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Abstract

Redundant manipulators are widely utilized in numerous applications among various areas in industry and
service. Redundant manipulators take advantage of their inherent or acquired redundancy to achieve certain
benefits in kinematic control. Different from non-redundant manipulators, optimization paradigms are more
likely to be established and may be more efficient for kinematic control issues in redundant manipulators. In
this paper, we revisit the perspective and methodology on constrained optimization paradigms for kinematic
control of redundant manipulators.
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1. Introduction
Robotic manipulators nowadays are widely appearing
in many fields of scientific research and engineer-
ing applications, e.g., assembly [1, 2], painting [3, 4],
surgery [5–7]. They possess good flexibility, high accu-
racy and promising stability for fulfilling complicated
tasks and sustaining heavy workloads, releasing much
labour force of human beings in a long term. Most
robotics manipulators are designed and manufactured
as serial articulated robots with the end-effectors freely
moving in a workspace [8]. meaning that most of their
joints are of revolute type rather than prismatic type,
so the number of degree of freedom (DoF) in joint
motion can be identical to the number of joints in this
sense. Since end-effectors in manipulators can possess
six DoFs in Cartesian space at most, when the number
of joints is more than six, one can basically suppose
the manipulators inherently possess redundancy in the
motion mapping between joint space and Cartesian
space [9].

Generally, the redundancy for robots/manipulators
can be mainly investigated in two aspects, that is,
the kinematics redundancy [10, 11] and the dynamics
redundancy [12, 13]. Redundancy in kinematics means

∗Corresponding author. Email: zhan.li@swansea.ac.uk

that the number of DoF in joint space is larger than
that in Cartesian space (e.g., the typical applications
such as industrial and medical robots [14, 15]).
Redundancy in dynamics means that the number of
DoF in actuation space is larger than that in joint
space (e.g., over-actuated systems such as human
muscular-skeletal systems [16, 17]). Most robots are
often under-actuated/fully-actuated systems rather
than over-actuated systems as humans, due to design,
weight, and cost limitations. So, the redundancy mainly
reflects on kinematics rather than dynamics.

Exploiting kinematic redundancy may be beneficial
to the kinematic control of redundant manipulators
[18, 19]. The extra DoFs in joint space have the
potential to offer more choices in inverse kinematic
resolutions once the DoFs in Cartesian space are less.
This is because the imbalance between the DoFs in
joint space and those in Cartesian space exists. The
mapping function between joint space and Cartesian
space reserves such redundancy. Just like solving
undetermined nonlinear/linear equations, the number
of variables is larger than that of equations, it indicates
that we would have larger chances to get multiple
solutions and thus the best/optimal solutions can be
selected according to our criteria. So, relying heavily
upon redundancy can provide a pathway to find
the optimal solutions in kinematic control issues as
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the multiple optional resolutions can be guaranteed.
However, if we neglect such benefits from redundancy
and try to directly find the analytical resolutions or
the local iterative resolutions by numerical approaches
in kinematic control, some tough situations may be
encountered: the analytical resolutions might not exist
at all and the global resolutions by conventional
numerical approaches might lose at all [20, 21]. The
involvement of redundancy in potential kinematic
control methods increases the possibility of finding
an optimal strategy of resolution. Motivated by these
considerations, developing optimization paradigms for
manipulator models that contain such redundancy
information seems a feasible and superior manner for
kinematic control.

In this paper, we investigate the kinematic control
problem for redundant manipulators and summarize
the general optimization paradigms which relies on
redundancy.

2. Forward Kinematic Modeling
For a manipulator with n joints, its forward kinematics
is modelled by the following equation [22]

T (θ) = T1(θ1)T2(θ2) · · · Tn(θn) (1)

where θ = [θ1, θ2, · · · , θn]T ∈ Rn denotes the joint angu-
lar variable, T (θ) ∈ R4×4 denotes the final homoge-
nous matrix between the end-effector coordinate system
and the base coordinate system, and Ti(θi) ∈ R4×4 (i =
1, 2, · · · , n) denotes the homogenous matrix between the
coordinate system affiliated at the i − 1th joint and the
coordinate system affiliated at the ith joint. Specifically,
the homogenous matrix T (θ) ∈ R4×4 can be written as

T (θ) =
[
R o
0 1

]
(2)

where R ∈ R3×3 denotes the rotation matrix between the
end-effector coordinate system and the base coordinate
system, and o ∈ R3 denotes the position vector between
the end-effector coordinate system and the base
coordinate system [22].

