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Abstract 

After nearly 30 years of development, service robot technology has made important achievements in the interdisciplinary 

aspects of machinery, information, materials, control, medicine, etc. These robot types have different shapes, and mainly in 

some are shaped based on application. Till today various structure are proposed which for the better analysis’s need to have 

the mathematical equation that can model the structure and later the behaviour of them after implementing the controlling 

strategy. The current paper discusses the various shape and applications of all available service robots and briefly summarizes 

the research progress of key points such as robot dynamics, robot types, and different dynamic models of the differential 

types of service robots. The current review study can be helpful as an initial node for all researchers in this topic and help 

them to have the better simulation and analyses. Besides the current research shows some application that can specify the

service robot model over the application. 
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1. Introduction

As an inevitable extension of computer technology and 

modern comprehensive technology, home service robot 

technology known as service robots will achieve a 

breakthrough at an unprecedented speed. Service robots are 

entering various places from home to industries and are 

even recently accepted as home appliances. The history of 

robotics shows that the service robot chapter started with 

the Automated Guided Vehicle (AGV) [1] and then various 

applications bring the various shapes furnished with 

different structures. AGV’s were initially as the load 

carriers but are now being used for more applications [2-

3]. Then, for a better analysis of a service robot, researchers 

must examine mathematical modeling for a better control 

algorithm [4] and dynamic simulation as necessary stages 

in the robotic domain and studies. This equation which 

called Dynamic modelling involves deriving equations that 

clearly describe the relationship between forces and 

motions in a system. The paper's main aim is to describe 
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the different types of service robot models, especially the 

Automated Guided Vehicle (AGV), showcase work related 

to the individual types, and state their proposed dynamic 

models. This paper is set  as follows initially, the service 

robot overview is discussed, then based on the different 

structures of service robots, review the different kinematic 

and dynamic models described. Finally, the comparison 

between the shapes and application are discussed at the 

end. 

2. Service Robot Models

Currently, Service Robots are an umbrella term for various 

types of robots and consider as any type of robot that can 

give the service or in place of a human. One of the most 

famous groups of service robots, which initially started 

from industry but are now used as a part of home 

applications, are Automated Guided Vehicle (AGV). 

Initially, AGV was known as a complex machine 

representing a complete material handling solution, 

installed in many industries and widely used to efficiently 
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transport materials through a facility [5]. AGV can increase 

efficiency and productivity and reduce product damage and 

labour costs. The overall view of service robots shows that 

usually, a mobile robot has two subsystems, Drive 

Subsystem and Mechanical Subsystem, as shown in figure 

1.  

Figure 1. An electrical robot's decomposition 

As it is shown in figure 1, the Drive subsystem takes in 

voltages and controls the motor functions. The mechanical 

subsystem has dynamics and kinematics, which require 

various algorithms and has models that help determine 

steering or tracking of paths, i.e., positioning or orientation 

of the robot. Understanding the mathematical equation and 

relation between each part will help for better control and 

design of the robot. The reported shape and structure of 

Service robots can be named as Two Wheel Differential, 

three-wheel, four-wheel AGV, Four Wheel Skid Steering 

AGVs, Six Wheel AGVs, Ackerman AGV, crawler and 

legged robot as described in the following;  

2.1 Two Wheel Differential 

The differential drive is a two-wheel drive system with 

independent actuators for each wheel. The name refers to 

that the robot's motion vector is the sum of independent 

wheel motions. The robot's driving wheels are normally 

mounted on both sides, facing forward. [6]. Pure tracking 

in this type of robot is at least as good as the others and is 

easier to implement and understand [7]. Considering the 

mathematical equation, the different variables of the two-

wheel differential robot are shown in Figure (2). 

Figure 2. Two Wheel Differential Robot Schematic. 

As it is shown in Figure 2, The ICC, which stands for 

instantaneous centre of curvature, and the front of the robot 

have two freewheels, as shown in figure (2), with L being 

the difference between the two back motor wheels.  is the 

angle at which the robot is turned from the centerline to the 

x-axis. R is the distance from ICC to the midpoint between

the two back wheels. Considering the above variables, to

follow the robot and find the robot velocity. The inputs

required for the motion of a mobile robot are the linear

velocity (V) and orientation [8-9]. The rate of change of

position of robot along the x-direction is �̇� and that in the

y-direction is �̇� are stated by

�̇� = 𝑉cos(휃)
�̇� = 𝑉sin(휃)

(1) 

and the angular velocity of the robot is given by 

휃̇ = 𝜔 =
(𝑉𝑟−𝑉𝑙)

𝐿
(2) 

Substituting the linear velocity V. 

�̇� =
(𝑉𝑙+𝑉𝑟)

2
cos(휃)

�̇� =
(𝑉𝑙+𝑉𝑟)

2
sin(휃)

(3) 

The velocity V of the robot in a fixed reference coordinate 

system is therefore given by 

𝑉 = √�̇�2 + �̇�2 (4) 

𝑉 = √(
(𝑉𝑙+𝑉𝑟)

2
co s(휃)) + (

(𝑉𝑙+𝑉𝑟)

2
si n(휃)) =

𝑉𝑟+𝑉𝑙

2
(5) 

The individual velocities, Vr and Vl, can now be calculated 

using the equations: 

𝑉𝑟 = (𝑉 +
𝐿

2
𝜔)

𝑉𝑙 = (𝑉 −
𝐿

2
𝜔)

(6) 

The outputs, 𝑉𝑟  and 𝑉𝑙 then used to generate the output �̇�, �̇�
and 𝜔 using the above equations [10-13] 

The following equations (7) are the forward kinematic 

mathematical equations stated by the researchers, which in 

them the Angular momentum of the robot presented 

ω(R + 1/2) = 𝑣𝑟   (7) 

ω(𝑅 − 1/2) = 𝑣𝑙

Vr is the velocity of the right wheel while 𝑣𝑙is the velocity

of the left wheel, then from (7): the value (R distance from 

ICC) and (𝜔 Angular momentum) defined as shown in 

equation (7) 

𝑅 = 1/2 ⋆ (𝑣𝑙 + 𝑣𝑟)/(𝑣𝑟 − 𝑣𝑙)

𝜔 = (𝑣𝑟 − 𝑣𝑙)/1

(8) 

The forward kinematics equation (9) (concerning time): 

EAI Endorsed Transactions on 
AI and Robotics



 Review On: The Service Robot Mathematical Model 

3 

𝑑𝑥/𝑑𝑡 = 𝑚(𝑡)cos(휃(𝑡))
𝑑𝑦/𝑑𝑡 = 𝑚(𝑡)sin(휃(𝑡))

(9) 

Then the change of direction with respect to time is the 

same as the angular rate ω. Therefore, 

𝑑휃/𝑑𝑡 = 𝜔 = (𝑣𝑟 − 𝑣1)/1 (10) 

Integrating the equation(4) gives a function for the robot's 

orientation with respect to time. The robot initial 

orientation θ(0) is also replaced by θ0: 

휃(𝑡) = (𝑣𝑟 − 𝑣1)𝑡/1 + 휃0
(11) 𝑑𝑥/𝑑𝑡 = [(𝑣𝑟 + 𝑣1)/2]cos(휃(𝑡))

𝑑𝑦/𝑑𝑡 = [(𝑣𝑟 + 𝑣1)/2]sin(휃(𝑡))

Taking the initial positions to be x(0) = x0, and y(0) = y0 

to get: 
𝑥(𝑡) =

𝑥0 + 1/2(𝑣𝑟 + 𝑣1)/(𝑣𝑟 − 𝑣1)

[si n((𝑣𝑟 − 𝑣1)𝑡/1 + 휃0) − si n(휃0)]

𝑦(𝑡) =

𝑦0 − 1/2(𝑣𝑟 + 𝑣1)/(𝑣𝑟 − 𝑣1)

[co s((𝑣𝑟 − 𝑣1)𝑡/1 + 휃0) − co s(휃0)]

(12) 

As
l/2(𝑣𝑟+vl)

(𝑣𝑟−vl)
= R, the robots turn radius, and

(𝑣𝑟−vl)

l
= ω 

, The above equations can be reduced to : 

𝑥(𝑡) = 𝑥0 + 𝑅[si n(𝜔𝑡 + 휃0) − si n(휃0)]

𝑦(𝑡) = 𝑦0 − 𝑅[co s(𝜔𝑡 + 휃0) − co s(휃0)]
(13) 

