
Feedback Control Systems Stabilization Using a
Bio-inspired Neural Network
Spyridon D. Mourtas1, Vasilios N. Katsikis1,∗, Chrysostomos Kasimis2

1Department of Economics, Division of Mathematics and Informatics, National and Kapodistrian University of
Athens, Sofokleous 1 Street, 10559 Athens, Greece
2Department of Physics, Electronics Laboratory, University of Patras, Patras, GR-26504, Greece

Abstract

The proportional–integral–derivative (PID) control systems, which have become a standard for technical and
industrial applications, are the fundamental building blocks of classical and modern control systems. In this
paper, a three-layer feed-forward neural network (NN) model trained to replicate the behavior of a PID
controller is employed to stabilize control systems through a NN feedback controller. A novel bio-inspired
weights-and-structure-determination (BIWASD) algorithm, which incorporates a meta-heuristic optimization
algorithm dubbed beetle antennae search (BAS), is used to train the NN model. More presicely, the BIWASD
algorithm identifies the ideal weights and structure of the BIWASD-based NN (BIWASDNN) model utilizing a
power sigmoid activation function while handling model fitting and validation. The results of three simulated
trials on stabilizing feedback control systems validate and demonstrate the BIWASDNN model’s exceptional
learning and prediction capabilities, while achieving similar or better performance than the corresponding
PID controller. The BIWASDNN model is compared to five other high-performing NN models, and a MATLAB
repository is accessible in public through GitHub to encourage and enhance this work.

Received on 22 December 2021; accepted on 02 February 2022; published on 04 February 2022

Keywords: Beetle Antennae Search, Neural networks, PID controller, WASD, Feedback control systems

Copyright © 2022 Spyridon D. Mourtas et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium
so long as the original work is properly cited.

doi:10.4108/airo.v1i.17

1. Introduction
The proportional–integral–derivative (PID)

controllers have been used successfully in process-
controlled fields of industry such as machinery,
metallurgy, power, and light industry since they first
emerged decades ago [1]. The PID controller is a
feedback-based control loop technique, and two of the
main reasons for its continuous use are its simplicity
of design and analysis, as well as its simplicity of
implementation. However, PID controllers have
downsides despite having a simple structure and being
simple to comprehend and apply to many control
systems [2]. Tuning the PID parameters, notably Kp,
Ki, and Kd, determines the performance of the PID
control system. Improper tuning will result in inferior
or even unstable performance of the controlled system
[3]. A neural network (NN) approach is presented in

∗Corresponding author. Email: vaskatsikis@econ.uoa.gr

this research for substituting the PID controller with a
NN feedback controller in control systems, resulting in
equivalent or even better performance of the feedback
controlled system. It is worth mentioning that the main
advantage of a NN feedback controller over a PID
controller is that it requires less computing during the
feedback process because integration and derivatives
are not used.

The rapid advancement of artificial intelligence, as
well as modern electronics and information technolo-
gies, has resulted in a plethora of excellent theoretical
research findings on artificial NN. Artificial NNs may
be used to model and anticipate complicated problems
and patterns, such as predicting summary statistics [4],
diagnosis of breast cancer [5], financial time-series fore-
casting [6], optimize a financial portfolio [7], calculating
specific matrices in maths [8], tracking robotic motion

1

EAI Endorsed Transactions
on AI and Robotics Research Article

EAI Endorsed Transactions on
AI and Robotics

https://creativecommons.org/licenses/by/4.0/
mailto:<vaskatsikis@econ.uoa.gr>

S.D. Mourtas, V.N. Katsikis, C. Kasimis

and mobile object [9, 10], solving perturbed time-
varying underdetermined linear systems [11]. In gen-
eral, determining the best structure of the NN is impor-
tant and useful. Obtaining the ideal linking weights and
number of hidden-layer neurons (HLNs), particularly in
the generic multi-input NN, may significantly reduce
computational complexity, increase hardware realiza-
tion, and therefore improve the NN’s efficiency [12].
One of the most significant and common feed-forward
NN models is the error back-propagation (BP) training
algorithm or its variations, which has extensive theoret-
ical studies and real-world applications. BP algorithms
are gradient-based iterative approaches that alter the
artificial NN weights in a gradient-based descent direc-
tion to bring the input/output behavior into a desired
mapping. BP-type NNs, in particular, appear to have the
following flaws:
1. the probability of being trapped in some local min-
ima;
2. difficulty selecting suitable learning rates (or, say,
speed of training);
3. inability to design the optimal or smallest NN struc-
ture in a deterministic manner (or, say, high computa-
tional complexity).
As a result of the aforementioned inherent flaws, many
improved BP-type algorithms have been developed and
investigated. It is worth noting that many studies focus
on the learning algorithm itself in order to improve the
performance of BP-type NNs [13]. Nevertheless, the vast
majority of improved BP-type algorithms have yet to
overcome the aforementioned fundamental flaws. [14].
As a result, NNs determined from BP methods have a
high computational complexity for obtaining the ideal
connecting weights [13], and establishing the optimal
NN structure is still a difficult process [14].

A number of weights-and-structure-determination
(WASD) algorithms are presented as superior alterna-
tives in [15] to prevail over the problems arising from
BP algorithms and to define the appropriate NN struc-
ture for finer implementations. The WASD algorithm
uses the weights-direct-determination (WDD) method
to directly specify the optimal linking weights among
the hidden and output layers while also acquiring the
optimal amount of HLNs. Note that three major issues
must be resolved during the design of a NN model for
any application:
1. the activation function;
2. the number of HLNs (or, say, the structure);
3. the computation of connecting weights between two
separate layers.
According to the previous analysis, obtaining the opti-
mal connecting weights and the optimal number of
HLNs for the multi-input NN are useful and important,
especially in the general multi-input NNs, because they

can considerably reduce the computational complex-
ity and promote hardware realization. That is, they
improve the efficiency of the NNs [15].

Another approach for improving the performance of
artificial NNs is to use meta-heuristics. In this concept,
the Beetle Antennae Search (BAS) algorithm has been
used to optimize Elman NN [16], feed-forward high-
dimensional NN [17], fog computing networks [18],
and back-propagation NN [19]. In this paper, we also
employ BAS to strengthen the proficiency of a WASD
algorithm. It is worth mentioning that BAS is capable of
effective global optimization and has been widely used
in a variety of scientific domains in recent years, such
as robotics [20], engineering [21], and finance [22–24].
In this research, a novel bio-inspired WASD (BIWASD)
algorithm for training NN is developed by integrating
the BAS and WASD techniques, and a three-layer
feed-forward BIWASD-based NN (BIWASDNN) model
is presented. The BIWASD algorithm identifies the
ideal weights and structure of the BIWASDNN model
utilizing a power sigmoid activation function (AF),
while employing cross-validation to address bias and
prevent being stuck in local optima during the training
process. More particularly, the BIWASD algorithm
discovers the ideal number of HLNs, as well as the
best power of the AF at each HLN, to minimise the
model’s error throughout validation. The NN structure
is optimized in this way, while the BIWASD method
discovers the ideal weights. As a consequence, the
computational cost is reduced even further than with
conventional WASD approaches, that might require
a large number of HLNs, and the cross-validation
throughout the training phase improves the accuracy
of the anticipated results even further. The BIWASD
and the other WASD algorithms in [15] uses the WDD
method and are liable for training the NN model, but
the BAS algorithm incorporation, the power sigmoid
AF, and the cross-validation throughout the training
procedure are the differences. The results of three
simulated trials on stabilizing feedback control systems
validate and demonstrate the BIWASDNN model’s
exceptional learning and prediction capabilities, while
achieving similar or better performance than the
corresponding PID controller.

