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Abstract

Fork/Join is a simple but effective technique for exploiting the parallelism. When developing a parallel
program using Fork/Join, one of the main things is how a large task is decomposed into subtasks whose
results can be combined as a final result. In this paper we show how to develop Fork/Join parallel programs
through refinement and decomposition. We take Fork/Join style task decomposition as a refinement which we
call Fork/Join refinement. Proof obligations of refinement can ensure the correctness of decomposition. For
practical application, we provide a refinement pattern for the Fork/Join refinement and extend an atomicity
decomposition diagram to illustrate it. Our approach provides a good framework for modeling Fork/Join
parallel programs and showing proof obligations of correctness for such programs. We illustrate the approach
by applying it on a small case.

Received on 23 December 2021; accepted on 01 February 2022; published on 18 February 2022

Keywords: Event-B, Fork/Join, refinement, decomposition

Copyright © 2022 Jie Peng et al., licensed to EAI. This is an open access article distributed under the terms of the Creative 
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the 
original work is properly cited.

doi:10.4108/airo.v1i.16

1. Introduction
Event-B[1,2] is a formal modelling method that uses
abstraction and refinement and falls into the general
topic of AI [3-7]. The process of modeling begins with
a high level abstraction model as a specification of
a system, then refines the model gradually until a
desired level abstraction model is gained. If a large
model is difficult to be refined, we can decompose it
into small sub-models that can be refined easily and
independently. The proof obligations of refinement are
generated automatically by the Rodin Platform tool. In
order to verify the correctness of refinement in Event-
B, the proof obligations are given to the Rodin Platform
carrying out automatic or interactive proofs.

Fork-join[8,9] is a simple but effective technique for
exploiting the parallelism. Fork primitive diverges the
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program flow into two or more parallel flows, and
Join primitive combines multiple parallel flows into
a single flow. Fork/Join is often used to develop the
parallel version of a divide-and-conquer algorithm. The
idea is simple: a large task can be decomposed into
small subtasks which can be computed in parallel,
then join the results of subtasks to get the result of
the original task. When developing a parallel program
using Fork/Join, one of the main things to consider is
how a large task is decomposed into subtasks whose
results can be combined as a final result.

In this paper we focus on developing Fork/Join
parallel programs through refinement and decompo-
sition. We take Fork/Join style task decomposition as
a refinement(we call it Fork/Join refinement). Proof
obligations of refinement can ensure the correctness of
decomposition. For practical application, we propose
Fork/Join refinement pattern. The pattern starts with a
high abstract model containing a single event as a spec-
ification of task. Then the model is refined into forks
events solving the subtasks and a join event combining
the results of subtasks. Forks events as new events
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refine skip, join event as main event refines the single
event of the initial model. We introduce control vari-
ables to realize three synchronization patterns between
forks and join events. We give a general function as
variant to prove that forks events is convergent. We
will decompose the Fork/Join model in such a way that
each fork’s events and join event form a fork sub-model
and a join sub-model, respectively. Then refine the sub-
models until the desired level of abstraction is gained.

In order to facilitate practical use of the refine-
ment pattern, we extend atomicity decomposition dia-
gram[10,11] to illustrate it. Our atomicity decompo-
sition diagram illustrates the refinement relationship
between the abstract event and Fork/Join refinement
events and the synchronization pattern between forks
events and join event explicitly.

The rest of the paper is organized as follows. Section
2 gives some background on Event-B and the Rodin
tool. Section 3 presents an overview of our approach
and gives Fork/Join refinement pattern. Section 4
introduces an example to illustrate our approach.
Section 5 gives concluding remarks and discusses
related work.