Substituting the terms 𝑣𝑟  and 𝑣𝑙  With sr and sl, which

indicates displacements instead of speeds, allows dropping 

the time variable t . Here 𝑠𝑟 and 𝑠1 do the left and right 

wheels travel the distances respectively. Finally, the 

equation becomes: 

&𝑥(𝑡) = 𝑥0 + 1/2(𝑠𝑟 + 𝑠1)

/(𝑠𝑟 − 𝑠1)[si n((𝑠𝑟 − 𝑠1)/1 + 휃0) − si n(휃0)]& 

𝑦(𝑡) = 𝑦0 − 1/2(𝑠𝑟 + 𝑠1)

/(𝑠𝑟 − 𝑠1)[co s((𝑠𝑟 − 𝑠1)/1 + 휃0) − co s(휃0)] 

(14) 

Another mathematical model with the aim of showing in 

the kinematic equations relating to differential drive robots 

are discussed and implemented by [14]. For autonomous 

navigation of the robot, it must always know its position, 

i.e. the translation matrix and the rotation matrix. When the

robot speed of the wheel change, the robot has to rotate

around a point on the common axis of the two driving

wheels, called the Instantaneous Centre of Curvature

(ICC). Suppose the robot is at some location (𝑥, 𝑦), making

an angle of 휃 with the 𝑋 axis. After some time, the robot's

position will shift, and a new one will be (𝑥′, 𝑦′) and the

new angle is 휃′.

𝐼𝐶𝐶 = [𝑥 − 𝑅sin(휃), 𝑦 + 𝑅cos(휃)] (15) 

and at time 𝑡 + 𝛿𝑡 the new positions would be: 

(
𝑥′

𝑦′

휃′
) = (

cos(𝜔𝛿𝑡) −sin(𝜔𝛿𝑡) 0
sin(𝜔𝛿𝑡) cos(𝜔𝛿𝑡) 0

0 0 1

)(
𝑥 − 𝐼𝐶𝐶𝑥
𝑦 − 𝐼𝐶𝐶𝑦
휃

) + (
𝐼𝐶𝐶𝑥
𝐼𝐶𝐶𝑦
𝜔𝛿𝑡

)

(16) 

by using equation (16), the user can find the robot's position 

at any instant. The above equations can be described as the 

position of the robot moving in a particular direction 휃𝑡 at

a given velocity 𝑉 (where 𝑉 is the average of the left wheel 

and the right wheel velocity) by: 

𝑃𝑥 = 𝑥𝑡 = ∫  𝑉 ⋅ sin 휃 ⋅ 𝑑휃

𝑃𝑦 = 𝑦𝑡 = ∫ 𝑉 ⋅ cos 휃 ⋅ 𝑑휃

휃 = ∫ 𝜔 ⋅ 𝑑𝑡 

(17) 

The dynamic model of Two Wheel Differential 

robot (Khepera IV) [15]is derived from the kinematic and 

dynamic relations as follows: 

𝐹𝐿 + 𝐹𝑅 = 𝑚 ⋅ 𝑎
(𝐹𝑅−𝐹𝐿)𝐷

2
= 𝐽 ⋅ 휀

(18) 

Where the dynamic parameters of the robot are, 

𝐹𝐿 and 𝐹𝑅 = Applied forces to the left and right wheels,

respectively. 𝑚  as  Mass of the robot,𝑎 tangential 

acceleration, 𝐽moment of inertia and 휀  angular 

acceleration. The following are the model's inputs, outputs, 

and state 

variables:
𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡)]

= [𝑣(𝑡), 𝜔(𝑡), 𝜔𝐿(𝑡), 𝜔𝑅(𝑡)]

𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)] = [𝐹𝐿 , 𝐹𝑅, 𝑈𝐿 , 𝑈𝑅]

𝑦(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡)] =

[𝑥3(𝑡), 𝑥4(𝑡)] = [𝜔𝐿(𝑡), 𝜔𝑅(𝑡)]

 (19) 

Where 𝑈𝐿and 𝑈𝑅 are the voltages applied to the DC

motors that drive the robot's wheels, 

𝑥1(𝑡) = 𝑣(𝑡) (20) 

We have after deriving from the sides of the equation 

�̇�1(𝑡) = 𝑎(𝑡) and using equation (29) the following relation 

will be obtained: 

�̇�1(𝑡) =
𝐹𝐿+𝐹𝑅

𝑚
=

1

𝑚
𝐹𝐿 +

1

𝑚
𝐹𝑅 (21) 

From equation (29), u1(t) = FL and u2(t)=FR . As a result, 

equation (13) can be written as follows: 

�̇�1(𝑡) =
1

𝑚
𝑢1(𝑡) +

1

𝑚
𝑢2(𝑡) (22)
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With this equation 𝑥2(𝑡) = 𝜔(𝑡) we can get a deduction

from the equation �̇�2(𝑡) = 휀(𝑡). The second state

equation is given by applying equation (9): 

�̇�2(𝑡) =
−𝐷

2𝐽
𝑢1(𝑡) +

𝐷

2𝐽
𝑢2(𝑡) (23) 

The angular velocities𝑈𝐿 and 𝑈𝑅 were generated using

𝜔𝐿 and 𝜔𝑅, respectively. The following equations

describe the voltage values of the motors: 

𝐽휀𝐿(𝑡) + 𝐹𝜔𝐿(𝑡) + 𝐹𝐿𝑟 = 𝑈𝐿
𝐽휀𝑅(𝑡) + 𝐹𝜔𝑅(𝑡) + 𝐹𝑅𝑟 = 𝑈𝑅

(35) 

The angular accelerations of the wheels are 휀𝐿and 휀𝑅, and

the friction force is F. By opting for the third state, variable 

as 𝑥3(𝑡) = 𝜔𝐿 and fourth state variable as 𝑥4(𝑡) = 𝜔𝑅. The

following state equations can be constructed by using 

𝑈𝐿and 𝑈𝑅  as third and fourth input variables, respectively:

�̇�3(𝑡) = −
𝐹

𝐽
𝑥3(𝑡) −

𝑟

𝐽
𝑢1(𝑡) +

1

𝐽
𝑢3(𝑡)

�̇�4(𝑡) = −
𝐹

𝐽
𝑥4(𝑡) −

𝑟

𝐽
𝑢2(𝑡) +

1

𝐽
𝑢4(𝑡)

(36) 

As a result, there are four state equations that can be 

expressed as a state-space matrix, as shown below: 

{

�̇�(𝑡) =

[

0 0 0 0
0 0 0 0

0 0 −
𝐹

𝐽
0

0 0 0 −
𝐹

𝐽]
 

𝑥(𝑡) +

[

1

𝑚

1

𝑚
0 0

−𝐷
𝐷

2𝐽
0 0

−
𝑟

𝐽
0

1

𝐽
0

0 −
𝑟

𝐽
0

1

𝐽 ]
 

𝑢(𝑡)

𝑦(𝑡) = [
0 0 1 0
0 0 0 1

] 𝑥(𝑡)

(37) 

2.2 Three Wheel 

The three-wheeled robots are divided into two parts, 

Differential steering (2 driving wheels with additional free 

rotating wheels to maintain body balance) and Two wheels 

powered by a single power source and one for the third 

cycle power steering. The robot's steering can be changed 

by changing the relative rate of rotation of the two separate 

drive wheels for differential steering wheels. The robot will 

go straight ahead if both wheels are propelled in the same 

direction and at the same speed. Otherwise, the centre of 

rotation can fall anywhere on the straight line joining the 

two wheels, depending on the speed and direction of 

rotation. [16]. Figure 3 shows the schematics of a three-

wheeled robot. The back wheels represent the motor 

wheels, and the front is the steering wheel. 

Figure 3. Three Wheel Robot Schematics. 

As shown in [8] [9], the robot velocity cab be defined as 

(38) 

𝑣𝑥 = 𝑣𝑢sin 𝜓 + 𝑣𝑤cos 𝜓

𝑣𝑦 = 𝑣𝑢cos 𝜓 − 𝑣𝑤sin 𝜓
(38) 

In (39) we observe 𝑣𝑥 and 𝑣𝑦 which are the lateral parts of

the velocity of the AGV mass centre in the UCW frame. �̇� 

is the position of the vehicle's steering wheel at any given 

time. Both UCW and XOY have an angular velocity of w 

= �̇�.𝛿 is the steering angle, which is defined as the angle 

between the steering wheel and the vehicle's longitudinal 

axis cu.In the two coordinate frames, 𝑎𝑢 , 𝑎𝑤, 𝑎𝑥 and 𝑎𝑦
are employed for acceleration components. The resultant of 

the forces produced by the tires on the vehicle has 

longitudinal (u) and lateral (w) components, as indicated. 