The following are the work’s highlights:

• A NN approach to feedback control systems
stabilization is proposed and investigated;

• A three-layer feed-forward BIWASDNN model
is presented and studied, and a new BIWASD
algorithm for training WASD-based NN model is
proposed by merging the algorithms of BAS and
WASD;

• Three simulated trials on stabilizing feedback
control systems through a NN feedback controller

2 EAI Endorsed Transactions on
AI and Robotics

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

are presented. In these trials, the BIWASDNN
model is compared against five other high-
performance NN models, and the numerical
stability of the BIWASD is investigated.

The following is the layout of the paper. Section
2 provides preliminaries on feedback control systems
based on PID and the NN approach is described. Section
3 introduces the BIWASDNN model and its theoretical
basis is analysed. Section 4 includes three simulated
trials on stabilizing feedback control systems which
examines the prediction ability of the BIWASDNN
model on PID controllers output and the performance
of NN feedback controller on feedback control systems
stabilization. It also includes a comparison of the
BIWASDNN model to five other high-performing NN
models, as well as a concise overview and relevant
information about the MATLAB repository, which is
available on GitHub. Finally, in section 5, the final
remarks are stated.

2. PID Feedback Control and NN Approach

Open loop control and closed loop (feedback) control
are the two fundamental types of control loops. In
open loop control, the controller’s control action is
independent of the process variable (PV), whereas in
closed loop control, the controller’s control action is
dependent on process feedback in the form of the PV’s
value. A feedback loop assures that the controller exerts
a control action to manage the PV to be identical to
the reference input in a closed loop controller. Closed
loop controllers are also known as feedback controllers
because of this [25]. Control theory introduces feedback
to prevail over the shortcomings of the open-loop
controller. That is, a closed-loop controller employs
feedback to control a dynamical system’s states or
outputs.

The PID controller is a typical feedback controller (or
closed-loop controller) architecture. A PID controller
computes an error value e(t) as the difference between
a desired setpoint and a measured PV on a continuous
basis and makes a correction using proportional,
integral, and derivative components. Note that these
three components operate on the error signal to
generate a control signal. They have been employed in
almost all analogue control systems since the 1920s,
and their theoretical understanding and application
date back to that time. Assuming that u(t) is the control
signal sent to the system, r(t) is the desired output,
y(t) is the measured output and e(t) = r(t) − y(t) is the
tracking error, the general form of a PID controller is as
follows:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dτ

, (2.1)

where Kp,Ki,Kd ∈ R+
0 denote the coefficients for the

proportional, integral, and derivative terms, respec-
tively. Adjusting these three factors, frequently itera-
tively by tuning and without specialized knowledge of
a plant model, yields the desired closed loop dynamics.

A NN feedback controller is presented in this section.
To train the NN feedback controller, we must first
discretize the entire feedback control system procedure.
The purpose is to generate data that can be used to train
the NN feedback controller. As a result, we construct a
discrete-time PID controller ready for programming in
Prop. 2.1, based on the continuous-time PID controller
(2.1), where each of the terms is a discretized version of
its equivalent continuous-time terms.

Proposition 2.1. The discrete version of (2.1) can be
formulate as follows:

u(tk) =u(tk−1) +
(
Kp + Ki∆t +

Kd

∆t

)
e(tk)

+
(
−Kp −

2Kd

∆t

)
e(tk−1) +

Kd

∆t
e(tk−2),

(2.2)

where ∆t denotes the sampling period and k denotes the
sample index.

Proof. Differentiating both sides of (2.1) employing
Newton’s notation yields:

u̇(t) = Kpė(t) + Kie(t) + Kdë(t),

then approximating the derivative terms, we have the
following:

u(tk) − u(tk−1)
∆t

=Kp
e(tk) − e(tk−1)

∆t
+ Kie(tk)

+ Kd
ė(tk) − ė(tk−1)

∆t
.

Approximating the rest derivative terms and then
solving in terms of u(tk), it is easily observable that we
obtain (2.2), hence completes the proof.

Consider the single-input-single-output (SISO) con-
trol system of Fig. 1. The plant shown therein typically
operates in continuous-time and it can be described by
the following s-transfer function:

H(s) = G(s)U (s), (2.3)

where U (s), H(s) are the Laplace transforms of the input
and output signals, respectively, and

G(s) =
∑n−1

0 bis
i∑n

0 ais
i
, (2.4)

where G(s) is the transfer function of the plant with the
coefficients ai , bi ∈ R.

To convert the discrete-time signal u(tk) produced by
the controller in (2.2) to a continuous-time piecewise

3 EAI Endorsed Transactions on
AI and Robotics

S.D. Mourtas, V.N. Katsikis, C. Kasimis

Proportion

Integration

Differential

PlantX X
r(t) y(t)u(t)e(t)

+

+

+
+-

Figure 1. PID controller system structure.

constant signal, the zero-order-hold (ZOE) method is
used [26]. In this way, the transfer function H(s)
is converted from s-domain to z-domain. Then, the
difference equation of the z-transfer function H(z) can
be obtained as shown in Prop. 2.2.

Proposition 2.2. Considering the following z-transfer
function:

H(z) =
b1z + b0

z2 + a1z + a0
=

y(z)
u(z)

, (2.5)

then its difference equation can be formulate as follows:

y(tk) = −a1y(tk−1) − a0y(tk−2) + b1u(tk−1) + b0u(tk−2).
(2.6)

Proof. By cross multiplying (2.5), it can be reformulated
as follows:

(z2 + a1z + a0)y(z) = (b1z + b0)u(z)

or equivalent

z2y(z) + a1zy(z) + a0y(z) = b1zu(z) + b0u(z).

Taking the inverse transform of the above equation, we
have that

z2y(z) = y(tk+2), a1zy(z) = a1y(tk+1), a0y(z) = a0y(tk),

b1zu(z) = b1u(tk+1), b0u(z) = b0u(tk),

and thus we have the following difference equation:

y(tk+2) + a1y(tk+1) + a0y(tk) = b1u(tk+1) + b0u(tk).

Reducing each time index by 2 and then solving in
terms of y(tk), it is easily observable that we obtain (2.6),
hence completes the proof.

Acquiring the signal u(t) values of a PID controller
during the control system stabilization process, the NN
feedback controller in Fig. 2 can be trained to predict
the signal u(t) produced by the PID using the error e(t)
as input.

According to the aforementioned, the following Alg.
1 describes the whole discretized process both in the
cases of a PID control system and a NN feedback control
system.

Algorithm 1 Discretized process of a PID control
system and a NN feedback control system.

Input: The desired output r(t), the s-transfer function
of the plant H(s), the sampling period ∆t and T the
period end.

1: Convert the H(s) from s-domain to z-domain.
2: Set t = 2∆t, y(0 : t) = 0 and e(0 : t) = r(0 : t)
3: while t ≤ T do
4: In the case of a PID controller, set u(t) according

to (2.2), and in the case of NN feedback controller,
set u(t) the NN prediction base on e(t).