From (1) and (2), we could know that the mapping
from the rotation and position variables X ∈ R6 of the
end-effector to the joint angular variables θ ∈ Rn is
depicted as a set of nonlinear equations as follows:

X = f (θ) (3)

where f (·) : Rn → R6 denotes the coupled nonlinear
function array. As both the posture and the position
are not simultaneously controlled during the motion
process, especially the orientation control of the end-
effector is not necessary to be done along the whole
process of kinematic control while the position control

of the end-effector may be more necessary to track
task paths in most phases. In this circumstance, the
nonlinear relationship above often reduces to the
following form:

r = f (θ) (4)

where r ∈ R3 denotes the position of the end-effector,
and f (·) : Rn → R3 is a reduced coupled nonlinear
function array. Such formulation can increase the level
of redundancy, as the gap between the number of DoF
in joint space and the number of DoF in Cartesian space
is enlarged from n − 6 to n − 3.

3. Kinematic Control in Joint Angle Level
The kinematic control on such a redundant manipu-
lator essentially needs to inversely solve for reference
joint angular variable θ from the known/desired end-
effector variable X as the following

θ = f −1(X) (5)

where f −1(·) : R6 → Rn denotes the inverse mapping of
the nonlinear function array.

When n < 6, the number of equations is greater than
the number of variables, indicating that the nonlinear
equations can be regarded as over-determined. When
n > 6, the number of equations is smaller than the
number of variables, indicating that the nonlinear
equations can be regarded as under-determined. When
n = 6, the number of equations is equal to the number
of variables, implying that unique solution might
be obtained. However, the inverse kinematic solution
problem might be very complicated because we are
facing with nonlinear equation solving. The general
analytical solution for the nonlinear equation solving
problem usually can not be found, and the iterative
numerical methods for the nonlinear equation solving
problem might greatly be dependent on the design
principle and the initial condition configuration.

Without loss of generality, the kinematic control
problem on redundant manipulators can be equivalent
to the general inverse kinematic resolution problem,
which can be formulated as the following nonlinear
optimization problem

min . ∥f (θ) − X∥22 (6)

where ∥ · ∥2 denotes the two-norm of a vector. The
optimization problem tries to minimize the objective
function ∥f (θ) − X∥22 with an optimal variable θ finally
obtained. Let us expand ∥f (θ) − X∥22 and then we get

min . f T (θ)f (θ) − f T (θ)X + XT f (θ) + XTX (7)

which is a nonlinear optimization problem whose
convexity can not be guaranteed. In this situation,
due to potential strong nonlinearity, finding the direct
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solution of (6) by related traditional optimization
algorithms may be quite tough and the global optimal
solution can be even impossible to obtain. Some bio-
inspired intelligent algorithms can be considered as
alternatives for optimization solvers if the optimization
problem (6) is non-convex [23]. Although when n >
6, the optimization problem falls into the under-
determined case and thus potential multiple/indefinite
solutions can be used to find the optimal one. However,
because non-convexity may appear in the objective
function, the global optimal solution might still be
uncertain to solve. Moreover, constraints (e.g., the
physical limit constraint θ− < θ < θ+) in the joint
angle/position level increases the difficulty of finding
the reasonable global solution [24]. In order to
efficiently solve the kinematic control problem based
on such inverse kinematic resolution, transferring such
difficult nonlinear problems into linear problems may
be preferred [25].

4. Kinematic Control in Joint Velocity Level
In order to simplify the inverse kinematic control of
redundant manipulators, a typical way is to convert
the nonlinear mapping relation in the joint angle and
end-effector position level to the following differential
kinematics (or termed, velocity kinematics) first [22]:

Jθ̇ = Ẋ (8)

where J ∈ R6×n denotes the Jacobian matrix. It can be
seen evidently that, such differential kinematics equa-
tion is of linear equations. So, when the desired end-
effector orientation/position is known, the reference
joint angular velocity can be obtained by solving the
pseudo-inverse of the Jacobian matrix as follows [26,
27]:

θ̇ = J†Ẋ (9)

where J† denotes the pseudo-inverse of the Jacobian
matrix J . Specifically, when n = 6 holds and the Jacobian
matrix J is non-singular, the reference the reference
joint angular velocity can be