The subscripts R and L stand for Right and Left (for rear 

tires), respectively, while the subscripts r and f stand for 

rear and front, respectively. Thus, the lateral (w) 

components of the force (F) from the rear (r) left (L) tire 

are denoted as (𝐹𝑢𝑟)L. The longitudinal components of the

forces generated by the two rear tires, on the other hand, 

are the same and are represented by (40). 

2𝐹𝑢𝑟 + 𝐹𝑢𝑓cos 𝛿 − 𝐹𝑤𝑓sin 𝛿 = 𝑚𝑎𝑢
(𝐹𝑤𝑟)𝐿 + (𝐹𝑤𝑟)𝑅 + 𝐹𝑤𝑓cos 𝛿 + 𝐹𝑢𝑓sin 𝛿 = ma𝑤

(40) 

−[(𝐹𝑤𝑟)𝑅 + (𝐹𝑤𝑟)𝐿]𝑏 + (𝐹𝑤𝑟cos 𝛿 + 𝐹𝑢𝑓sin 𝛿)𝑎 = 𝐼�̇�

(41) 

where 𝑎 and 𝑏 are the two distances from two of the 

wheels (one in the front centre and one from the back out 

of two) toward the perpendicular from the centroid of the 

vehicle. I is the moment of inertia about a vertical axis 

passing through the centre of mass, 𝑎𝑢 and a is the 𝑢 −
and 𝑤 − components of the acceleration of point𝑐, the 

mass centre, and 𝜔 is the angular acceleration. It can be 

shown that and a can be written in the following form. 
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𝑎𝑢 = �̇�𝑢 − 𝑣𝑣𝜔

𝑎𝑤 = �̇�𝑤 + 𝑣𝑢𝜔
(42) 

where 𝑣𝑢 and 𝑣𝑤 are the components of the velocity in the

vehicles coordinate system. Then the dynamic equations 

of the plane motion for the vehicle are 

𝑚�̇�𝑢 = 𝑚𝑣𝑤𝜔 + 2𝐹𝑢𝑟 + 𝐹𝑢𝑓cos 𝛿 − 𝐹𝑤𝑓sin 𝛿

𝑚�̇�𝑤 = −𝑚𝑣𝑢𝜔 + (𝐹𝑤𝑟)𝐿 + (𝐹𝑤𝑟)𝑅 + 𝐹𝑤𝑓cos 𝛿 + 𝐹𝑢𝑓sin 𝛿

(43

) 

𝐼�̇� = −[(𝐹𝜔𝑟)𝑅 + (𝐹𝑤𝑟)𝐿]𝑏 + (𝐹𝑤𝑟cos 𝛿 + 𝐹𝑢𝑓sin 𝛿)𝑎

The above equations have been used for the simulations 

carried out in this study. As it was mentioned earlier, it is 

assumed that the side slip angles are small, and thus, the 

corresponding side forces are determined from (44) and 

(45). 

𝐹𝑤𝑟 = 𝐶𝑓𝛽𝑓 (44) 

(𝐹𝑤𝑟)𝐿,𝑅 = 𝐶𝑟(𝛽𝑟)𝐿,𝑅 (45) 

where 𝛽𝑓 , 𝛽𝑟𝐿 and 𝛽𝑟𝑅 are the slip angles for the

front, rear left and rear right tires, respectively, and 𝐶𝑟 and

𝐶𝑟 are the cornering stiffness of the front and rear wheels,

respectively. The slip angles for the front and rear tires can 

be determined as follows:  

𝛽𝑓 = 𝛿 − tan
−1

𝑣𝑤+𝑎𝜔

𝑣𝑢
(46) 

(𝛽𝑟)𝑅 = tan−1
𝑏𝜔−𝑣𝑤

𝑣𝑢−𝑑𝜔

(𝛽𝑟)𝐿 = tan
−1

𝑏𝜔−𝑣𝑤

𝑣𝑢+𝑑𝑤

(47) 

Where 2d is the distance between the rear tires. 

2.3. Four Wheel AGVs 

The four-wheeled robot is the most balanced robot among 

other wheeled robots. Although three wheels are enough to 

maintain static stability, the three-wheeled robot can lose 

its balance while moving. Four-wheeled robots rarely lose 

their stability when moving. The four-wheeled robot can be 

controlled using differential steering and a steering method 

similar to a car. This model was introduced in 2 Degree of 

Freedom (DOF) and 7 DOF, as shown in the following. 

Figure 4. Four-wheel robot schematics. 

The Four-Wheel AGVs model with the 2 Degree of 

Freedom (DOF): vehicle model is shown in equation (48) 

[17]. 

𝑚(�̇�y + 𝑣x𝜔) = (𝐶f + 𝐶r)𝛽 +
1

𝑣y
(𝑎𝐶f − 𝑏𝐶r)𝜔 − 𝐶f𝛿

𝐼z�̇� = (𝑎𝐶f − 𝑏𝐶r)𝛽 +
1

𝑣x
(𝑎2𝐶f + 𝑏

2𝐶r)𝜔 − 𝑎𝐶f𝛿

(49) 

 In (59), m denotes vehicle mass; Cf ,Cr cornering 

stiffness of the front and rear axle; a, b the distance of the 

centre of gravity to front and rear axle; Iz turning inertia 

around Z axle; Vx, Vy longitudinal and lateral velocity, ω 

yaw rate; δ front-wheel steering wheel;   sideslip angle.

A) The Four-Wheel AGVs model with the 7 DOF

Vehicle Model: 

this model contains Longitudinal and Lateral movement as 

shown in (60), (61). 

𝑚(�̇�x − 𝑣y𝜔) = (𝐹xfr + 𝐹xfr)cos 𝛿 −

(𝐹yfr + 𝐹yfl)sin 𝛿 + 𝐹xrl + 𝐹xrr
(50) 

(𝐹xfr + 𝐹xfl)sin 𝛿 + 𝐹yrl + 𝐹yrr

𝑚(�̇�y + 𝑣x𝜔) = (𝐹yfl + 𝐹yfr)cos 𝛿 +

(𝐹xfr + 𝐹xfl)sin 𝛿 + 𝐹yrl + 𝐹yrr
(51) 

then the Yaw movement as shown in equation (62) 

𝐼�̇� = 𝑎(𝐹yfl + 𝐹yfr)cos 𝛿 +
𝑑

2
(𝐹yfl − 𝐹yfr)sin 𝛿 −

𝑏(𝐹yrl + 𝐹yr) +
𝑑

2
(𝐹xfr − 𝐹xfl)cos 𝛿 + 𝑎(𝐹xfl +

𝐹xff)sin 𝛿 +
𝑑

2
(𝐹xrr − 𝐹xll)

a 

(52) 

and finally, the rotation of the wheel equation (53) 

described the wheel rolling inertia wheel rational rate 

relation to wheel brake torque. 

𝐽𝜔�̇�𝜔 = 𝑇d𝑖𝑗 − 𝑇b𝑖𝑗 − 𝐹x𝑖𝑗𝑅𝜔 (54) 
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In (63), 𝐹xfl, 𝐹xfr, 𝐹xrl, 𝐹xrr, 𝐹yfl, 𝐹yfr, 𝐹yrl, 𝐹yrr force

components for front left, front right, rear left and rear 

right tire along 𝑥, 𝑦 coordinates respectively; 𝑑 distance 

between leaf and right wheels; 𝐽𝜔 wheel rolling inertia;

𝜔𝑖𝑗  wheel rational rate; 𝑇𝑏𝑖𝑗  wheel brake torque (𝑖 = 𝑓, 𝑟

front, rear-wheel, 𝑗 = 𝑙, 𝑟 left, right wheel) ; 𝑇d𝑖𝑗 rear

wheel driving torque; 𝐹x𝑖𝑗 wheel longitudinal force; 𝑅𝜔
wheel rolling. 

Another model introduced [18] is that the vehicle follows 

the desired velocity profile, enabling a comfortable and 

safe ride. Catered the lateral dynamic model with two 

approaches: pure pursuit and model predictive control. 

Their model is as follows: 

�̈� = �̇��̇� + 𝑎𝑥 ,

�̈� = −�̇��̇� +
2

𝑚
(𝐹𝑐𝑓cos(𝛿𝑓) + 𝐹𝑐𝑟) ,

�̈� =
2

𝐼𝑧
(𝑙𝑓𝐹𝑐𝑓 − 𝑙𝑟𝐹𝑐𝑟) ,

�̇� = �̇�cos(𝜓) − �̇�sin(𝜓),

�̇� = �̇�sin(𝜓) + �̇�cos(𝜓),

(55) 

where, the longitudinal and lateral speed is represented 

by x and y, respectively, with respect to the body frame. 