5: Set y(t) according to (2.6).
6: Set e(t) = r(t) − y(t).
7: t ← t + ∆t
8: end while

Output: The error e(t), the signal u(t) produced by the
PID or the NN feedback controller, and the system
output y(t).

3. The BIWASDNN Model
This section introduces a three-layer feed-forward

NN model with one input and n hidden layer neurons,
as shown in Fig. 3. The first layer, more specifically, is
the input layer, which receives and distributes X, i.e. the
input, to the associated equal-weighted neuron in the
second layer. The second layer, which includes no more
than n power activated neurons, receives the value X as
input from the first layer, and the corresponding AFs
Fv(X), v ∈ [0, n − 1] ⊆ Z, are power sigmoid functions
with varying powers. The output layer, which contains
a nonactivated neuron, is the final layer. The weight
vector W is composed of the weights Wv in the neuron-
to-neuron link among the neurons of the second and
third layers, and is produced using the WDD method.
BIWASDNN is the name of the NN model, which is
trained using a novel BIWASD algorithm. Note that the
BIWASD algorithm is responsible for finding the ideal
weights W and the structure of the NN, i.e. finding the
corresponding AFs Fv(X) varying powers v. We will go
through all of the details about the model’s construction
and structure in this section.

4 EAI Endorsed Transactions on
AI and Robotics

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

Neural Network
Feedback Controller

PlantX
r(t) y(t)u(t)e(t)

+
-

Figure 2. NN feedback controller system structure.

X Y

Input Layer Hidden Layer Output Layer

W0

W1

Wn-1

F0(X)

F1(X)

Fn-1(X)

1

1

1

Figure 3. Structure of the BIWASDNN model.

3.1. WDD Method and AF
Machine learning is a computationally intensive

process, and calculating iterative training errors is a
difficult task. The WASD algorithm for NN training is
implemented to reduce the computational cost of this
process and simplify the network composition [15].

Comprehensive interpretations of important key
theoretical underpinnings and analyses are provided
here for the construction of the BIWASDNN. To
start with the Taylor polynomial (TP) approximation
theorem [27] is determined as below.

Theorem 3.1. Assume that K is a nonnegative integer and,
on interval [a, b], a target function f (·) has the (K + 1)-
order continuous derivative, then for x ∈ [a, b],

f (x) = PK (x) + RK (x), (3.1)

where PK (x) is a polynomial employed to approximate
f (x) and RK (x) is the error term.

Such that, with a fixed value h ∈ [a, b], f (x) may be
approximated as below:

f (x) ≈ PK (x) =
K∑
i=0

f (i)(h)
i!

(x − h)i , (3.2)

where f (i)(h) signifies the value of the i-order derivative
of f (x) at the point h and i! signifies the factorial of i. It
is worth noting that PK (x) is the K-order TP of function
f (x).

Proposition 3.1. The TP approximation theorem may
be used to approximate multivariable functions [27].
For a target function f (x1, x2, . . . , xg) with (K + 1)-
order continuous partial derivatives in an origin’s
neighborhood (0, . . . , 0) and g variables, the K-order TP
PK (x1, x2, . . . , xg) about the origin is:

PK (x1, x2, . . . , xg) =
K∑
i=0

∑
i1+···+ig=i

x1 · · · xg
i1 · · · ig

∂i1+···+ig f (0, · · · , 0)

∂xi11 · · ·∂x
ig
g

 , (3.3)

where i1, i2, . . . , ig are nonnegative integers.

The following nonlinear function may be used to
represent the relationship between the NN’s input X
and the output target Y :

Y = f (X). (3.4)

Note that our approach is similar to the power activated
NN in [15], which is inline with the K-order TP. As a
result, considering the variable X and, in an origin’s
neighborhood (0, . . . , 0), the (K + 1)-order continuous
partial derivatives, the K-order TP PK (X) can map (3.4)
as follows:

PK (X) =
n−1∑
v=0

qvwv , (3.5)

where qv = Fv(X) ∈ R signifies a power function of all
inputs and wv ∈ R signifies the coefficient (or weight)
for qv .

The sigmoid AF is one of the most often used
functions while it is most commonly used in models
which call on us to anticipate the probability as a result.
Due to its range, the sigmoid is the optimal choice
because probability only occurs in the range of 0 to 1.
Assuming that X ∈ R1×N , the following power sigmoid
AF is proposed and employed:

Fv(X) =
e⊙X

⊙v

e⊙X⊙v + 1
, (3.6)

where ⊙ and the superscript ()⊙ imply the Hadamard
(or element-wise) product and the Hadamard exponen-
tial, respectively, X implies the function input, while
the power value v ∈ Z+ and the range of (3.6) is

[
1
2 , 1

)
.

As a result, the HLNs of the K-order TP NN employ

5 EAI Endorsed Transactions on
AI and Robotics

S.D. Mourtas, V.N. Katsikis, C. Kasimis

the AF of (3.6) to generate sigmoidal activation. It is
worth mentioning that several AFs, such as Chebyshev
and Euler polynomials, sine, square wave, and power
are employed on WASD-based NN in [15, 28, 29].

Moreover, for a given number of samples S ∈ N
with X ∈ RS , we set qS,v = Fv(X) ∈ RS×n and, as a
consequence, the input-activation matrix becomes

Q =

q1,0 q1,1 . . . q1,n−1
q2,0 q2,1 . . . q2,n−1
...

...
. . .

...
qS,0 qS,1 . . . qS,n−1

 ∈ RS×n, (3.7)

the weight vector W = [w0, w1, . . . , wn−1] ∈ Rn×S and the
desired-output vector Y ∈ RS .

The weights of the BIWASDNN in Fig. 3 are then
calculated using the WDD approach, rather than
iterative weight training in traditional NNs [27]. From
[15], the following lemma can be simply deduced.

Lemma 3.1. The steady-state weights of the K-order TP
NN may be acquired forthrightly as below:

W = (QTQ)−1QTY = Q†Y , (3.8)

where the superscripts ()T, ()−1 and ()† signify the
transpose operator, the inverse operator and the
pseudo-inverse operator, respectively.

According to that, the matrix Q can be computed as
proposed in Alg. 2.

Algorithm 2 Computing matrix Q.

Input: The data input X, the vector N which comprises
of the powers v of each HLN.

1: n←length(N) and m← 1
2: while m ≤ n do
3: X̂ ← X⊙N (m)

4: Q(:, m)← eX̂ ⊙ (eX̂ + 1)−1

5: m← m + 1
6: end while

Output: Matrix Q.

3.2. BIWASD Algorithm
The BIWASD algorithm, as well as the entire process

of modelling and predicting with the BIWASDNN
model, are discussed in depth in this subsection. BAS
algorithm has been introduced in [30] and mimics
the searching behavior of a beetle as presented in
Fig. 4. Because of its simplicity, BAS permits novel
optimisation algorithms to be developed (see [31–35]).
As a result, the BIWASD algorithm uses the beetle
searching behavior for finding the global minimum to
specify the optimal weights of the NN.

