduced by [3], was among the
first transformer models designed specifically for EHR data,
demonstrating superior performance in predicting clinical
events. Subsequent enhancements, such as Hi-BEHRT,
incorporated hierarchical and multimodal representations,
further improving predictive accuracy for longitudinal
clinical outcomes [4].

Numerous studies have applied transformers to diverse
healthcare tasks, including mortality prediction [5], clinical
diagnosis classification [21], and disease progression
forecasting [19]. Large-scale pretrained models such as
Foresight have shown that generative transformers can
effectively model patient timelines across heterogeneous
EHR sequences [6]. Claims-based transformer models, such
as Claimsformer, further demonstrate the scalability of
transformer architectures across administrative healthcare
data [22].

More recent work has extended transformer modeling
toward disease trajectory learning and patient stratification.
[23] proposed generative transformers to model the natural
history of diseases, while [8] introduced transformer-based
patient embeddings to enable progression analysis and
cohort discovery.

Recent advances in artificial intelligence have demonstrated
the effectiveness of hybrid and deep learning—based
approaches across diverse application domains, highlighting
their potential for complex predictive tasks such as early
disease detection from longitudinal EHR data. Hybrid
frameworks that combine traditional techniques with deep
neural networks have shown improved robustness and
accuracy, as evidenced in object detection systems
integrating template matching with Faster R-CNN [24] and
image denoising models that fuse wavelet transforms with
deep learning architectures [25]. Similarly, advanced
preprocessing and segmentation strategies have enhanced
feature extraction in agricultural imaging, leading to more
reliable analysis outcomes [26]. In automation and decision-

making systems, the integration of multi-agent path finding
and reinforcement learning has enabled efficient
coordination in complex warehouse environments [27],
demonstrating the scalability of intelligent models for real-
world applications. Moreover, artificial neural networks
have been successfully applied to predict critical operational
parameters in energy systems, such as short-circuit currents
in wind turbines, underscoring the versatility of data-driven
prediction models [28]. Collectively, these studies support
the adoption of advanced deep learning and hybrid
methodologies in healthcare, where explainable transformer
models can leverage longitudinal EHR data to provide
accurate, interpretable, and early predictions of chronic
diseases.

To address the heterogeneity of EHR data, several studies
have explored multimodal and wunified representation
learning approaches. [9] demonstrated the effectiveness of
bidirectional transformers integrating structured and
unstructured EHR data for depression prediction. [11]
extended this concept by employing large language
multimodal models for new-onset type 2 diabetes prediction
using multi-year cohort data.

Unified frameworks such as CURENet aim to combine
multiple EHR modalities into cohesive latent representations
to improve chronic disease prediction efficiency [16].
Similarly, [17] proposed a knowledge-guided multimodal
transformer framework for rare disease diagnosis,
emphasizing medically informed representation learning.
Automated diagnosis classification using transformer
models has also gained traction, further validating their
applicability across diverse clinical tasks [21].
Complementary approaches such as self-supervised
forecasting [10] and temporal graph-based neural networks
[17] suggest alternative directions for modeling patient
trajectories, though they often lack intrinsic explainability or
require complex graph construction pipelines.

Despite performance gains, the opacity of deep learning
models has raised concerns regarding clinical trust and
adoption. [4] emphasized the importance of explainability
and uncertainty quantification in EHR-based prediction
models. [7] addressed this challenge by introducing an
explainable transformer for incident heart failure prediction,
demonstrating the feasibility of attention-based explanation
mechanisms.

More recent work has focused explicitly on explainable
prediction pathways. [13] proposed a scalable explainable
deep learning framework for population health management,
while [14] introduced RiskPath, a model designed to
generate  interpretable  multistep  predictions  from
longitudinal biomedical data. Systematic reviews have
consistently identified explainable Al as a critical research
priority, particularly for chronic disease management and
treatment planning [12], [29].

Causal and representation-based explainability approaches
have also emerged. [30] explored causal representation
learning for autoimmune disease progression prediction,
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highlighting the need for temporally grounded and
mechanistically  interpretable =~ models. Integrative
perspectives further emphasize combining EHRs with
genomic and real-time monitoring data to improve early
detection and preventive care [18].

Although transformer-based models have demonstrated
strong predictive performance across numerous healthcare
tasks, existing studies exhibit several limitations. First, many
approaches prioritize accuracy over interpretability, limiting
clinical usability despite promising results [1], [12]. Second,
explainability is often treated as a post hoc component rather
than an intrinsic design objective, reducing temporal and
feature-level transparency [7], [14]. Third, while multimodal
learning has advanced, unified explainable frameworks for
early chronic disease prediction using longitudinal EHRs
remain underexplored [16], [17].