The lateral forces on the front and back wheel are denoted 

by 𝐹𝑐𝑟 and 𝐹𝑐𝑓, respectively. The yaw rate, vehicle's mass,

and yaw inertia are denoted by �̇�, 𝑚, and 𝐼𝑧, respectively.

For the linear tire model, the 𝐹𝑐𝑖  is defined by the equation

𝐹𝑐𝑖 = −𝐶𝛼𝑖𝛼𝑖 , (56) 

where, 𝑖 ∈ 𝑓, 𝑟 and 𝛼𝑖 is the slip angle given by equation

(12)-(13) and 𝐶𝛼𝑖 is the tire cornering stiffness.

𝛼𝑓 = arctan (
𝑣𝑦+𝑙𝑓�̇�

𝑣𝑥
) − 𝛿  (57) 

𝛼𝑟 = arctan (
𝑣𝑦−𝑙𝑟�̇�

𝑣𝑥
), (58) 

In this model the speed of the differential module is 

synthesized by the speeds of left and right driving wheels, 

and the speeds of the two differential modules can be 

written as [19]: 

{
𝑣𝑓 = (𝑣𝑓𝑟 + 𝑣𝑓𝑙)/2

𝑣𝑟 = (𝑣𝑟𝑟 + 𝑣𝑟𝑙)/2
(59) 

The prerequisite for the steering of the differential module 

is that it has a certain angular velocity, which is realized 

by the speed difference between the two driving wheels of 

the differential module. Set the speed difference between 

the two driving wheels of the front differential module to 

be Δ𝑣𝑓, and the rear differential module to be Δ𝑣𝑟; then

the speed of the four driving wheels can be written as: 

{

𝑣𝑓𝑟 = 𝑣𝑓 + Δ𝑣𝑓/2

𝑣𝑓𝑙 = 𝑣𝑓 − Δ𝑣𝑓/2

𝑣𝑟𝑟 = 𝑣𝑟 + Δ𝑣𝑟/2
𝑣𝑟𝑙 = 𝑣𝑟 − Δ𝑣𝑟/2

(70) 

The angular velocity of the two differential modules 

𝜔𝑓 , 𝜔𝑟, can be written as:

{
𝜔𝑓 =

|𝑣𝑓𝑟−𝑣𝑓𝑙|

𝐷
=

|Δ𝑣𝑓|

𝐷

𝜔𝑟 =
|𝑣𝑟𝑟−𝑣𝑟𝑙|

𝐷
=

|Δ𝑣𝑟|

𝐷

(71) 

The velocity components 𝒱𝑓𝑥 , 𝒱𝑓𝑦  of 𝒱𝑓 on the x and y

axes are: 

{
𝑣𝑓𝑥 = 𝑣𝑓 ⋅ sin|휃𝑓|

𝑣𝑓𝑦 = 𝑣𝑓 ⋅ cos|휃𝑓|
(72) 

The velocity components 𝑣𝑟𝑥 , 𝑣𝑟𝑦 of 𝑣𝑟  on the x and y

axes are: 

{
𝑣𝑟𝑥 = 𝑣𝑟 ⋅ sin|휃𝑟|

𝑣𝑟𝑦 = 𝑣𝑟 ⋅ cos|휃𝑟|
(73) 

The speeds of AGV centre on the 𝑥 and 𝑦 axes are: 

{
𝑣𝑦 = 𝑣𝑓𝑦 = 𝑣𝑟𝑦
𝑣𝑥 = 𝑣𝑓𝑥 − 𝑣𝑟𝑥

(74) 

The steering of the AGV is caused by the sub-speed of 𝑣𝑓
and 𝑣𝑟  on the x-axis (two sub-speeds are reversed), and

the angular velocity of AGV center can be written as : 

𝜔𝑐 =
|𝑣𝑟𝑥|+|𝑣𝑓𝑥|

𝐿
=

|𝑣𝑟⋅sin|𝜃𝑟||+|𝑣𝑓⋅sin|𝜃𝑓||

𝐿
(75) 

Another mathematical model [20] developed for the 

wheeled robot by Lagrange or Newton Euler equation. In 

the dynamics model, 𝐹 and 𝑀 are the fore and torque 

generated by wheel system, the output variable is body 

coordinates (𝑥1, 𝑥2) ∈ 𝑅
2 and azimuth angle 𝛼 , the input

variables are longitudinal force acted on wheels and control 

signal 𝑢𝜃
𝑖  of wheels. For simplicity, it was assumed that: 

the body of the robot is rigid body; the contact type 

between wheel system and land is point contact. The 

development of the wheeled mobile robot: the wheel 

system is installed on the body of robot. The position of the 

robot in Cartesian coordinate system 𝑋 ∈ 𝑅2 is represented

by vector 𝑥 = (𝑥1, 𝑥2). The point 𝐶 is the centric of the

robot, angle 𝛼 is azimuth angle. In the Y axis, the 

movement of the wheeled mobile robot can be described as 

ẋ = 𝑉,𝑚�̇� = 𝐹, �̇� = 𝜔, 𝐽�̇� = 𝑀 (76) 

Where 𝑉 ∈ 𝑅2-absolute linear velocity, 𝐹 = (𝐹𝑉 , 𝐹𝑇) :
external force, 𝜔 : angular velocity, 𝑀 : torque, 𝑚 : mass, 

𝐽 : moment of inertia. In order to analysis the velocity and 
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force in relative coordinate system, the following matrix 

was introduced: 

𝑇(𝛼) = |
cos 𝛼 sin 𝛼
−sin 𝛼 cos 𝛼

| (77) 

The linear velocity of 𝐶𝑖 can be calculated by

𝑉𝑖 = |
𝑉𝑉
𝑖

𝑉𝑇
𝑖
| = 𝑇(휃𝑖)(𝑉𝑝 + 𝜔𝐸

𝑇𝑧𝑖) (78) 

Where 𝑉𝑝-velocity of robot body, 𝑉𝑉
𝑖-vertical velocity of

wheel 𝑖, 𝑉𝑇
𝑖-tangential velocity of wheel 𝑖. 

So the kinematics model of the mobile robot is 

|
�̇�
�̇�
| = |

𝑉
𝜔
| , 𝐽 |�̇�

�̇�
| = 𝑅𝑇(𝛼) |

𝐹𝑝
𝑀
| , 𝑢 = |

𝑉𝑉
𝑇

𝑑𝑗
𝑇| |

−1
𝑉𝑝
𝑇𝐹𝑝 + 𝜔𝑀

0

| , |
𝐹𝑝
𝑀
| = 𝑇1(휃)𝑢 + 𝑇2(휃)𝑓

𝑓 = −𝑘𝑓𝑉𝑇 = −𝑘𝑓𝑇2(휃) |
𝑉𝑝
𝜔
| , 휃̇ = 𝐾𝜃𝑢𝜃

(79)

Where, 𝑅(𝛼) = |
𝑇(𝛼) 0
0 1

| , 𝐽

= |
𝑚 0
0 𝐽

| ; 𝑢𝜃-control signal, 𝑢𝜃

= (𝑢𝜃
1 , 𝑢𝜃

1 , ⋯ 𝑢𝜃
𝑛); 𝐾𝜃 - matrix of

transmission coefficient, 𝐾𝜃 = diag(𝑘𝜃
1 , 𝑘𝜃

2 , ⋯ , 𝑘𝜃
𝑛); 𝑢-

vertical force of drive wheel, 𝑢 = (𝑢1, ⋯ , 𝑢𝑛); 𝑓-

tangential friction, 𝑓 = (𝑓1, ⋯ , 𝑓𝑛); 𝑘𝑓-tangential friction

coefficient. Control model of wheeled mobile robot. Path 

Following of wheel mobile robot requires the robot to 

follow a predefined path with an expected velocity. The 

force acted on the body to follow a path can be calculated 

by 

𝐹𝑝 = 𝑚𝑇(Δ𝛼) |
𝑢𝑠
𝑢𝑑
| , 𝑀 = 𝐽(휂𝑢𝑠 + 𝑢𝛾) (80) 