The BIWASD algorithm is in charge of training the
NN model. First, the data input is separated into

two set of samples for fitting and validation. Note
that this is the well-known cross-validation method,
which is employed to evaluate the consistency of
a machine learning model employing the validation
data, as part of training. Validation tries to ensure
that the model’s performance generalizes beyond the
training set because the validation set is separate from
the training set. The parameter p ∈ (0, 1] ⊆ R allows
the user to specify the precise percentage difference
between the fitting and validation sets. Supposing that
H is the sample size of X, then the first H1 = pH
samples of X are used for fitting the model and the last
H2 = H −H1 samples for validation.

Second, the beetle searching behavior in Fig. 4 is
adapted. The beetle searching behavior is described
by the following random route when x is the beetle’s
position at t-th time and f (x) is the smell strength,
expressed as a fitness function:

z =
rand(n, 1)
∥rand(n, 1)∥

,

Z =
z

2−52 + ∥z∥
, (3.9)

where n signifies the length of vector x and rand(·)
signifies a random function. We set xl to represent the
left antennae and xr to represent the right antennae,
and their seeking behaviors are formulated as follows:

xl = rnd(xt − Zdt), (3.10)

xr = rnd(xt + Zdt), (3.11)

where rnd(·) denotes a function that outputs a number’s
value rounded up to the next integer, while the capacity
to exploit is correlated to the sensing diameter of the
antennae d. Moreover, the detecting behavior can be
formulated as follows:

xt = rnd(xt−1 + Sδtsign(f (xr) − f (xl))). (3.12)

where sign(·) denotes a sign function, and δ signifies
a size step that depicts the convergence speed after an
increase in t throughout the searching. Last, the d and
delta update rules are the followings:

dt = 0.95dt−1 + 0.001, (3.13)

δt = 0.95δt−1. (3.14)

It is worth noting that the aforementioned process is
a converted BAS algorithm that returns only integer
solutions.

Moreover, the fitness function was adjusted to
identify the NN’s ideal structure. Based on the results of
(3.12), we do this by removing the HLNs that relate to
a negative number. The fitness function then computes
the matrix Q as shown in Alg. 2, and the corresponding

6 EAI Endorsed Transactions on
AI and Robotics

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

Beetle Searching Behavior:
• measure the intensity of odor at each step t
• compare the odor intensity f(x) to esƟmate
 a direcƟon towards the food source
• take a size step δt in that direcƟon,
 proporƟonal to the difference in intensity

δ0
δ1

t=0
f(xl)<f(xr)

t=1
f(xl)<f(xr)

t=2
f(xl)>f(xr)

t=3
f(xl)>f(xr)

t=4
Goal reached, x*

δ2

δ3

Figure 4. Beetle searching behavior.

W of this Q matrix is created, as suggested in Lemma
3.1. More precisely, we set W = Q†(H1)Y (H1), where
Q(H1) and Y (H1) denote the Q matrix and the targets
on the fitting set H1. Then, the validation set H2
predictions are calculated, and the root-mean-square
error (RMSE) between these predictions and their target
value is measured as shown in Alg. 3. That is, we set
Ŷ (H2) = Q(H2)W , where Q(H2) and Ŷ (H2) denote the
Q matrix and the predictions on the validation set H2.
The RMSE is an evaluation of accuracy used in statistics
to compare forecasting errors of different models and is
commonly used in machine learning as a cost function
for regression problems. Also, the RMSE values closer
to zero are finer, and is calculated as follows:

RMSE =

√∑H
j=1

(
Yj − Ŷj

)2

H
, (3.15)

where H denotes the samples’ number, Ŷ and Y
denote the predicted and the target value, respectively.
Provided a maximum number of HLNs n, the adapted
BAS method identifies the ideal number of HLNs as well
as the optimal AF power at each HLN, lowering the
model’s error throughout validation.

Algorithm 3 Fitness function.

Input: The data input X, the target Y , the numbers H1
and H2, the vector xt which comprises of the powers
v of each HLN.

1: procedure Fitness(X, Y ,H1, H2, xt)
2: Put in vector N only the nonnegative elements

of xt .
3: Calculate the matrix Q through Alg. 2 under the

vector N .
4: Find W via WDD method for the first H1

samples of X.
5: Set EN the RMSE computed via (3.15) for the last

H2 samples of X under W .
6: end procedure

Output: The RMSE EN .

Last, the initial xt at t = 0 in the aforementioned
adapted BAS method must be a random vector x0 ∈ Zn.
However, we highly suggest setting as initial xt the
following vector:

x0 =[1 − rnd(n/2), 2 − rnd(n/2), 3 − rnd(n/2),

. . . , n − rnd(n/2)]T,
(3.16)

Based on [15], the starting structure of the NN employs
the suggested powers v for rnd(n/2) in number HLNs,
while the process of adding/removing HLNs in the
structure throughout the adjusted BAS iterations is
made easier. BAS returns x∗ at the end of the iterations,
and we only set the values of x∗ ≥ 0 in N ∗. Notice that
N ∗ denotes the AF’s optimal powers v at each NN HLN,
and its length denotes the ideal number of HLNs. The
BIWASD algorithm determines and returns the optimal
W on the entire training data set, as well as the RMSE
of the validation set, according to that N ∗.

In conclusion, the BIWASD algorithm is used to train
the NN model. It splits the data to fitting-validation sets
and, stated a maximum HLN number n, sets the x0 of

7 EAI Endorsed Transactions on
AI and Robotics

S.D. Mourtas, V.N. Katsikis, C. Kasimis

(3.16) as starting powers v of the AF at each HLN of the
NN model and finds the optimal N ∗ by estimating the
RMSE of the validation set. It is worth noting that the
power sigmoid AF of (3.6) is not obligatory. This AF can
be replaced with any of the AFs listed in [15]. Fig. 5a
shows the whole procedure for the BIWASD algorithm,
whereas Fig. 5b shows the entire process for modelling
and predicting with the BIWASDNN model.

4. Experiments and MATLAB Repository
This section investigates the proficiency and the

prediction ability of the BIWASDNN model on three
simulated trials on stabilizing feedback control systems.
It is equitable to compare the BIWASDNN model to
certain other well-performing NN models because it is
specifically built to handle only regression problems.
The Hermite polynomial NN (HPNN) from [15], which
is one of the best-performing WASD-based NN in
solving regression problems, is one of the models,
while the others include a MATLAB long short-term
memory (LSTM) model, a MATLAB feed-forward (FF)
model, and two models from MathWorks’ Regression
Learner App. As a consequence, the fine Tree (FTree)
and squared exponential Gaussian process regression
(SEGPR) models are used to tackle the regression
problems which arise when stabilizing feedback control
systems are considered. On the one hand, the MATLAB
LSTM model has the following specs: optimizer =
Adam, numHiddenUnits = 200; maxEpochs = 100;
miniBatchSize = 20; LearnRate = 0.01. On the other
hand, the MATLAB FF model has the following specs:
hiddenSizes = 10. Furthermore, a short overview of the
BIWASDNN’s MATLAB repository is provided, along
with some valuable information.

4.1. Simulated Trials

Table 1. Feedback control systems configuration.