These gaps motivate the development of an explainable
transformer-based framework that jointly models long-term
patient trajectories, integrates heterogencous EHR
modalities, and provides clinically meaningful explanations
for early chronic disease prediction. By addressing these
challenges, the proposed approach aims to advance
trustworthy and actionable Al solutions for real-world
healthcare applications.

3. Method

This section presents the proposed explainable transformer
framework for early prediction of chronic diseases using
longitudinal electronic health records (EHRs). We first
formalize the problem definition, followed by descriptions of
data representation, model architecture, temporal encoding
strategy, explainability mechanisms, training procedure, and
implementation details.

Fig. 1 illustrates the overall architecture of the proposed
explainable transformer-based framework for early chronic
disease prediction using longitudinal electronic health
records. The framework comprises data preprocessing,
temporal embedding, transformer-based representation
learning, prediction, and integrated explainability
components, enabling both accurate early risk estimation and
clinically interpretable insights.
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Fig. 1. Overall architecture of the proposed
explainable transformer-based framework

3.1 Problem Formulation

Let D={(X,yi)}i=1" denote a longitudinal EHR dataset with
N patients. Each patient i is represented by a temporally
ordered sequence of clinical visits:

Xi = {ve vy Vg ) 1
where T; denotes the number of visits and each visit vi,
consists of heterogeneous clinical features, including
diagnosis codes, procedure codes, laboratory results,
medications, and demographic attributes. The outcome label
yi€{0,1} indicates whether the patient develops a target
chronic disease within a predefined prediction horizon.

The objective is to learn a function:

fiXi= i (2)
that predicts disease onset at an early stage while providing
interpretable explanations regarding influential clinical
features and temporal periods contributing to the prediction.

3.2 Data Representation and Preprocessing

Each clinical event within the EHR is encoded using
standard medical coding systems (e.g., ICD codes for
diagnoses, LOINC for laboratory tests, and ATC for
medications). Continuous variables such as laboratory values
are normalized using z-score normalization, while missing
values are handled through masking mechanisms rather than
imputation to preserve temporal integrity.

Specifically, a binary observation mask is associated with
each continuous and categorical feature, where m;x€{0,1}
indicates whether feature k of patient iii at visit t is observed.
Missing values are zero-filled but remain explicitly
identifiable through their corresponding mask embeddings,
which are concatenated with the original feature embeddings
before being passed to the transformer. This allows the
model to distinguish between truly absent information and
measured zero values, thereby preserving the temporal and
clinical integrity of longitudinal EHR records and avoiding
the bias introduced by statistical imputation.

For each patient visit, discrete codes are mapped to dense
embeddings via trainable embedding layers. Let Eq, En, and
Ei represent diagnosis, medication, and laboratory
embeddings, respectively. The visit-level representation is
constructed by concatenation:

_ [pldiag) | pimed) | piiab) | p{demo)
eqn = [Ei 1 EGS 0BG 0BG 3)

3.3 Temporal Encoding of Longitudinal
Information

To model irregular time intervals between visits, we
integrate time-aware positional encoding. Each visit vi; is
assigned a time stamp Ati; representing the elapsed time
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since the previous visit. A learnable time embedding
function E((At) is added to the visit embedding:

Ziy = euy + E(dgn) “4)
This design allows the model to distinguish between recent
and distant clinical events and supports early prediction by
emphasizing temporally relevant periods.

3.4 Explainable Transformer Architecture

The core of the proposed framework is a multi-layer
transformer encoder tailored for longitudinal EHR data.
Given the input sequence Zi={z.,...,ziti}, self-attention is
applied as:

Attention(Q,K,V) = softmax(Q K™ /V(d)V (5)
where Q, K, and V are linear projections of Z;, and dx is the
dimensionality of the key vectors.

Multi-head attention enables the model to capture diverse
temporal dependencies and interactions among clinical
features. Transformer layers are stacked with residual
connections and layer normalization to enhance convergence
and stability.

To model long-term dependencies in patient histories while
maintaining interpretability, the proposed framework
employs a multi-head self-attention mechanism. Fig. 2
visualizes how the transformer learns weighted relationships
between historical clinical visits, allowing identification of
influential time periods for early disease prediction.