Where 𝑢𝑠 = 𝛼
∗ + 𝑘𝑠1Δ�̇� + 𝑘𝑠2Δ𝑠-vertical control, 𝑢𝑑 =

휂�̇�2 − 𝑘𝑑1�̇� − 𝑘𝑑2𝑑 − tangential control,

𝑢𝛾 = 휂̇�̇� − 𝑘𝛾1�̇� − 𝑘𝛾2𝛿, − angle control,

𝑘𝑠1, 𝑘𝑠2, 𝑘𝑑1, 𝑘𝑑2, 𝑘𝛾1, 𝑘𝛾2 - coefficients, 𝑠 - displacement,

𝑑-path error, 𝛾-azimuth error. 𝑠, 𝑑, 𝛾 can be got by sensor 

or calculation. The vertical force 𝑢 acted on wheel system 

and control angle 𝑢𝜃 to turn the wheel's direction can be

calculated by, 

𝑢𝜃 = diag {
1

𝑉𝑉
𝑖} (𝑇2

𝑇𝐽−1 |
𝐹𝑝
𝑀
| − 𝜔𝑇1

𝑇 |
𝑉𝑝
0
|) (81) 

𝑢 = |
𝑉𝑉
𝑇

𝑑𝑖
𝑇 |

−1

|
𝑉𝑝
𝑇𝐹𝑝 + 𝜔𝑀

0
| (82) 

2.4 Four Wheel Skid Steering AGVs 

The Skid Steering is a movement mechanism widely used 

in mobile robots. For the skid steered robot, as shown in 

figure 5, there is no steering mechanism, and the direction 

of Movement is changed by turning the wheels left and 

right at different speeds. The design of the mechanism 

makes the robot mechanically robust and easy to navigate 

outdoors. Due to the complex wheel/ground interaction and 

kinematic constraints, it remains difficult to obtain precise 

kinematic and dynamic models for sliding guided mobile 

robots [21]. 

Figure 5. 4-wheel Skid Steering Robot Schematics. 

The mathematical model of 4-wheel skid-steering mobile 

robot in a systematic way [22].in the proposed model, the 

active force Fi and reactive force Ni are related that 𝐹𝑖 is
dependent linearly on the wheel control input 𝜏‾𝑖, namely,

𝐹𝑖 =
𝜏𝑖

𝑟
(83) 

Assuming that the vertical force 𝑁𝑖 acts from the surface

to the wheel. Considering the four wheels of the vehicle 

and neglecting additional dynamic properties, obtained 

are the following equations of equilibrium: 

𝑁1𝑎 = 𝑁2𝑏,
𝑁4𝑎 = 𝑁3𝑏,

∑  4
𝑖=1  𝑁𝑖 = 𝑚𝑔,

(84) 

where 𝑚 denotes the vehicle mass, and 𝑔 is the gravity 

acceleration. Since there is symmetry along the 

longitudinal midline,  

𝑁1 = 𝑁4 =
𝑏

2(𝑎+𝑏)
𝑚𝑔

𝑁2 = 𝑁3 =
𝑎

2(𝑎+𝑏)
𝑚𝑔

(85) 

Assume that the vector 𝐹𝑠𝑖 results from the rolling resistant

moment 𝜏𝑟𝑖 and the vector 𝐹𝑙𝑖 denotes the lateral reactive

force. These reactive forces can be regarded as friction 

ones. However, it is important to note that friction 

modeling is quite complicated since it is highly nonlinear 
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and depends on many variables. Therefore, in most cases, 

only a simplified approximation describing the friction 𝐹𝑓
as a superposition of Coulumb and viscous friction is 

considered. It can be written as 

𝐹𝑓(𝜎) = 𝜇𝑐𝑁sgn(𝜎) + 𝜇𝑣𝜎, (86) 

where 𝜎 denotes the linear velocity, 𝑁 is the force 

perpendicular to the surface, while 𝜇𝑐 and 𝜇𝑣 denote the

coefficients of Coulumb and viscous friction, respectively. 

Since for the SSMR the velocity 𝜎 is relatively low, 

especially during lateral slippage, the relation 𝜇𝑐𝑁"|𝜇𝑣𝜎| is
valid, which allows to neglect the term 𝜇𝑣𝜎 to simplify the

model. It is critical to emphasize that the function (xx) is 

not smooth when the velocity 𝜎 equals zero because of the 

sign function sgn(𝜎). It is obvious that this function is not 

differentiable at 𝜎 = 0. Since a continuous and time 

differentiable model of the SSMR should be obtained, the 

following approximation of this function is proposed: 

sgn̂(𝜎) =
2

𝜋
arctan(𝑘𝑠𝜎) (87) 

where 𝑘𝑠"1 is a constant which determines the

approximation accuracy according to the relation 

lim
𝑘𝑠→∞

2

𝜋
arctan(𝑘𝑠𝜎) = sgn(𝑥). (88) 

Based on the previous deliberations, the friction forces for 

one wheel can be written as 

𝐹𝑙𝑖 = 𝜇𝑙𝑐𝑖𝑚𝑔sgn̂(𝑣𝑦𝑖)

𝐹𝑠𝑖 = 𝜇𝑠𝑐𝑖𝑚𝑔sgn̂(𝑣𝑥𝑖)
(89) 

where 𝜇𝑙𝑐𝑖  and 𝜇𝑠𝑐𝑖 denote the coefficients of the lateral

and longitudinal forces, respectively. 

Using the Lagrange-Euler formula with Lagrange 

multipliers to include the nonholonomic constraint, the 

dynamic equation of the robot can be obtained. Next, it is 

assumed that the potential energy of the robot 𝑃𝐸(𝑞) = 0 

because of the planar motion. Therefore, the Lagrangian 𝐿 

of the system equals the kinetic energy: 

𝐿(𝒒, �̇�) = 𝑇(𝒒, �̇�). (90) 

Considering the kinetic energy of the vehicle and 

neglecting the energy of rotating wheels, the following 

equation can be developed: 

𝑇 =
1

2
𝑚𝑣𝑇𝑣 +

1

2
𝐼𝜔2 (91) 

where 𝑚 denotes the mass of the robot and 𝐼 is the 

moment of inertia of the robot about the COM. For 

simplicity, it is assumed that the mass distribution is 

homogeneous. Since 𝑣𝑇𝑣 = 𝑣𝑥
2 + 𝑣𝑦

2 = �̇�2 + �̇�2,

Equation (90) can be rewritten as follows: 

𝑇 =
1

2
𝑚(�̇�2 + �̇�2) +

1

2
𝐼휃̇2 (92) 

After calculating the partial derivative of kinetic energy 

and its time-derivative, the inertial forces can be obtained 

as 

d

d𝑡
(
∂𝐸𝑘

∂�̇�
) = [

𝑚�̈�
𝑚�̈�
𝐼휃̈

] = 𝑀�̈� (93) 

where 

𝑀 = [
𝑚 0 0
0 𝑚 0
0 0 𝐼

] 

Consequently, the forces which cause the dissipation of 

energy are considered. The following resultant forces 

expressed in the inertial frame can be calculated: 

𝐹𝑟𝑥(�̇�) = cos 휃 ∑  4
𝑖=1  𝐹𝑠𝑖(𝑣𝑥𝑖) − sin 휃 ∑  4

𝑖=1  𝐹𝑙𝑖(𝑣𝑦𝑖)

𝐹𝑟𝑦(�̇�) = sin 휃 ∑  4
𝑖=1  𝐹𝑠𝑖(𝑣𝑥𝑖) + cos 휃 ∑  4

𝑖=1  𝐹𝑙𝑖(𝑣𝑦𝑖)

(94) 

The resistive moment around the mass centre 𝑀𝑟 can be

calculated 

as
𝑀𝑟(�̇�) = −𝑎∑  𝑖=1,4  𝐹𝑙𝑖(𝑣𝑦𝑖) + 𝑏 ∑  𝑖=2,3  𝐹𝑙𝑖(𝑣𝑦𝑖)

+𝑐[−∑  𝑖=1,2  𝐹𝑠𝑖(𝑣𝑥𝑖) + ∑  𝑖=3,4  𝐹𝑠𝑖(𝑣𝑥𝑖)].

(94) 

To define generalized resistive forces, the vector 

𝑅(�̇�) = [𝐹𝑟𝑥(�̇�) 𝐹𝑟𝑦(�̇�) 𝑀𝑟(�̇�)]𝑇 (95) 

is introduced. The active forces generated by the actuators 

that make the robot move can be presented in the inertial 

frame as follows: 

𝐹𝑥 = cos 휃 ∑  4
𝑖=1  𝐹𝑖,

𝐹𝑦 = sin 휃 ∑  4
𝑖=1  𝐹𝑖.