Plant G(s) Kp Ki Kd

1 1
s2+10s+20 350 300 50

2 3
5s2+25s+50 200 200 100

3 2
10s2+100s+10 200 200 100

The simulation trials employ Alg. 1 to generate three
datasets containing samples of the tracking error e(t)
and the corresponding PID controller’s signal u(t). Each
dataset corresponds to a PID feedback control system
results in which the plant’s s-transfer function and the
PID parameters are declared in Tab. 1. Following the
creation of each dataset, the BIWASDNN, HPNN, FTree,
and SEGPR models are trained to produce the signal

u(t) using the error e(t) as input. Setting the desired
output r(t) = 1, the sampling period ∆t = 0.01 and
the period end T = 20, Alg. 1 outputs 2000 samples.
Splitting the data 50-50% for training and testing the
model, 1000 samples will be used to train the models
and 1000 samples will be used to test them.

In the case of the BIWASDNN model, we set p =
0.7, splitting the training data to 70-30% for fitting
and validating the model. It is interesting to note
that the closer the p value gets to 1, the fewer the
samples for validating the model will be, and the closer
the p value gets to 0, the opposite occurs, lowering
the model’s prediction accuracy in both circumstances.
As a consequence, for the model’s optimal prediction
accuracy, the optimal value of p must be set in [0.6, 0.9].
In addition, the BIWASD’s parameters are set to d0 =
8, δ0 = 5, the maximum iterations to tmax = 30, and
the maximum number of HLNs to n = 30. Assuming
that the parameter p ∈ [0.6, 0.9] and the parameter tmax
specifies the maximum iterations, raising the parameter
tmax will commonly lead to a high prediction accuracy
for the model. In Figs. 6a-6c, the training procedure
of the model is depicted through the RMSE for the
datasets with plant 1, 2 and 3, respectively, where we
observe that the BIWASD algorithm demands less than
30 iterations to converge to the optimal NN’s structure.
Furthermore, the BIWASD algorithm returned N ∗ ∈ R16

and, as a result, the optimal structure of the NN has 16
in number HLNs for the specific runs.

In Figs. 6d-6f, the results of the NNs models on the
test data are depicted for the datasets with plant 1,2 and
3, respectively. The NN models’ prediction capability
on 1000 samples is great and practically identical in
Figs. 6d and 6e, but the findings are not as good in
Fig. 6f, where the NNs model’s predictions have a
tiny divergence from the target in some samples. The
BIWASDNN, HPNN, Ftree and SEGPR models statistics
are presented in Tab. 2 in which the coefficient of
determination (R2), mean absolute percentage error
(MAPE), mean absolute error (MAE), root-mean-square
error (RMSE), the average number of training iterations
(NTI) and the average time consumption (TC) of the
train and test prices for the datasets with plant 1, 2
and 3 are included. Note that following the notations
used in the RMSE formula (3.15), MAE = 100

H

∑H
j=1

∣∣∣Yj −
Ŷj
∣∣∣ and MAPE = 100

H

∑H
j=1

∣∣∣(Yj − Ŷj)/Yj ∣∣∣. Checking the
results of Tab. 2, it is clear that BIWASDNN has the
lowest TC in all the datasets while the LSTM has the
highest. In all datasets, all of the models have nearly
identical statistics, with the exception of the LSTM
model, which has poorer statistics. In addition, the
FTree model’s train data statistics are the best in the
dataset with plant 3, while the BIWASDNN’s model are
the third best. However, the SEGRP model’s test data

8 EAI Endorsed Transactions on
AI and Robotics

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

Initialize

t ≤ tmax?

Calculate xt via Eq. (3.12) and find EN via Alg. 3

EN < EN*?

Set EN* ← EN and x* ← xt

 Set t ← t+1

Return the optimal W, N* and EN* of the neuronet

Quit

Yes

YES

Set H1 ← pH the number of samples for fitting and

H2 ← H-H1 the number of samples for validation

Set Z ← Eq. (3.9), xl ← Eq. (3.10) and xr ← Eq. (3.11)

No

Put in N* only the nonnegative elements of x*

No

Set t ← 0, x* ← Eq. (3.16), and find EN* via Alg. 3

Upadate dt via Eq. (3.13) and δt via Eq. (3.14)

Calculate Q via Alg. 2 for N*, and W for the samples H

(a) BIWASD algorithm.

Input Data

Return Ŷ which is the

predicted response of Z

Quit

Ŷ ← QW

Calculate W and N for

X and Y via BIWASD

Compute Q under N for G

Set X the data with the explanatory

variable, and Y the response data

Set G the testing data with

the explanatory variable

(b) Complete process for modelling and
predicting.

Figure 5. BIWASD algorithm and the entire process of BIWASDNN for modelling and predicting.

statistics are the best in the dataset with plant 3, while
the BIWASDNN’s model are the second best.

Because Tab. 2 also contains the NTI, some
observations concerning algorithm convergence can be
made. The BIWASDNN model requires less than 30
iterations to attain the highest prediction accuracy for
all the datasets, as also recorded in Figs. 6a-6c, whereas
the HPNN model requires 13 iterations. In the case of
the LSTM, since the parameter maxEpochs has been set
to 100, the model requires 100 iterations to attain the
highest prediction accuracy for all the datasets, while
the FF model requires 20, 50 and 130 iterations to
attain the highest prediction accuracy for the datasets
with plant 1, 2 and 3, respectively. Note that the
models for FTree and SEGRP are not optimizable,
hence the number of iterations is not available through
MathWorks’ Regression Learner App. According to the
aforementioned observations, the HPNN model has the
lowest NTI, followed by the BIWASDNN model, with
the LSTM model having the highest. However, it is
worth mentioning that the HPNN model has an average
NTI/TC ration of 1/0.6923, while the BIWASDNN
model has 1/0.0033. That is, the BIWASDNN model is
90 times faster to train than the HPNN model.

Now that the BIWASDNN model has been trained
for each plant 1, 2 and 3, Alg. 1 is used with the
NN feedback controller to stabilize the input signal
of each control system. The results of each simulation
trial are depicted in Figs. 6g-6i. We can see in Fig.
6g (plant 1 case) that the feedback control system
with the NN feedback controller converges to the
desired output in a similar fashion to the PID feedback
control system. In contrast to the PID feedback control
system in Figs. 6h (plant 2 case) and 6i (plant 3 case),
the feedback control system with the NN feedback
controller converges faster to the desired output. That
is, the NN feedback controller has better performance
than the PID controller in the cases of plant 2 and 3.

In general, according to Tab. 2 and the Figs. 6d-
6f depicted results, the BIWASDNN model performed
flawlessly in creating a model that may predict the
PID controller’s signal u(t) taking as an input the
corresponding tracking error e(t), while its predicted
capability is almost same to that of the HPNN, Ftree,
and EGPR models on the specific datasets with plant
1, 2 and 3, and its TC being the lowest. Moreover,
the NN feedback controller achieves similar or better
performance than the corresponding PID controller.

9 EAI Endorsed Transactions on
AI and Robotics

S.D. Mourtas, V.N. Katsikis, C. Kasimis

0 10 20 30

Iteration

10
-8

10
-6

10
-4

10
-2

10
0

R
M

S
E

(a) BIWASDNN training with plant 1.

0 10 20 30

Iteration

10
-2

10
-1

R
M

S
E

(b) BIWASDNN training with plant 2.

0 10 20 30

Iteration

10
-2

10
-1

10
0

R
M

S
E

(c) BIWASDNN training with plant 3.

0 200 400 600 800 1000

Test Data Samples

5

10

15

20

BIWASDNN

HPNN

FTree

SEGPR

Actual value

(d) NNs testing with plant 1.