θ̇ = J−1Ẋ (10)

The resultant reference joint angle can thus be the
integration of the resolved joint angular velocity with
respect to time t by

θ =
∫ t

0
θ̇dt =

∫ t

0
J−1Ẋdt (11)

However, as we already see, such a way of finding the
reference joint angle by solving the pseudo-inverse of
the Jacobian matrix may suffer from some drawbacks,
e.g., the task and physical limits on a joint angle or joint
angular velocity are not considered to be involved in

the resolution. Therefore, the resolved joint angle or the
joint angular velocity may exceed their safe boundaries
and unsafe motion planning and control circumstances
can occur. Moreover, redundancy is actually fully made
use to obtain the optimal solutions explicitly.

To remedy this, the following constrained optimiza-
tion paradigm can be [28]

min . ∥Jθ̇ − Ẋ∥22
s.t. θ̇− < θ̇ < θ̇+

g(θ̇) ≤ 0

(12)

where θ̇− and θ̇+ respectively denote the physical
lower and upper limits for joint velocity θ̇, and g(·) :
Rn → Rm denotes a nonlinear or linear mapping on
θ̇ to construct the task constraint. However, such
optimization paradigm still can not be guaranteed
strictly convex as the Jacobian matrix might become
singular at some time instant t, and improved
optimization paradigm is yet to be proposed. We still
reserve the possibility to find the convex optimization
paradigm and expect to achieve global solutions.

5. General Optimization Paradigm
In this paper, the following general optimization
paradigm for kinematic control of redundant manipu-
lators is addressed:

min . ∥θ̇∥pp
s.t. Jθ̇ = Ẋ

θ̇− < θ̇ < θ̇+

g(θ̇) ≤ 0

(13)

where ∥ · ∥p (0 ≤ p ≤ 2) denotes the p-norm of a vector.
Utilization of such p-norm (0 < p ≤ 2) in the objective
function can guarantee strict convexity. The differential
kinematics Jθ̇ = Ẋ here is treated as one necessary
constraint. Such way of processing can get rid of non-
convexity modeling and global solutions are expected
to get theoretically. However, the number of the
constraints is increased and the manipulator has to
possess stronger redundancy to guarantee all of the
constraints are satisfied. It means that the redundancy
has to leave enough margins for finding the optimal
solutions. In this situation, solutions seems global and
some of the constraints might be not satisfied. All of
these indicates that a highly-redundant manipulator is
preferred to fulfill more complicated tasks with a lot of
task and physical constraints.

5.1. Non-sparse l2-norm based optimization
When p = 2, the p-norm becomes a two-norm. The
objective function thus becomes a form like sum of
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squares, and the optimization paradigm becomes

min . ∥θ̇∥22
s.t. Jθ̇ = Ẋ

θ̇− < θ̇ < θ̇+

g(θ̇) ≤ 0

(14)

Two-norm based optimization is widely used in the
kinematic control and redundancy resolution issue
depending on different types of task constraint g(θ̇) ≤
0. These are the relevant literature based on the
non-sparse l2-norm based optimization in addition
to physical limits and the differential kinematics as
the basic constraints, the task constraints can be the
repetitive motion planning [29, 30], obstacle avoidance
[31, 32], joint drift elimination [33–36], RCM (remote
center of motion) based kinematic control [37–40], and
fault-tolerant motion planning and control [41–43].

5.2. Sparse lp-norm based optimization
When 0 ≤ p < 2, the following p-norm based optimiza-
tion can be used for kinematic control in a sparse
perspective:

min . ∥θ̇∥pp
s.t. Jθ̇ = Ẋ

θ̇− < θ̇ < θ̇+

g(θ̇) ≤ 0

(15)

However, when 0 < p < 1, it is very difficult to perform
computation of optimization as it is closer to a N-P
hard computation issue when p approaches zero more.
To make the computation feasible, 1 ≤ p < 2 is chosen
for sparse lp-norm based optimization. To evaluate the
sparsity of the optimization in terms of different p in the
velocity level, the following metrics can be considered
[44]:

Sparsity = −∥θ̇∥q q > 0 (16)

Currently, most related works proposed and devel-
oped were based on the two-norm non-sparse optimiza-
tion, there are few sparse optimization based works
on kinematic control issues [45], e.g., l1-norm based
optimization [46] and lp-norm based optimization with
simultaneous minimizing potential energy [47]. Usage
of sparse optimization can “compress” the joint motion
information like the way of compress sensing. The
resolved joint velocity might present their amplitudes
in a lower level but still the kinematic control can
be successfully guaranteed. It may be beneficial to
decrease the kinetic energy of the joints and links
when doing the same path tracking task at the end-
effector level. When the redundancy of the manipulator
is higher, such benefits can be more evident in sparse
optimization based kinematic control.