(96) 

The active torque around the COM is calculated as 

𝑀 = 𝑐(−𝐹1 − 𝐹2 + 𝐹3 + 𝐹4). (97) 

In consequence, the vector 𝐹 of active forces has the 

following form: 

𝑭 = [𝐹𝑥 𝐹𝑦 𝑀]𝑇 (98) 

Assume that each wheel's radius is the same then, 

𝑭 =
1

𝑟
[

cos 휃 ∑  4
𝑖=1   𝜏𝑖

sin 휃 ∑  4
𝑖=1  𝜏𝑖

𝑐(−𝜏1 − 𝜏2 + 𝜏3 + 𝜏4)

] (99) 
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To simplify the notation, a new torque control input 𝜏 is 

defined as  

𝜏 = [
𝜏𝐿
𝜏𝑅
] = [

𝜏1 + 𝜏2
𝜏3 + 𝜏4

]     (100) 

where 𝜏𝐿 and 𝜏𝑅 signify the torques generated by the

wheels on the vehicle's left and right sides, respectively. 

Combining (99) and (100), we get 

𝐹 = 𝐵(𝑞)𝜏,     (101) 

where 𝐵 is the input transformation matrix defined as 

𝐵(𝑞) =
1

𝑟
[
cos 휃 cos 휃
sin 휃 sin 휃
−𝑐 𝑐

] (102) 

Next, using (92), (95) and (101), the following dynamic 

model is obtained: 

𝑀(𝑞)�̈� + 𝑅(�̇�) = 𝐵(𝑞)𝜏. (103) 

It should be noted that (103) describes the dynamics of a 

free body only and does not include the nonholonomic 

constraint. Therefore, a constraint has to be imposed on 

(103). To this end, a vector of Lagrange multipliers, 𝜆, is 

introduced as follows: 

𝑀(𝑞)�̈� + 𝑅(�̇�) = 𝐵(𝑞)𝜏 + 𝐴𝑇(𝑞)𝜆. (104) 

For control purposes, it would be more suitable 

to express (104) in terms of the internal velocity vector 𝜼. 

Therefore, (104) is multiplied from the left by 𝑆𝑇(𝑞),
which results in 

𝑆𝑇(𝑞) 𝑀(𝑞)�̈� + 𝑆𝑇(𝑞)𝐑(�̇�)

= 𝑆(𝑞)𝑇𝐵(𝑞)𝜏 + 𝑆𝑇(𝑞)𝐴𝑇(𝑞)𝜆.
(105) 

After taking the time derivative, 

�̈� = �̇�(𝑞)휂 + 𝑆(𝑞)휂̇. (106) 

Hence, combining (106) and (104), the dynamic equations 

become 

𝑀‾ 휂̇ + 𝐶‾휂 + 𝑅‾ = 𝐵‾𝜏 (107) 

Where, 

𝐶̅ = 𝑆𝑇𝑀�̇� = 𝑚𝑥ICR [
0 휃̇
−휃̇ �̇�ICR

] (108) 

�̅� = 𝑆𝑇𝑀𝑆 = [
𝑚 0
0 𝑚𝑥ICR

2 + 𝐼
] (109) 

�̅� = 𝑆𝑇𝑅 = [
𝐹𝑟𝑥(�̇�)

𝑥ICR𝐹𝑟𝑦(�̇�) + 𝑀𝑟
] (110) 

�̅� = 𝑆𝑇𝐵 =
1

𝑟
[
1 1
−𝑐 𝑐

] (111) 

To have a better model [23] propose a kinematic approach 

for tracked mobile robots in order to improve motion 

control and pose estimation. (𝑉𝑙 , 𝑉𝑟) is the linear velocity

of the robot's left and right tracks in relation to the robot 

frame. Then, on the plane, direct kinematics can be 

described as follows: 

(𝑣𝑥 , 𝑣𝑦 , 𝜔𝑧) = 𝑓𝑑(𝑉𝑙 , 𝑉𝑟)   (112)

where 𝐯 = (𝑣𝑥 , 𝑣𝑦) is the translational velocity of the

vehicle in relation to its local frame, and 𝜔𝑧 is its angular

velocity. Conversely, finding control actions that result in 

the desired motion can be expressed as the inverse 

kinematics problem: 

(𝑉𝑙 , 𝑉𝑟) = 𝑓𝑖(𝑣𝑥 , 𝑣𝑦 , 𝜔𝑧). (113) 

Local coordinates for the vehicle and track ICRs can be 

obtained geometrically as a function of the vehicle's 

angular and translational velocities as 

𝑥𝐼𝐶𝑅𝑣 =
−𝑣𝑦

𝜔𝑧
(114) 

𝑥𝐼𝐶𝑅𝑙 =
𝑉𝑙−𝑣𝑦

𝜔𝑧
(115) 

𝑦𝐼𝐶𝑅𝑣 = 𝑦𝐼𝐶𝑅𝐼 = 𝑦𝐼𝐶𝑅𝑟 =
𝑣𝑥

𝜔𝑧
. (116) 

Instantaneous translational and rotational speeds with 

respect to the local frame can be obtained as 

𝑣𝑥 =
𝑉𝑟−𝑉𝑙

𝑥𝐼𝐶𝑅𝑟−𝑥𝐼𝐶𝑅𝐼
𝑦𝐼𝐶𝑅𝑣

𝑣𝑦 =
𝑉𝑟+𝑉𝑙

2
−

𝑉𝑟−𝑉𝑙

𝑥𝐼𝐶𝑅𝑟−𝑥𝐼𝐶𝑅𝑙
(
𝑥𝐼𝐶𝑅𝑟+𝑥𝐼𝐶𝑅𝑙

2
)

𝜔𝑧 =
𝑉𝑟−𝑉𝑙

𝑥𝐼𝐶𝑅𝑟−𝑥𝐼𝐶𝑅𝑙

 (117) 

These equations represent the vehicle's direct kinematics 

assuming that the ICRs of the left and right treads could 

be properly estimated. If the ICRs lie precisely on the 

local 𝑋-axis (i.e., 𝑦𝐼𝐶𝑅𝑣 = 0 ), then the vehicle's velocity 𝐯
has no transversal component (i.e., 𝑣𝑥 = 0 ).On the other

hand, inverse kinematic relations can be expressed by 

𝑉𝑙 = 𝑣𝑦 + 𝑥𝐼𝐶𝑅𝑙𝜔𝑧
𝑉𝑟 = 𝑣𝑦 + 𝑥𝐼𝐶𝑅𝑟𝜔𝑧 ,

(118) 

which includes a non-holonomic restriction, since 𝑣𝑥
references cannot be directly imposed. Besides, according 

to these equations, the same control input values are 

computed regardless of 𝑦𝐼𝐶𝑅𝑣 in the model. The inverse of

the normalized distance between the wheels can be used 

to calculate the vehicle's steering efficiency index χ. track 

ICRs 
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𝜒 =
𝐿

𝑥𝐼𝐶𝑅𝑟−𝑥𝐼𝐶𝑅𝑙
; (0 < 𝜒 ⩽ 1), (119) 

L is the distance between the centrelines of the two tracks. 

When there is no slippage, the index equals 1 (i.e., ideal 

differential drive). Similarly, a normalized eccentricity 

index can be defined as follows: 

𝑒 =
𝑥𝐼𝐶𝑅𝑟+𝑥𝐼𝐶𝑅𝑙

𝑥𝐼𝐶𝑅𝑟−𝑥𝐼𝐶𝑅𝑙
(120) 

Index 𝑒 is zero when track ICRs are symmetrical with 

respect to the local 𝑌-axis. For friction, in the case of 

hard-surface soils, the resulting force for a point in the 

track is a function of its slip velocity 𝐯𝑠 as expressed by

Coulomb's law 

𝜏 = −[𝜇]𝑝
𝑣𝑠

|𝑣𝑠|
(121) 

where 𝑝 is the pressure under the track, and [𝜇] is a 

coefficient matrix, which, in the general case of 

anisotropic friction on the 𝑋𝑌 plane, has the following 

form: 

[𝜇] = [
𝜇𝑥 0 0
0 𝜇𝑦 0

0 0 0

]. (122) 

Moreover, if the inertia frame coincides with the vehicle 

frame, [𝐈] is a diagonal matrix expressed as 

[𝐈] = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

]. (123) 

2.5 Six Wheel AGVs 

Six-wheel AGVs have three wheels on each side, totalling 

six wheels to guide it on its path automatically. All the 

wheels run at different speeds and power to control the 

vehicle's steering. [24]

Figure 6. Six-wheel AGV schematic 

The above figure 6 shows the schematics of an example 

six-wheel AGV. This model is represented by [25]  as 

shown in equation (124) 

𝜉�̇� = 𝑅(휃) ⋅ 𝜉̇

𝜉̇ = {�̇� �̇� 휃̇}𝑇

𝜉�̇� = {�̇�𝑟 �̇�𝑟 휃̇𝑟}
𝑇

𝑅(휃) = [
𝑐휃 𝑠휃 0
−𝑠휃 𝑐휃 0
0 0 1

]

(125) 

The wheel variables model (125) shows the orientation to 

the robot's coordinate system xr, yr as observed by the 

inertial coordinate system x,y, Ȟ is the robot's linear 

velocity, and r is the location relative to the inertial 

coordinate system. The angular velocity of the wheel is 

𝜑1, 𝜑2.