0 200 400 600 800 1000

Test Data Samples

0

5

10

15

20

BIWASDNN

HPNN

FTree

SEGPR

Actual value

(e) NNs testing with plant 2.

0 200 400 600 800 1000

Test Data Samples

0

5

10

15

20

25

30

35
BIWASDNN

HPNN

FTree

SEGPR

Actual value

(f) NNs testing with plant 3.

0 5 10 15 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

5 10

0.99

0.995

1

(g) BIWASDNN simulation with plant 1.

0 5 10 15 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6

0.98

1

1.02

(h) BIWASDNN simulation with plant 2.

0 5 10 15 20

Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4

0.98

1

1.02

(i) BIWASDNN simulation with plant 3.

Figure 6. NNs training, testing and simulation results in Exp. 4.1.

4.2. BIWASD’s Stability and MATLAB Repository

Numerical findings are presented in this subsection
to prove the practicality of the suggested BIWASDNN
model and the BIWASD algorithm on regression
problems that involve datasets for training NN
feedback controllers. The generalization capabilities of
the suggested BIWASDNN equipped with the BIWASD
algorithm are also investigated for completeness.

Because the input-layer weights and hidden-layer
biases are produced at random, the final/optimal
number of HLNs differs when the BIWASD algorithm
is used multiple times. Each time, the BIWASDNN
structure with a determined number of HLNs will not
be the same. Each BIWASDNN model in Exp. 4.1 is
trained and tested 100 times to ensure the stability of
the suggested BIWASDNN equipped with the BIWASD
method. The average length of N (Avg. len(N)) and
the standard deviation of len(N) (σ (len(N))), are then

computed 100 times along with the average values of
R2, MAPE, MAE and RMSE. Note that the average
len(N) relates to the average optimal number of
HLNs. The findings are presented in Tab. 3. Therein,
comparing the average len(N) and σ (len(N)) for
each BIWASDNN model in Exp. 4.1, we observe that
the final/optimal number of HLNs specified by the
BIWASD algorithm is considerably stable since the
maximum σ (len(N)) is less than 0.56.

In general, when Tab. 3 and Tab. 2 are compared,
the average R2, MAPE, MAE and RMSE of BIWASDNN
in Exp. 4.1 are almost identical. Furthermore, the
BIWASD’s stability on 100 runs is excellent, which
makes the BIWASDNN’s performance to be antagonistic
or even better than the HPNN, Ftree, and SEGPR
performances. Notice that the BIWASD algorithm
not only determines the best BIWASDNN structure
automatically and effectively, but also acquires the

10 EAI Endorsed Transactions on
AI and Robotics

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

Table 2. NN models’ statistics (R2, MAPE, MAE, RMSE), number of training iterations (NTI) and time consumption (TC).
NN Model BIWASDNN HPNN

Data TC R2 MAPE MAE RMSE NTI TC R2 MAPE MAE RMSE NTI
Plant 1 Train 0.1 s 0.9954 0.2115 0.0121 0.1431 30 9 s 0.9954 0.2049 0.0111 0.1430 13
Plant 1 Test 0.9976 0.1048 0.0088 0.1016 0.9976 0.0988 0.0077 0.1024
Plant 2 Train 0.1 s 0.9960 0.4589 0.0419 0.1274 30 10 s 0.9959 0.4766 0.0446 0.1288 13
Plant 2 Test 0.9968 0.3575 0.0395 0.1136 0.9966 0.3755 0.0422 0.1154
Plant 3 Train 0.1 s 0.9377 13.1168 0.6824 1.6421 30 8 s 0.9313 13.0249 0.7376 1.7194 13
Plant 3 Test 0.9381 12.9333 0.6794 1.6374 0.9317 12.8155 0.7339 1.7137

NN Model Ftree SEGRP
Data TC R2 MAPE MAE RMSE NTI TC R2 MAPE MAE RMSE NTI

Plant 1 Train 1.9 s 0.9943 0.3463 0.0303 0.1593 - 6 s 0.9954 0.2164 0.0120 0.1438 -
Plant 1 Test 0.9966 0.2410 0.0277 0.1227 0.9977 0.1076 0.0086 0.0992
Plant 2 Train 0.2 s 0.9957 0.5079 0.0433 0.1325 - 5.5 s 0.9962 0.4342 0.0381 0.1250 -
Plant 2 Test 0.9960 0.4316 0.0438 0.1265 0.9969 0.3294 0.0356 0.1101
Plant 3 Train 0.1 s 0.9556 11.0420 0.5430 1.3983 - 4.5 s 0.9433 13.8469 0.6589 1.5671 -
Plant 3 Test 0.9377 12.5689 0.6266 1.6453 0.9439 13.6197 0.6557 1.5591

NN Model LSTM Feed-forward
Data TC R2 MAPE MAE RMSE NTI TC R2 MAPE MAE RMSE NTI

Plant 1 Train 32 s -0.1182 7.7211 1.4283 1.4768 100 0.1 s 0.9952 0.2945 0.0257 0.1470 20
Plant 1 Test -0.1303 7.7358 1.4296 1.4776 0.9971 0.1880 0.0220 0.1118
Plant 2 Train 32 s 0.5151 7.7907 1.0647 1.1741 100 0.1 s 0.9956 0.4984 0.0447 0.1326 50
Plant 2 Test 0.5133 7.7907 1.0652 1.1706 0.9966 0.3842 0.0422 0.1146
Plant 3 Train 32 s 0.8978 22.0061 1.3139 2.2116 100 0.2 s 0.9357 12.1905 0.6954 1.6634 130
Plant 3 Test 0.8975 22.0105 1.3137 2.2093 0.9361 11.9877 0.6918 1.6579

optimal hidden-layer weights directly. These simulation
trials demonstrated that the proposed BIWASDNN,
which uses the BIWASD algorithm to approximate
target functions, is efficient and effective.

Lastly, on GitHub, you can find the whole creation
and implementation of the computational processes
described in this work at this link:

https://github.com/SDMourtas/BIWASDNN,

where we created a MATLAB repository for stabilizing
feedback control systems inline with Algs. 1-3 and
the algorithms presented in the diagrams of Figs.
5a and 5b. For the simulation trials conducted
in this section, the MATLAB repository contains
detailed installation instructions and a complete
implementation. Additionally, anyone can draw their
own conclusions from their own tests by modifying the
BIWASDNN model parameter values in the repository’s
main MATLAB function.

5. Conclusion
In this paper, the BIWASD algorithm is utilized

to train a three-layer feed-forward NN model. The
BAS and WASD techniques are combined to create
the BIWASD algorithm for training NNs, and the
BIWASDNN model is introduced. Using a power
sigmoid AF, the BIWASD algorithm determines the
proper weights and structure of the BIWASDNN
while handling model fitting and validation. Three

simulated trials on stabilizing feedback control systems
have revealed the BIWASDNN model’s learning and
predicting performance. The results of the trials present
the splendid precision and efficiency of the BIWASDNN
model.

There are certain limits and suggestions that can be
made about this work.
1. One disadvantage of this work is that the BIWASDNN
model can only solve regression problems in machine
learning, that narrowed the area of our investigation.
2. A different AF in the WDD process is proposed as a
way to improve this research.
3. Applying akin methodologies to analogue filters
for low-voltage operation and electronic adjustment of
their frequency characteristics [36, 37], where the NN
structure and training algorithms should be properly
built for efficiency and prediction precision, may be a
intriguing future research path.
4. A future potential work might be to investigate
the utilization of a BIWASD-based NN in industrial
applications [38, 39].