2. Event-B
Event-B is an extension of Abrial’s B method for
modelling parallel and distributed systems. In Event-B,
machines are defined in a context, which has a unique
name and is identified by the keyword CONTEXT.
It includes the following elements: SETS defines the
sets to be used in the model; CONSTANTS declares
the constants in the model; and finally, AXIOMS
defines some restrictions for the sets and includes
typing constraints for the constants in the way of
set membership. An Event-B model[1] is described
by a machine and multiple contexts. The machine
specifies the behavioural properties of a model. The
contexts consist of carrier sets, constants and axioms,
which describe the static properties of a model. The
relationship between machine and contexts is that
the machine can refer to contexts. Machine may
contain invariants, variables, variants and events. The
variables are updated by events. Invariants constraint
the variables and must be hold by each event. An event
can be defined as “any m when G(m, v) then A(m, v)
end” where m is the parameters of an event. The guard
G(m, v) specifies when an event is activated. The action
A(m, v) describes the state change of a model when the
event occurs.

A refinement methodology is used by software
architects to incrementally develop a model of a system
starting from the initial most abstract specification
and following gradually through layers of detail until
the model is close to the implementation. Event-B
also incorporates a refinement methodology. Assume

that the machine M is refined by machine N. M
is called a concrete machine and N is called a
abstract machine. The gluing invariant establishes a
state relationship between the abstract machine and
the concrete machine. In refinement, some events
of the concrete machine refines the abstract events,
some are new events which must be proven to refine
skip event. To demonstrate that the machine N is a
correct refinement model of the machine M, the proof
obligations for refinement must be proven in the Event-
B. They include guard strengthening, action simulation
and witness feasibility.

Refinement does not solve completely the mastering
of the complexity. As a model is more and more
refined, the number of its state variables and that of its
transitions may augment in such a way that it becomes
impossible to manage the whole. At this point, it is
necessary to cut our single refined model into several
almost independent pieces. Decomposition is precisely
the process by which a single model can be split into
various component models in a systematic fashion. In
doing so, we reduce the complexity of the whole by
studying, and thus refining, each part independently of
the others. The very definition of such a decomposition
implies that independent refinements of the parts could
always be put together again to form a single model that
is guaranteed to be a refinement of the original one.

Atomicity decomposition diagram has been proposed
by Fathabadi et al. The diagram can explicitly illustrate
(a) the explicit refinement relationships between
abstract and concrete events, and (b) the explicit control
flow between events. So it facilitates developers to carry
out refinements in explicit way.

Model decomposition[13] is to decompose a large
model into several small sub-models which can be
refined easily and independently. There are two main
methods for the Event-B model decomposition, namely
shared event decomposition and shared variable
decomposition. Shared event method(shared variable
method) is well suited for the sub-models which
communicate via message passing (shared variables).
We can create and analyse Event-B models by the Rodin
tool[14]. The tool can also generate proof obligations
and support for automated and interactive theorem
proving.

3. Fork/Join refinement pattern
The Fork/Join model is a way of setting up and
executing parallel programs, such that execution
branches off in parallel at designated points in the
program, to “join” (merge) at a subsequent point and
resume sequential execution. Parallel sections may fork
recursively until a certain task granularity is reached.
Fork/Join can be considered a parallel design pattern.
Fork/Join parallelism is among the simplest and most
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effective design techniques for obtaining good parallel
performance. Fork/join algorithms are parallel versions
of familiar divide-and-conquer algorithms, taking the
typical form:
Result solve(Problem problem) {

if (problem is small)
directly solve problem

else {
split problem into independent parts
fork new subtasks to solve each part
join all subtasks
compose result from subresults

}
}

In this section we propose Fork/Join refinement
pattern that is used to develop Fork/Join parallel
programs. Assume we need to solve a problem using
Fork/Join parallel program. First we model the problem
abstractly with a initial model. The initial model called
specification model which specifies the program at a
high abstract level. Secondly, we refine the specification
model. In the refinement Fork/Join framework is
introduced into the new model. We call the refinement
“ Fork/Join refinement”. We illustrate the refinement
pattern by using an extended atomicity decomposition
diagrams in Fig.1.

Specification_event

refine

M0

M1

decompostion

fork1sub_model fork1sub_model fork1sub_model Join sub_model...