𝜉̇ = 𝑅(휃)−1 ⋅ 𝜉�̇�
𝜉̇ = {�̇��̇�휃̇}𝑇 = 𝑓(𝑙, 𝑟, 휃, 𝜑1, 𝜑2)

𝜉�̇� = {�̇�𝑟�̇�𝑟휃̇𝑟}
𝑇

(126) 

𝜉 = [
𝑐휃 −𝑠휃 0
𝑠휃 𝑐휃 0
0 0 1

] {

�̇�𝑟
�̇�𝑟
휃̇𝑟

} =

[
𝑐휃 −𝑠휃 0
𝑠휃 𝑐휃 0
0 0 1

] {

𝑟�̇�1

2
+

𝑟�̇�2

2
�̇�1

2.𝑙
−
𝑟�̇�2

2.𝑙𝑟

} (127) 

The dynamic model concerning robot coordinate system: 

𝑑

𝑑𝑡
(𝑚�⃗�) = ∑  𝐹𝐸𝑥𝑡

𝑑

𝑑𝑡
(𝑚�⃗�) + �⃗⃗⃗� × (𝑚�⃗�) = ∑  𝐹𝐸𝑥𝑡

𝑚 {

𝑎𝑥
𝑎𝑦
𝑎𝑧
} + {

𝑤𝑥
𝑤𝑦
𝑤𝑧
} × 𝑚 {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} = {

∑  𝐹𝑥
∑  𝐹𝑦
∑  𝐹𝑧

}

𝑚{

𝑎𝑥 + 𝑣𝑧𝑤𝑦 − 𝑣𝑦𝑤𝑧
𝑎𝑦 + 𝑣𝑥𝑤𝑧 − 𝑣𝑧𝑤𝑦
𝑎𝑧 + 𝑣𝑦𝑤𝑥 − 𝑣𝑥𝑤𝑦

} = {

∑  𝐹𝑥
∑  𝐹𝑦
∑  𝐹𝑧

}

 (128) 

In this case, considering non-slip condition and movement 

at the plane (x, y) the equation system is: 

𝑚 {

�̈�𝑟
�̇�𝑟휃̇𝑟
0

} = {

𝐹𝑓𝑥
𝐹𝑓𝑦

𝑁 −𝑚𝑔

} (129) 

.In function of wheel variables, is presented the equation 

system : 

𝑚{

𝑟�̈�1

2
+

𝑟�̈�1

2

𝑟2�̇�1
2

4𝑙
+

𝑟2�̇�2
2

4𝑙

0

} = {

𝐹𝑓𝑥
𝐹𝑓𝑦

𝑁 −𝑚𝑔

} (130) 
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The moment equations to the robot, are described at 

equations where 𝐼 is the inertia tensor of robot: 

𝑑

𝑑𝑡
(𝐼�⃗⃗⃗�) = Σ𝑀𝐸𝑥𝑡

𝑑

𝑑𝑡
(𝑌�⃗⃗⃗�) + �⃗⃗⃗� × (𝐼�⃗⃗⃗�) = Σ𝑀𝐸𝑥𝑡

𝐼 {

𝛼𝑥
𝛼𝑦
𝛼𝑧
} + {

𝑤𝑥
𝑤𝑦
𝑤𝑧
} ×

(

  {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} =

{

∑𝑀𝑥

∑𝑀𝑦

∑𝑀𝑧}
 

[

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝛼𝑥
𝛼𝑦
𝛼𝑧
} + {

𝑤𝑥
𝑤𝑦
𝑤𝑧
} ×

[

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} =

{

∑ 𝑀𝑥

∑𝑀𝑦

∑𝑀𝑧}
 

(131) 

The robot will be symmetric at plane (zr, xr) and (zr, yr) 

thus the inertia tensor is a diagonal matrix 𝐼𝑥𝑥 .

[

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] {

𝛼𝑥
𝛼𝑦
𝛼𝑧
} + {

𝑤𝑥
𝑤𝑦
𝑤𝑧
} × [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]

𝑣𝑥
𝑣𝑦
𝑣𝑧

} =

{

∑𝑀𝑥

∑𝑀𝑦

∑𝑀𝑧}
 

 {

𝐼𝑥𝑥 𝛼𝑥
𝐼𝑦𝑦 𝛼𝑦
𝐼𝑧𝑧 ∝𝑧

} + {

𝑤𝑦𝐼𝑧𝑧𝑣𝑧 −𝑤𝑧𝐼𝑦𝑦𝑣𝑦
𝑤𝑧𝐼𝑥𝑥𝑣𝑥 − 𝑤𝑥𝐼𝑧𝑧
𝑤𝑥𝐼𝑦𝑦𝑣𝑥 −𝑤𝑦𝐼𝑥𝑥𝑣𝑥

} =

{

∑𝑀𝑥

∑𝑀𝑦

∑𝑀𝑧}
 

(132) 

With non-slip conditions and movement only at the plane 

(x, y) the equations system is: 

{
0
0

𝑙𝑧𝑧 ∝𝑧

} + {
0

𝑤𝑧𝐼𝑥𝑥𝑣𝑥
0

}

= {

𝑁left 𝑙 − 𝑁rigth 𝑙

𝑁back 𝑑 − 𝑁front 𝑑 + 𝑇motor

𝐹𝑓𝑥𝑟𝑖𝑔𝑡ℎ𝑙 − 𝐹𝑓𝑥𝑙𝑒𝑓𝑡𝑙 − 𝐹𝑓𝑦 front 𝑑 − 𝐹𝑓𝑦𝑙𝑒𝑓𝑡𝑑
} 

 (133) 

In function of wheel variables and dimensions of robot, is 

presented the equations: 

{
0
0

𝐼𝑧𝑧휃̈𝑟

} + {𝐼𝑥𝑥 [

0
𝑟2�̇�1

2

4𝑙
+
𝑟2�̇�2

2

4𝑙
]

0

)} =

(𝑁𝑙𝑒𝑓𝑡 − 𝑁rigth )𝑙

{
(𝑁back −𝑁𝑓𝑟𝑜𝑛𝑡)𝑑 + 𝑇motori

(𝐹𝑓𝑥𝑟𝑖𝑔𝑡ℎ − 𝐹𝑓𝑥𝑙𝑒𝑓𝑡)𝑙 − (𝐹𝑓𝑦𝑓𝑟𝑜𝑛𝑡 + 𝐹𝑓𝑦 back )𝑑
}

(134) 

For this robot type (six-wheel mobile robot), the 

dynamic equation of the high-speed motion [14] is shown 

in equation (134). 