References

[1] Shamsuzzoha, M. [ed.] (2018) PID Control for Industrial
Processes (IntechOpen). doi:10.5772/intechopen.69592.

[2] Tabish, M., Kalam, A. and Zayegh, A. (2019)
Robot DC servo motor parameters estimation in
a closed loop using BAT optimisation algorithm.
In 2019 International Conference on Electrical,

11 EAI Endorsed Transactions on
AI and Robotics

https://github.com/SDMourtas/BIWASDNN
https://doi.org/10.5772/intechopen.69592

S.D. Mourtas, V.N. Katsikis, C. Kasimis

Table 3. BIWASD’s stability on 100 repetitions.
NN Model BIWASDNN

Data Avg. len(N) σ (len(N)) Avg. R2 Avg. MAPE Avg. MAE Avg. RMSE
Plant 1 Train 16.17 0.5514 0.9954 0.2019 0.0106 0.1431
Plant 1 Test 0.9976 0.0959 0.0072 0.1023
Plant 2 Train 16.01 0.1 0.9962 0.4460 0.0396 0.1248
Plant 2 Test 0.9970 0.3414 0.0371 0.1099
Plant 3 Train 16.02 0.2 0.9343 13.3563 0.6951 1.6735
Plant 3 Test 0.9347 13.1731 0.6921 1.6688

Communication, and Computer Engineering (ICECCE).
doi:10.1109/icecce47252.2019.8940713.

[3] Sharma, K. and Palwalia, D.K. (2017) A modified PID
control with adaptive fuzzy controller applied to DC
motor. In 2017 International Conference on Information,
Communication, Instrumentation and Control (ICICIC).
doi:10.1109/icomicon.2017.8279151.

[4] Simos, T.E., Katsikis, V.N. and Mourtas, S.D. (2022)
Multi-input bio-inspired weights and structure determi-
nation neuronet with applications in European Central
Bank publications. Mathematics and Computers in Simu-
lation 193: 451–465. doi:10.1016/j.matcom.2021.11.007.

[5] Simos, T.E., Katsikis, V.N. and Mourtas, S.D. (2021)
A fuzzy WASD neuronet with application in breast
cancer prediction. Neural Computing and Applications
doi:10.1007/s00521-021-06572-9.

[6] Simos, T.E., Mourtas, S.D. and Katsikis, V.N.

(2021) Time-varying Black–Litterman portfolio
optimization using a bio-inspired approach and
neuronets. Applied Soft Computing 112: 107767.
doi:10.1016/j.asoc.2021.107767.

[7] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S., Li,

S. and Cao, X. (2022) Time-varying mean–variance
portfolio selection problem solving via LVI-PDNN.
Computers & Operations Research 138: 105582.
doi:10.1016/j.cor.2021.105582.

[8] Katsikis, V.N., Stanimirović, P.S., Mourtas, S.D., Xiao,
L., Karabasević, D. and Stanujkić, D. (2021) Zeroing
Neural Network with Fuzzy Parameter for Computing
Pseudoinverse of Arbitrary Matrix. IEEE Transactions on
Fuzzy Systems : 1–1doi:10.1109/tfuzz.2021.3115969.

[9] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S. and
Zhang, Y. (2021) Solving Complex-Valued Time-
Varying Linear Matrix Equations via QR Decompo-
sition With Applications to Robotic Motion Tracking
and on Angle-of-Arrival Localization. IEEE Transac-
tions on Neural Networks and Learning Systems : 1–
10doi:10.1109/tnnls.2021.3052896.

[10] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S. and
Zhang, Y. (2021) Continuous-Time Varying Complex
QR Decomposition via Zeroing Neural Dynamics. Neural
Processing Letters doi:10.1007/s11063-021-10566-y.

[11] Lu, H., Jin, L., Luo, X., Liao, B., Guo, D. and Xiao,

L. (2019) RNN for solving perturbed time-varying
underdetermined linear system with double bound
limits on residual errors and state variables. IEEE
Transactions on Industrial Informatics 15: 5931–5942.
doi:10.1109/tii.2019.2909142.

[12] Zhang, Y., Wang, Y., Li, W., Chou, Y. and Zhang, Z.

(2016) WASD algorithm with pruning-while-growing

and twice-pruning techniques for multi-input Euler
polynomial neural network. International Journal on
Artificial Intelligence Tools 25(02): 1650007.

[13] Li, J., Cheng, J., Shi, J. and Huang, F. (2012) Brief Intro-
duction of Back Propagation (BP) Neural Network Algo-
rithm and its Improvement. In Advances in Computer
Science and Information Engineering (Springer, Berlin,
Heidelberg), Advances in Intelligent and Soft Computing
169: 553–558. doi:10.1007/978-3-642-30223-7_87.

[14] Han, T., Lu, Y., Zhu, S. and Wu, Y.N. (2017) Alternating
Back-Propagation for Generator Network. In Singh,

S.P. and Markovitch, S. [eds.] Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA (AAAI
Press): 1976–1984. URL http://aaai.org/ocs/index.

php/AAAI/AAAI17/paper/view/14784.
[15] Zhang, Y., Chen, D. and Ye, C. (2019) Deep Neural

Networks: WASD Neuronet Models, Algorithms, and
Applications (CRC Press).

[16] Gao, S., Zhang, Y., Zhang, Y. and Zhang, G.

(2020) Elman neural network soft-sensor model of
pvc polymerization process optimized by chaos beetle
antennae search algorithm. IEEE Sensors Journal :
1doi:10.1109/JSEN.2020.3026550.

[17] Khan, A.H., Cao, X., Li, S., Katsikis, V.N. and Liao,

L. (2020) BAS-ADAM: an ADAM based approach to
improve the performance of beetle antennae search
optimizer. IEEE/CAA Journal of Automatica Sinica 7(2):
461–471.

[18] Li, X., Zang, Z., Shen, F. and Sun, Y. (2020) Task offload-
ing scheme based on improved contract net protocol
and beetle antennae search algorithm in fog computing
networks. Mobile Netw Appl doi:10.1007/s11036-020-
01593-5.

[19] Sun, Y., Zhang, J., Li, G., Wang, Y., Sun, J. and Jiang, C.

(2019) Optimized neural network using beetle antennae
search for predicting the unconfined compressive
strength of jet grouting coalcretes. International Journal
for Numerical and Analytical Methods in Geomechanics
43(4): 801–813. doi:10.1002/nag.2891.

[20] Cheng, Y., Li, C., Li, S. and Li, Z. (2020) Motion
planning of redundant manipulator with variable
joint velocity limit based on beetle antennae
search algorithm. IEEE Access 8: 138788–138799.
doi:10.1109/ACCESS.2020.3012564.

[21] Li, X., Jiang, H., Niu, M. and Wang, R. (2020) An
enhanced selective ensemble deep learning method for
rolling bearing fault diagnosis with beetle antennae
search algorithm. Mechanical Systems and Signal Process-
ing 142: 106752.