Initialization Fork1 events||...||Forkn events Join event

shared variables | message passing All | any | nonenew variables

Fig.1. Extended Atomicity Decomposition Diagram for Fork/Join

rerfinement

Here, M0 machine denotes the initial model as a speci-
fication model. It contains a single Specification_event.
Machine M0 is refined by machine M1 called Fork/Join
model. In machine M1, the problem is split into multi-
ple subtasks for n parallel threads (fork1..forkn). Each
thread contains multiple events to solve the subtask
assigned it. These events are called forks events( e.g.
fork1 events for fork1’s subtask). All forks events run
in parallel. Join event solves the problem by joining the
results of forks threads. The diagram shows how the
Specification_event is split into an initialisation event,
forks events and a join event. The initialisation event,
forks events are linked by a dashed line which denotes
they are new events. Join event are linked by a solid
line which means that it refines Specification_event. So

the initialisation event, forks events must be proven to
refine the skip event.

In forks events section there are two options: shared
variables and message passing. They represent com-
munication style among forks threads. They are use-
ful for us to choose the model decomposition meth-
ods. If the threads communicate via shared vari-
ables(message passing), shared-variable decomposition
method(shared-event decomposition) are chosen to
decompose the Fork/Join model.

In Join event section there are three options: all, any
and none. They denote the synchronization patterns
between forks events and join event. The option all
is default. It means that join event executes after all
of forks events are completed. The option any means
that join event executes after any single fork events
is completed. The option none means that Join event
executes, without waiting for any of forks events to
complete. Some control variables can be introduced
to realize the synchronization in Event-B model. For
example, the all synchronization pattern is illustrated
as follows:

Fork1_event Fork2_event  Join_event

status  status  when

convergent convergent  temination1=true

when  when temination2=true

 temination1=false  temination2=false then

then  then return result 

 temination1=true  temination2=true

end  end

Here, termination1 and termination2 are control
variables. Fork1_event and Fork2_event are forks
events. The Join_event can be executed only when both
Fork1_event and Fork2_event are completed.

In order to guarantee that join event can always
be activated, we must prove that forks events are
convergent. So the forks events must be classified
as convergent events. We give a general function as
a variant:H(finish1,. . . ,finishn), where finish1...finshin
are control variables. The value of the function is the
amount of control variables being true.

In order to further refine forks events independently,
we can decompose the model into small sub-models.
As mentioned previously, the decomposition approach
depends upon the options of forks events. We
decompose the model in such a way that each fork’s
events and join event form fork sub-model and join sub-
model, respectively.

Finally, we give a general process of developing
Fork/Join parallel programs using the Event-B formal
method as follows:

Step 1: Define specification model of the program.
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Step 2: Refine the initial model using Fork/Join
refinement pattern.

Step 3: Decompose the Fork/Join model into forks sub-
models and join sub-model.

Step 4: Refine the sub-models until the desired level of
abstraction is gained.

4. Case study:finding a zero of a function
4.1. Problem description and initial model
The zero of a function is a point x such that f(x)=0.
Let us assume f is a total function mapping integers
into integers. We know the function has at least one
zero point. Design a program that finds a zero of the
function f. A solution is to split the problem into
two sub-problems which can be solved by two threads
independently, namely fork1 and fork2. The original
problem can be solved by combining the results of two
threads. The pseudocode of the program is as follows.

fork1   fork2   main thread

while found1=false and found2=false   while found1=false and found2=false m=1; n=0;

do       do    fork(fork1)

if f(m)=0 then found1=true     if f(n)=0 then found2=true fork(fork2)

else m++   end else n--  end join (fork1)  

end   end  join (fork2)  

result:=(f(m)=0)?m:n

Here, fork1 and fork2 threads execute concurrently
to look for a zero of the function. When the two threads
terminate, the zero is one of the variables m or n.
Note that the Boolean variables found1 and found2
are shared by both fork1 and fork2. Here we make
the assumption that the writing and reading operations
of shared variables are never executed simultaneously.
The shared variables are used to exchange information
of termination between both threads. When fork1
thread finds a zero of the function, it will terminate with
found1=true. Fork2 thread need to read the variable
found1 before continuing its search. So fork2 will also
stop searching when reading found1=true.