7N

{ \
| Self-Attention |
\‘ /

(w) 1)
L V3 ) 4 )
N/ N/
Fig. 2. Temporal self-attention mechanism over
longitudinal patient visits

3.5 Classification and Early Prediction Head

The transformer encoder outputs a sequence of
contextualized wvisit representations. A global patient
representation is obtained through attention-based pooling:
h = 3t =130z (6)
where attention weights a;; indicate the importance of each
visit.
The pooled representation is passed through a fully
connected classification head with dropout regularization:
yi= oW h; + b) (7
where o(-) is the sigmoid activation function.
Early prediction is enabled by truncating longitudinal
sequences at earlier time points during training and
evaluation, allowing the model to learn disease risk
progression patterns before clinical diagnosis.

3.6 Explainability Mechanisms

Explainability is natively embedded into the architecture
through attention-based interpretation at both feature and
temporal levels:

e Temporal Explainability: Visit-level attention
weights reveal critical time windows influencing
predictions.

e Feature-Level Explainability: Feature contributions
are derived by aggregating attention scores over
diagnosis, medication, and laboratory embeddings.

e C(Clinical Pathway Tracing: Sequential attention
patterns allow visualization of disease progression
pathways.

Unlike post hoc explanation methods, these mechanisms are
intrinsic to the model and directly influence learning.

3.7 Model Training and Optimization

The model is trained using binary cross-entropy loss:

L = — (%) Z%?jg;’tlog(}’l)"' (1-y)log(1-97)] (8)
Optimization is performed using the Adam optimizer with
learning rate scheduling and early stopping based on
validation loss. Class imbalance is handled through weighted
loss functions.

3.8 Evaluation Protocol

Data are split at the patient level into training, validation, and
test sets to prevent temporal leakage. Performance is
assessed using accuracy, precision, recall, F1-score, and area
under the ROC curve (AUC). Early prediction performance
is evaluated across multiple time horizons preceding disease
onset.

3.9 Implementation Details

The proposed framework is implemented using PyTorch.
Transformers are configured with multiple attention heads
and embedding dimensions optimized through grid search.
All  experiments are conducted on GPU-enabled
environments to ensure scalability for large-scale EHR
datasets.

4. Results and Discussion

This section presents the experimental results of the
proposed explainable transformer-based framework and
provides a detailed discussion of its predictive performance,
early prediction capability, and interpretability. The results
are compared against state-of-the-art baselines to
demonstrate the effectiveness and novelty of the proposed
approach.
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4.1 Experimental Setup Recap

Experiments were conducted on longitudinal EHR datasets
containing heterogeneous clinical information, including
diagnosis codes, medications, laboratory results, and
demographic features. Patient-level splits were applied to
avoid information leakage. Performance was evaluated using
accuracy, precision, recall, F1-score, and area under the ROC
curve (AUC). Early prediction was assessed across multiple
prediction horizons preceding disease onset.

The proposed model (denoted as X-TransEHR) was
compared against traditional machine learning models and
modern deep learning baselines, including recurrent models
and transformer-based architectures.

4.2 Baseline Models

The following baselines were used for comparison:
e Logistic Regression (LR)

Random Forest (RF)

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

BEHRT

Hi-BEHRT

Explainable Transformer (X-Transformer)

4.3 Overall Prediction Performance

Table [ summarizes the predictive performance of all models
on the test dataset.

Table 1.
Overall chronic disease prediction performance

Model Accuracy | Precision | Recall Fl- AUC
score

LR 0.741 0.728 0.702 | 0.715 | 0.781

RF 0.764 0.751 0.733 0.742 | 0.803

LSTM 0.801 0.793 0.778 0.785 | 0.841

GRU 0.808 0.800 0.786 | 0.793 | 0.848

BEHRT 0.832 0.826 0.812 | 0.819 | 0.873

Hi-BEHRT 0.846 0.839 0.827 | 0.833 | 0.886

X-Transformer 0.851 0.845 0.834 0.839 | 0.892

X-TransEHR 0.874 0.868 | 0.859 | 0.863 | 0.917
(Proposed)

improvements in AUC and F1-score for early chronic disease
prediction.

0.9 T T T
L 08| - g
S . g
< 07 | / |
6 L L L L L
Eogistic Regression LSTM GRU BEHRT Proposed Model
Models
Fig. 3. AUC performance comparison across different
models

Beyond predictive performance, the proposed model
provides intrinsic explainability by highlighting influential
clinical features and critical time periods that contribute to
disease risk estimation. Fig. 4 presents an illustrative
visualization of feature-level and temporal attention scores
generated by the model.