12 EAI Endorsed Transactions on
AI and Robotics

https://doi.org/10.1109/icecce47252.2019.8940713
https://doi.org/10.1109/icomicon.2017.8279151
https://doi.org/10.1016/j.matcom.2021.11.007
https://doi.org/10.1007/s00521-021-06572-9
https://doi.org/10.1016/j.asoc.2021.107767
https://doi.org/10.1016/j.cor.2021.105582
https://doi.org/10.1109/tfuzz.2021.3115969
https://doi.org/10.1109/tnnls.2021.3052896
https://doi.org/10.1007/s11063-021-10566-y
https://doi.org/10.1109/tii.2019.2909142
https://doi.org/10.1007/978-3-642-30223-7_87
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14784
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14784
https://doi.org/10.1109/JSEN.2020.3026550
https://doi.org/10.1007/s11036-020-01593-5
https://doi.org/10.1007/s11036-020-01593-5
https://doi.org/10.1002/nag.2891
https://doi.org/10.1109/ACCESS.2020.3012564

Feedback Control Systems Stabilization Using a Bio-inspired Neural Network

[22] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S., Li,

S. and Cao, X. (2020) Time-varying minimum-cost
portfolio insurance under transaction costs problem
via beetle antennae search algorithm (BAS). Applied
Mathematics and Computation 385: 125453.

[23] Katsikis, V.N., Mourtas, S.D., Stanimirović, P.S.,
Li, S. and Cao, X. (2021) Time-Varying Mean-
Variance Portfolio Selection under Transaction Costs
and Cardinality Constraint Problem via Beetle Antennae
Search Algorithm (BAS). SN Operations Research Forum
2(18). doi:https://doi.org/10.1007/s43069-021-00060-
5.

[24] Mourtas, S.D. and Katsikis, V.N. (2021) V-Shaped
BAS: Applications on Large Portfolios Selection Prob-
lem. Computational Economics doi:10.1007/s10614-021-
10184-9.

[25] DiStefano, J.J., Stubberud, A.R. and Williams, I.J.

(2013) Feedback and Control Systems, Schaums outline
series (McGraw-Hill Education), 3rd ed.

[26] Wang, L. (2020) PID Control System Design and
Automatic Tuning using MATLAB/Simulink (Wiley-IEEE
Press). doi:10.1002/9781119469414.

[27] Zhang, Y., Yu, X., Xiao, L., Li, W., Fan, Z. and Zhang, W.

(2013) Weights and structure determination of articial
neuronets. In Self-Organization: Theories and Methods
(New York, NY, USA: Nova Science).

[28] Zeng, T., Zhang, Y., Li, Z., Qiu, B. and Ye, C. (2020)
Predictions of USA Presidential Parties From 2021 to
2037 Using Historical Data Through Square Wave-
Activated WASD Neural Network. IEEE Access 8: 56630–
56640. doi:10.1109/ACCESS.2020.2982192.

[29] Chen, L., Huang, Z., Li, Y., Zeng, N., Liu, M., Peng, A.
and Jin, L. (2019) Weight and Structure Determination
Neural Network Aided With Double Pseudoinversion
for Diagnosis of Flat Foot. IEEE Access 7: 33001–33008.
doi:10.1109/ACCESS.2019.2903634.

[30] Jiang, X. and Li, S. (2017) BAS: Beetle Antennae
Search Algorithm for Optimization Problems. arXiv
preprint abs/1710.10724. URL http://arxiv.org/abs/

1710.10724. 1710.10724.
[31] Katsikis, V.N. and Mourtas, S.D. (2021) Computa-

tional Management (Springer, Cham.), Modeling and Opti-
mization in Science and Technologies 18, chap. Port-
folio Insurance and Intelligent Algorithms, 305–323.

[35] Khan, A.H., Cao, X., Katsikis, V.N., Stanimirovic, P.,
Brajevic, I., Li, S., Kadry, S. et al. (2020) Optimal Port-
folio Management for Engineering Problems Using Non-
convex Cardinality Constraint: A Computing Perspec-
tive. IEEE Access : 1–1doi:10.1109/access.2020.2982195.

doi:10.1007/978-3-030-72929-5_14.
[32] Katsikis, V.N. and Mourtas, S.D. (2021) Binary Beetle

Antennae Search Algorithm for Tangency Portfolio
Diversification. Journal of Modeling and Optimization
13(1): 44–50. doi:10.32732/jmo.2021.13.1.44.

[33] Katsikis, V.N. and Mourtas, S.D. (2020) Optimal
portfolio insurance under nonlinear transaction costs.
Journal of Modeling and Optimization 12(2): 117–124.

[34] Medvedeva, M.A., Katsikis, V.N., Mourtas, S.D.

and Simos, T.E. (2020) Randomized time-varying
knapsack problems via binary beetle antennae
search algorithm: Emphasis on applications in
portfolio insurance. Math Meth Appl Sci : 1–
11doi:https://doi.org/10.1002/mma.6904.

[36] Kasimis, C. and Psychalinos, C. (2012) Design of
Sinh-Domain filters using complementary operators.
International Journal of Circuit Theory and Applications
40: 1019–1039. doi:10.1002/cta.769.

[37] Psychalinos, C., Kasimis, C. and Khateb, F.

(2018) Multiple-input single-output universal
biquad filter using single output operational
transconductance amplifiers. AEU - International
Journal of Electronics and Communications 93: 360–367.
doi:10.1016/j.aeue.2018.06.037.

[38] Luo, X., Zhou, M., Li, S., Wu, D., Liu, Z. and
Shang, M. (2021) Algorithms of unconstrained non-
negative latent factor analysis for recommender sys-
tems. IEEE Transactions on Big Data 7(1): 227–240.
doi:10.1109/TBDATA.2019.2916868.

[39] Luo, X., Zhou, M., Shang, M., Li, S. and Xia, Y. (2016) A
novel approach to extracting non-negative latent factors
from non-negative big sparse matrices. IEEE Access
4: 2649–2655. doi:10.1109/ACCESS.2016.2556680, URL
https://ieeexplore.ieee.org/document/7457202/.

13 EAI Endorsed Transactions on
AI and Robotics

https://doi.org/https://doi.org/10.1007/s43069-021-00060-5
https://doi.org/https://doi.org/10.1007/s43069-021-00060-5
https://doi.org/10.1007/s10614-021-10184-9
https://doi.org/10.1007/s10614-021-10184-9
https://doi.org/10.1002/9781119469414
https://doi.org/10.1109/ACCESS.2020.2982192
https://doi.org/10.1109/ACCESS.2019.2903634
http://arxiv.org/abs/1710.10724
http://arxiv.org/abs/1710.10724
1710.10724
https://doi.org/10.1109/access.2020.2982195
https://doi.org/10.1007/978-3-030-72929-5_14
https://doi.org/10.32732/jmo.2021.13.1.44
https://doi.org/https://doi.org/10.1002/mma.6904
https://doi.org/10.1002/cta.769
https://doi.org/10.1016/j.aeue.2018.06.037
https://doi.org/10.1109/TBDATA.2019.2916868
https://doi.org/10.1109/ACCESS.2016.2556680
https://ieeexplore.ieee.org/document/7457202/

	1 Introduction
	2 PID Feedback Control and NN Approach
	3 The BIWASDNN Model
	3.1 WDD Method and AF
	3.2 BIWASD Algorithm

	4 Experiments and MATLAB Repository
	4.1 Simulated Trials
	4.2 BIWASD's Stability and MATLAB Repository

	5 Conclusion