Now we define a initial model for specification of the
problem. First, we define the function f by two axioms
in the context. The F0_find is only one event of initial
model to specify the program at the high abstract level.
The zero of the function is to be stored in a variable
result which is constrained to be a natural number by
the invariant: inv result ∈ N.

Constants

f

axioms:

axm1:f N N

axm2:  m, m N. f(m)=0

F0_find

any x where

x N

f (x)=0

then

result=x

end

4.2. Fork/Join refinement
Fork/Join framework was introduced in Fork/Join
refinement. Here we split the single event F0_find into
Join_event and Fork1 and Fork2 events. The Join_event
refines F0_find, Fork1 and Fork2 events are new
events. Fork1 events consist of Fork1_found event and
Fork1_not_found event(Fork2 events is symmetric).
Fork1_found event denotes that fork1 thread has found
a positive zero and terminated. Fork1_not_found event
denotes that fork1 thread knows that the fork2 thread
has found a nonpositive zero of the function and
terminated. Join_event and Fork1 events are shown as
follows:

Fork1_found(convergent)    Fork1_not_found(convergent) Join_event

status  status refines  f0_find
convergent  convergent when

any  p     where when finish1=true

p N and p>0  found1=false    finish2=true  

found1=false    found2=true with

found2=false    finish1=false x=(f(m)=0)?m:n
  finish1=false  then    then  

f(p)=0    finish1=true    result=(f(m)=0)?m:n
then end    end

m=p

found1=true  

  finish1=true

end

The new boolean variable found1 (found2) is
introduced to model whether fork1(fork2) has found a
zero of the function. The Join_event can not be executed
until all Fork1 and Fork2 events have completed. In
order to do it, control variables finish1 and finish2 are
introduced to model whether fork1 and fork2 events
have terminated respectively. The initialization event
sets the new boolean variables to false.

Note that forks events are classified as convergent
events. In order to prove that forks events are
convergent, we need to give a variant which is
decreased by each fork event. We define the function
H(finish1,finish2) as a variant. As mentioned in Section
3, The value of the function is the amount of finish1 and
finish2 being true.

The proofs of action simulation and guard strength-
ening are required in order to prove F0_find is refined
by the Join_event. Note that a witness for the abstract
parameter x is given in the Join_event. The variable x
is assigned a same expression as result in the witness.
Given the witness, it is easy to show the proof of
action simulation. In order to prove guard strengthen-
ing, some invariants describing relationships of the new
variables are introduced as follow:

invariants
 inv1  found1 false found2 false finish1 false
 inv2  found1 false found2 false finish2 false
 inv3  found1 true f(m) 0 finish1 true
 inv4 found2 true f(n) 0 finish2 true

 !  "  

 !  "  

 "  !  

 "  !  

The invariants inv1 and inv2 state that if two forks
events have not found a zero of the function, then they
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have not terminated. The invariant inv3 states that if
fork1 thread has found a zero of the function, then it
must have terminated. The invariant inv4 states that
fork2 thread has found a zero of the function, then it
must have terminated. The proof of action simulation is
shown as follows:

Proof.

inv1 ∧ inv2⇒ found1 = fasle ∧ found2 = false
⇒ finish1 = false ∧ finish2 = false(predicate logic)
⇒ finish1 = true ∨ finish2 = true
⇒ found1 = true ∨ found2 = true

(converse negative proposition)
⇒ finish1 = true ∧ finish2 = true
⇒ f(m) = 0 ∨ f(n) = 0(inv3 ∧ inv4)
⇒ finish1 = true ∧ finish2 = true ∧ x = (f(m) = 0)?m : n
⇒ f(x) = 0(witness)