5.3. Optimization Solver
In order to solve aforementioned optimization prob-
lems both in the non-sparse and sparse manners, as
the objective function is always convex, one can directly
define the Lagrange function as follows according to the
well-known KKT conditions

L(θ̇, λ1, λ2) = ∥θ̇∥pp/p + λT
1 (Jθ̇ − Ẋ) + λT

2 g(θ̇) (17)

The final steady-state optimal solutions can be
obtained by letting the following gradients to to be zero

∂L(θ̇, λ1, λ2)
∂θ̇

= 0

∂L(θ̇, λ1, λ2)
∂λ1

= 0

∂L(θ̇, λ1, λ2)
∂λ2

= 0

(18)

However, directly finding the analytical solutions
for the optima would be very difficult. A better
methodology that had been frequently used is primal
dual neural network (PDNN) [48]. The idea of design
principle is to firstly involve the time-derivatives of θ̇,
λ1 and λ2 to establish a state-space dynamic model.
Once the optimal solutions are solved in the steady
state, the equilibrium points of the model are achieved.
The specific dynamic equations of the PDNN solver are
as follows.

θ̈ = γ[PΩ(u − ∂L(θ̇, λ1, λ2)
∂θ̇

) − u]

λ̇1 = γ(Jθ̇ − Ẋ)

λ̇2 = γg(θ̇)

(19)

where γ > 0 scales the convergence rate of the dynamic
optimization solver, PΩ(·) denotes the piecewise linear
projection function array with a solution set Ω, i.e.,

PΩ(z) =


z+; z ≥ z+

z; z− < z < z+

z−; z ≤ z−
(20)

with the lower and upper bounds being z− and z+

respectively and the input variable being z.
On convergence properties of the constrained opti-

mization solver based on the PDNN for kinematic con-
trol, please refer to related works [48–50].

Another way to solve the constrained optimization
for kinematic control is the BAS algorithm, refer to
[51, 52] for details. Some other works on zeroing neural
networks can also be excellent optimization solvers.

5.4. Benefits of Redundancy with Optimization
As redundant manipulators possess inherent redun-
dancy in robotic mechanisms, i.e., the number of DoF
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in joint space can be configured larger than that of
DoF in Cartesian space. It provides possibility multiple
alternative solutions for finding the optimal one subject
to the constraints. By designing convex optimization
paradigms, joint angular variables can be resolved glob-
ally. Such redundancy with optimization offers the fol-
lowing potential benefits for redundant manipulators
in kinematic control:

• Redundant manipulators have extra DoFs for
fulfilling the secondary task in addition to the
end-effector path tracking task;

• Additional constraints such as physical limit con-
straints, task constraints and performance index
constraints can be added into optimization to
complete more comprehensive tasks which attain
multiple requirements until such redundancy
could not afford to find the optimal solutions with
all these constraints satisfied;

• Sparsity-based optimization paradigms which
preserve convexity can be designed for sparse
redundancy resolution, and it may lead to less
kinetic energy variations for links and joints;

• Redundant manipulators have additional normal
joints to proceed kinematic control tasks even
when some joint(s) are falling into fault states
such as a joint mechanical lock or joint velocity
zeroing, they have such fault-tolerant ability to
some extent when facing kinematic failures as
the fault joints can generate another special
constraint.

6. Conclusions
Redundant manipulators have been widely applied
in many industrial and human-centred applications.
Redundant manipulators can make use of their
redundancy to achieve certain benefits in kinematic
control with multiple tasks and indices. In this
paper, we have revisited and summarized current
constrained optimization paradigms for kinematic
control of redundant manipulators, pointed out the
feasible optimization paradigms and addressed benefits
from such redundancy with optimization exerted.
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