Temporal Attention Feature Importance Scores

Months
Before
Diagnosis

Fasting Glucose

HbAlC

Hypertension

Dyslipidemia

Antihypertensive Meds

|
- | Upid-Lowering Meds

i

(Diagnosis)

0.0 01 0.2 0.3 0.4 0.5
Attention Score

Fig. 4. Feature-level and temporal importance scores

for early prediction of type-2 diabetes in the MIMIC-IV

cohort, derived from the intrinsic attention weights of
the proposed X-TransEHR model

4.4 Early Prediction Performance Analysis
Early prediction capability is critical for preventive
healthcare. To evaluate this aspect, disecase onset was
predicted at different time horizons prior to clinical
diagnosis.

Table 2.

The proposed X-TransEHR model outperforms all baseline
methods across every evaluation metric. Traditional machine
learning models suffer from limited temporal modeling
capacity, while recurrent networks struggle with long-range
dependencies. Transformer-based models achieve superior
performance, with X-TransEHR demonstrating the highest
AUC, confirming its effectiveness in capturing complex
longitudinal disease trajectories.

Fig. 3 compares the predictive performance of the proposed
explainable transformer model with traditional machine
learning and deep learning baselines, highlighting consistent

< EAI

Early prediction performance across prediction
horizons (auc)

Prediction Hi- X- X-
Horizon LSTM | BEHRT BEHRT | Transformer | TransEHR
3 months 0.801 0.842 0.854 0.861 0.889

before
6 months 0.787 0.828 0.843 0.851 0.878
before

12months | 761 | 0.809 0.823 0.836 0.862

before

24 months 0.732 0.781 0.798 0.812 0.841

before
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Performance naturally declines as the prediction horizon
extends further before disease onset. However, X-TransEHR
consistently maintains a strong advantage over all baselines,
especially at longer horizons. This indicates that the
proposed time-aware encoding and attention mechanisms
enable more reliable early-risk estimation, which is essential
for proactive chronic disease management.

4.5 Explainability and Interpretation Results

Unlike black-box models, X-TransEHR provides
interpretable  insights  through intrinsic  attention
mechanisms.

Table 3.
Example interpretability outputs of the proposed
model
Explanation . ..
Observed Insight Clinical Relevance
Level
Temporal ngh .1mp0rtance a551gn.ed Aligns with chmf;al
. to visits 6—12 months prior pre-symptomatic
attention . .
to diagnosis phase
Diagnosis Elevg ted nghts. for Known chronic
comorbid hypertension and . .
features 7l . disease risk factors
dyslipidemia
Laboratory Gradual increase in glucose Reflects early
markers and inflammatory markers disease progression
Medication Long-term medication Indicates treatment
patterns adherence changes response patterns

The explainability results demonstrate that the proposed
model does not rely on spurious correlations. Instead, it
focuses on clinically meaningful patterns that align with
established medical knowledge. Temporal attention
visualization highlights critical pre-diagnostic windows,
while feature-level explanations identify influential clinical
attributes, supporting clinician trust and adoption.

451 Case Study: Interpretable Early Risk
Trajectory

To illustrate how X-TransEHR generates clinically
meaningful explanations, we present a representative high-
risk patient case from the test cohort. This patient was
diagnosed with type-2 diabetes at month 0. When evaluated
18 months prior to diagnosis, the model produced a predicted
risk score of 0.86, indicating a high probability of future
disease onset.

Temporal attention maps showed that visits occurring
between 12 and 6 months before diagnosis received the
highest attention weights, corresponding to the patient’s pre-
symptomatic metabolic deterioration phase. Feature-level
attention revealed elevated importance for gradually
increasing fasting glucose, rising HbA lc, and the emergence
of hypertension and dyslipidemia diagnoses. Medication
attention highlighted the introduction of antihypertensive
and lipid-lowering drugs, which clinically align with early
metabolic syndrome progression.

By jointly analyzing visit-level and feature-level attention,
clinicians can trace how the model detected the convergence
of metabolic risk factors long before formal diabetes
diagnosis. This case demonstrates how X-TransEHR
provides transparent, temporally grounded clinical reasoning
rather than opaque risk scores.

4.6 Ablation Study

An ablation study was conducted to evaluate the contribution
of each major component.