4.3. Model decomposition and further refinement
We want to further refine fork1 and fork2 indepen-
dently to clearly model how they search for a zero of
the function. Here we use the shared-variable approach
to decompose the first refinement model. We split
the model in such a way that each fork’s events
and join event form fork sub-model and join sub-
model,respectively. Therefore, there are three different
sub-models, namely fork1, fork2 and join sub-model.
The variable m is shared by fork1 events and join
event. Join event does not execute until fork1 events
terminate. So, there is no data race between fork1
events and join event. The variables finish1, found1 and
found2 are shared by fork1 and fork2 events. Fork1
and fork2 events execute concurrently. Consequently,
external events must be added to fork1 sub-model
ensure that the behaviour of the shared variable in
the non-decomposed model is preserved. According to
shared-variable decomposition approach, we define the
following external events of fork1 sub-model((fokr2
sub-model is similar):

Ext_Fork2_found(convergent)  Ext_Fork_2notfound(convergent)

any  p   finish2  n where   any finish2    where

p N and p<=0      found2=false

found2=false found1=true

found1=false finish2=false

finish2=false  then

f(p)=0      skip 

then     end     

found2=true

end

Now we focus on the further refinement of fork1
sub-model(fork2 sub-model is similar). Note that the
zero of the function is found by Fork1_found in a single
abstract step. In order to model the process of searching

for the positive zero of the function, the fork1_found1
event is split into two sub-events, namely q_next and
fork1_found2. Fork1_found2 refines Fork1_found and
q_next is a new event. The new model states that fork1
thread starts from 1 using ascending order to search for
a zero of the function. A new variable q is introduced to
represent the current number which fork1 is checking.
A new invariable about q is introduced:
inv7 ∀x, x >= 1 ∧ x <= q ∧ f(x) , 0 ⇒
found1 = false.

Fork1_found2 Q_next

refine    Fork1_found1  when

when found1=false

f(q)=0 finish1=false

 found2=false h. h>=1 h<=q ! f(h)  0

found1=false then 

finish1=false  q=q+1

with p=q end

then 

m=q initialization

found1=true  q=1

finish1=true end

end

In the refinement, Fork1_not_found keep
unchanged. Fork1_not_found, Ext_Fork2_found
and Ext_Fork2_not_found do not refer to q, so they
satisfy the new invariant. Given the witness p=q, It is
easy to prove that Fork1_found2 is a correct refinement
of Fork1_found.

5. Related Work and Conclusion
Developing parallel programs using Event-B is a very
active field of research[17,21,22,23]. Many researches
emphasize how to decompose a large model into par-
allel sub-models. Butler[15,18,19] proposes a shared-
event decomposition in which sub-models interact via
shared events. Hoang and Abrial[20] proposes a shared-
variable decomposition in which sub-models interact
via shared variables. Pontus Bostrom et al.[16] extends
the decomposition methods by introducing explicit
control flow for the concurrent sub-models. Sritharan
et al. [24] present an approach to generate SPARK
code from Event-B models. System models in Event-
B are translated into SPARK packages including proof
annotations. Properties of the Event-B models such as
axioms and invariants are also translated and embed-
ded in the resulting models as pre- and post-conditions.
Generating proof annotations from Event-B models has
been investigated in [25]. Their work explores the map-
ping between Event-B and Dafny [26] constructs. The
methods focus on general parallel programs. In this
paper, we concentrate on developing Fork/Join paral-
lel programs using Event-B. Our approach introduces
the concept of Fork/Join refinement corresponding to
the Fork/Join task decomposition. In the refinement,
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forks events correspond to subtasks, join event corre-
sponds to joining the results of subtasks. For practical
application, Our approach provides a pattern for the
refinement and illustrate it by using an extended atom-
icity decomposition diagram. We will choose a model
decomposition method according to communication
style among forks events to decompose the Fork/Join
model into multiple sub-models. Then refine the sub-
models until the desired level of abstraction is gained.
Our approach provides a good framework for modeling
Fork/Join parallel programs and showing proof obliga-
tions of correctness for such programs.
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