Table 4.
Ablation study results (AUC)

Model Variant AUC
Full X-TransEHR 0.917
Without time-aware encoding 0.889

Without feature-level attention 0.882
Without explainability constraints  0.893
Standard transformer only 0.879

The observed performance drop when removing the
explainability  constraints  indicates  that intrinsic
interpretability contributes not only to transparency but also
to predictive accuracy. By forcing the model to attend to
clinically meaningful and temporally stable features, the
attention-based explainability mechanism acts as a form of
regularization that suppresses spurious correlations and
overfitting. As a result, the full X-TransEHR model
generalizes better to unseen patient trajectories, which
explains its superior AUC compared to the unconstrained
transformer variant.

Removing time-aware encoding or explainability
components leads to noticeable performance degradation.
This confirms that both temporal modeling and intrinsic
interpretability play critical roles in improving predictive
accuracy and model robustness.

4.7 Comparative Discussion with Prior Work

Compared with prior transformer-based models such as
BEHRT, Hi-BEHRT, and Claimsformer, the proposed
framework offers three key advantages:
1. Earlier prediction -capability across extended
horizons.

2. Built-in explainability rather than post hoc
interpretation.

3. Unified handling of heterogeneous longitudinal
EHR data.

While prior studies demonstrate strong predictive
performance, they often lack transparent reasoning
pathways. X-TransEHR bridges this gap by integrating
explainability directly into the transformer architecture,
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making it more suitable for real-world clinical decision
support systems.

4.8 Clinical and Practical Implications

The results indicate that X-TransEHR can support early
chronic disease risk stratification, enabling timely
intervention and personalized treatment planning. The
explainable outputs can assist clinicians in understanding
disease progression patterns, improving trust, accountability,
and regulatory compliance.

4.9 Limitations and Future Directions

Despite its strong performance, this study has limitations.
The model was evaluated on retrospective EHR data, and
prospective validation is required. Additionally, integration
with unstructured clinical notes and genomic data may
further enhance predictive power. Future work will also
explore causal explainability and real-time deployment in
clinical settings.

In a prospective deployment setting, X-TransEHR can be
integrated into a real-time clinical decision support
dashboard connected to hospital EHR systems. As new
patient visits are recorded, the model would continuously
update risk trajectories and attention-based explanations,
allowing clinicians to monitor when and why a patient’s risk
becomes elevated and to intervene before irreversible disease
progression occurs.

While incorporating unstructured clinical notes or genomic
features will increase embedding dimensionality and
memory requirements, the visit-level attention aggregation
ensures that computational complexity scales primarily with
the number of visits rather than raw feature size, keeping the
approach feasible for large-scale clinical deployment.

4.10 Summary

The experimental results demonstrate that the proposed
explainable transformer framework achieves superior
accuracy, robust early prediction, and clinically meaningful
interpretability. These findings highlight its potential as a
trustworthy Al solution for early chronic disease prediction
using longitudinal EHRs.

5. Conclusion

This study presented an explainable transformer-based
framework for the early prediction of chronic diseases using
longitudinal electronic health records. By explicitly modeling
long-term temporal dependencies and heterogeneous clinical
features, the proposed approach effectively captures complex
patient trajectories that precede disease onset. The integration
of time-aware encoding and attention-based mechanisms
allows the model to leverage clinically relevant historical

information, enabling accurate risk estimation well before
formal diagnosis.

A key contribution of this work is the incorporation of intrinsic
explainability within the transformer architecture. Rather than
relying on post hoc interpretation techniques, the model
provides feature-level and temporal-level explanations that
reveal influential clinical variables and critical time windows
contributing to its predictions. The generated explanations
were shown to align with established medical knowledge and
disease progression patterns, enhancing model transparency,
clinician trust, and practical usability in real-world healthcare
settings.

Experimental results demonstrated that the proposed
framework consistently outperforms state-of-the-art machine
learning and deep learning baselines across multiple
evaluation metrics, including accuracy, F1l-score, and AUC.
Notably, the model maintained robust performance across
extended early prediction horizons, highlighting its potential
to support proactive and preventive care strategies for chronic
disease management.

Beyond predictive performance, this work advances the
broader goal of trustworthy artificial intelligence in healthcare
by balancing accuracy, interpretability, and clinical relevance.
The findings suggest that explainable transformer models can
serve as effective decision support tools for early risk
stratification, personalized intervention planning, and
population health management.

Future research will focus on prospective clinical validation,
integration of additional data modalities such as unstructured
clinical notes and genomic information, and the incorporation
of causal and uncertainty-aware explainability mechanisms.
These directions aim to further strengthen the reliability,
generalizability, and real-world impact of explainable
predictive models in chronic disease prevention and healthcare
decision-making.
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