𝑚𝑉𝑥(�̇� + 𝛾) = ∑  6
𝑖=1 𝐹𝑦𝑖 (135) 

𝐼𝑧�̇� = [
𝑏

2
(𝐹𝑥2 + 𝐹𝑥4 + 𝐹𝑥6 − 𝐹𝑥1 − 𝐹𝑥3 − 𝐹𝑥5)]

+ [
𝑙

2
(𝐹𝑦1 + 𝐹𝑦2) −

𝑙

2
(𝐹𝑦5 + 𝐹𝑦6)]

𝑀𝑧 =
𝑑

2
(𝐹𝑥2 + 𝐹𝑥4 + 𝐹𝑥6 − 𝐹𝑥1 − 𝐹𝑥3 − 𝐹𝑥5)

𝑀𝑑 =
𝑙

2
(𝐹𝑦1 + 𝐹𝑦2) −

𝑙

2
(𝐹𝑦5 + 𝐹𝑦6)

(136) 

Where m is the mass of the mobile robot 𝑉𝑥 is the

longitudinal speed of the mobile robot 𝛽 is the sliding 

angle, and the moment of inertia 𝛾 is the yaw rate 𝑑 is the 

distance between the left and right wheels, and 𝐹𝑥𝑖 is the

longitudinal force of the tire. The direct yaw moment 𝑀𝑧

produced by the longitudinal driving force difference 

between the tires the steering moment 𝑀𝑑 produced as the

resistance component of the tires during turning, together 

form the yaw moment [26].The steady-state steering angle 

when driving on the road with a turning radius of 𝑅 is: 

𝛿 =
𝑙

𝑅
+ 𝐾𝑣𝑎𝑦 (137) 

Where 𝐾𝑉 is the under-steer gradient, and the formula is

as follows: 

𝐾𝑣 =
𝑚

4𝐶𝛼𝑓
−

𝑚

4𝐶𝛼𝑟

1

𝑅
=

𝛿

𝑙+
𝑚𝑉𝑥

2(𝑙𝐶𝛼𝑟−𝑙𝐶𝛼𝑓)

4𝑙𝐶𝛼𝑟𝐶𝛼𝑓

(138) 

The vertical force of the tire changes with the longitudinal 

acceleration 𝑎𝑦 and the lateral acceleration 𝑎𝑥,

𝐹𝑧1 =
𝑚𝑔

6
−
𝑚𝑠𝑎𝑥ℎ𝑠
2𝑙

− 𝑘𝑓
𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

𝐹𝑧2 =
𝑚𝑔

6
−
𝑚𝑠𝑎𝑥ℎ𝑠
2𝑙

+ 𝑘𝑓
𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

𝐹𝑧3 =
𝑚𝑔

6
− 𝑘𝑚

𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

𝐹𝑧4 =
𝑚𝑔

6
+ 𝑘𝑚

𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

𝐹𝑧5 =
𝑚𝑔

6
+
𝑚𝑠𝑎𝑥ℎ𝑠
2𝑙

− 𝑘𝑟
𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

𝐹𝑧6 =
𝑚𝑔

6
+
𝑚𝑠𝑎𝑥ℎ𝑠
2𝑙

+ 𝑘𝑟
𝑚𝑠𝑎𝑦ℎ𝑠

𝑑

(139) 

Where 𝑚 is the sprung mass, ℎ𝑠 is the sprung mass

height. 𝑔 is the gravitational constant 𝑘𝑓 and 𝑘𝑟 are the

lateral weight offset distributions of the front and rear 

wheels, respectively. 

The absolute speed of mobile robots [�̇� �̇� 휃̇]𝑇

converted in the local coordinate system to [�̇� �̇� �̇�]𝑇 :

[

�̇�
�̇�

휃̇

] = [
cos 휃 −sin 휃 0
sin 휃 cos 휃 0
0 0 1

] [
𝑢
𝑣
𝑟
] (140) 
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Among them, 𝑢 represents the 𝑥-axis velocity component 

of the unmanned platform in the local coordinate system, 𝑣 

represents the 𝑦-axis velocity component, and 𝑟 represents 

the angular velocity. Analyse and calculate the rotational 

movement of the six wheels of the mobile robot, and obtain 

the equation of motion as: 

{
𝐽𝑖�̇�𝑖 = 𝑇𝑒𝑖 − 𝐹𝑥𝑖𝑅 − 𝑇𝑓𝑖
𝑇𝑓𝑖 = 𝐹𝑓𝑖𝑅

(141) 

2.6 Ackermann AGV 

Rudolph Ackermann invented the Ackermann in 1816. The 

steering is based on different steering angles for the left and 

right wheels of a steering axis. In automotive 

implementations, this is realized by dedicated mechanics 

shown on the right side of the picture. Each wheel's steering 

angle (also called Ackermann Angle) depends on the 

vehicle's dimensions  [27].  Land vehicles generally have 

two types of steering mechanisms. Differential (or non-

slip) steering and Ackerman steering. Either way, one of 

the biggest problems with differential steering is that it 

wastes energy dragging the wheels across the ground. 

Ackermann steering is often present in the car, which 

allows the wheels to turn around at similar turning points. 

The wheels do not slip sideways when turning; Therefore, 

energy is not wasted while spinning [28] . 

Figure 7. Ackermann AGV Schematics 

Figure 7 shows the Ackermann AGV and variables for the 

upcoming below models.   Based on the model [29] 

Ackermann described, AGV has the kinematic structure of 

an automobile, two front wheels with the same turning 

angle 𝜑 and two parallel non-steered back wheels. 

However, this kinematics model is not as the same as the 

practical vehicles. Practical vehicles have Ackerman 

steering linkage between the two front wheels, and this 

principle approximately ensures the actuator coupling 

criterion by providing the correct wheel angles to avoid 

wheel side slip. Define 𝜑2 as the turning angle of the inner

tire and 𝜑1 as outer tire. In order to ensure that the vehicle

turning without transverse slip, four wheels should rotate 

at ICR, besides, 𝜑1 and 𝜑2 need to satisfy equation (142).

{
cot 𝜑1 = cot 𝜑 + 𝑑/2𝑙
cot 𝜑2 = cot 𝜑 − 𝑑/2𝑙

(142) 

Then we can get equation (142): 

cot 𝜑1 − cot 𝜑2 =
𝜌𝑟+𝑑/2

𝑙
−

𝜌𝑟−𝑑/2

𝑙
=

𝑑

𝑙
(143) 

Define 𝜌𝑓
𝑙  is ICR radius of the left front wheel, 𝜌𝑓

𝑟 is ICR

radius of the right front wheel, 𝜌𝑟
𝑙  is ICR radius of the left 

rear wheel and 𝜌𝑟
𝑟 is ICR radius of the right rear wheel, then

we testify 𝜌𝑓
𝑙 = 𝑙/sin 𝜑1, 𝜌𝑓

𝑟 = 𝑙/sin 𝜑2, 𝜌𝑟
𝑙 = 𝑙/tan 𝜑 +

𝑑/2, and 𝜌𝑟
𝑟 = 𝑙/tan 𝜑 − 𝑑/2. Define inner minus Δ𝜌 as

𝜌𝑓
𝑙 − 𝜌𝑟

𝑙  when turning right (when the vehicle turns left Δ𝜌 

equals 𝜌𝑓
𝑟 − 𝜌𝑟

𝑟 ). Different influences on vehicles, such as

side slip, brake, and slide, are neglected in the assumptions. 

But practically, these instances always happen to vehicles, 

which declare the nonholonomic restriction is destroyed 

and do not satisfy. 

�̇�sin 휃 − �̇�cos 휃 = 0 (144) 

Assuming 𝑒𝑟
𝑅 as error vector of the rear wheel, it can be

defined by 𝜎 ⋅ [𝑥𝑒 𝑦𝑒 𝜑𝑒]𝑇 ⋅ 𝑥𝑒(𝑡), 𝑦𝑒(𝑡) and 𝜑𝑒(𝑡)
change by time 𝑡. 𝜎 is error plus, commonly, 𝜎 = 1. 𝑐 is 

error of turning angle 𝜑. 

휁̇𝑟
𝑅 = [𝑣𝑟 + �̇�𝑒 �̇�𝑒

tan(𝜑+𝜑𝑒)

𝑙
𝑣𝑟]

𝑇

(145) 

휁̇𝑟
𝐼 = [𝑣𝑟cos 휃 𝑣𝑟sin 휃

𝑣𝑟

𝑙
tan 𝜑]

𝑇

+[�̇�𝑒cos 휃 − 𝑦𝑒sin 휃 �̇�𝑒sin 휃 + �̇�𝑒cos 휃 𝜙𝑒]
𝑇

(146) 

In equation 𝜙𝑒 is defined:

𝜙𝑒 =
𝑣𝑟

𝑙
⋅
tan 𝜑𝑒(1+tan

2 𝜑)

1−tan𝜑⋅tan𝜑𝑒
(146) 

When errors and other factors destroy 

nonholonomic restriction of vehicle, the range can be 

declared by 𝜅𝑥 and 𝜅𝑦. 𝐾𝑥 = 𝑥𝑒cos 휃 − 𝑦𝑒sin 휃, 𝜅𝑦 =

𝑥𝑒sin 휃 + 𝑦𝑒cos 휃, which map position error from local

coordinate frame to global coordinate frame. Let 𝑒𝑟
𝐼 =

[𝜅𝑥 𝜅𝑦]𝑇, and 𝑒𝑟
𝐼  has no relation to the vehicle status but

is influenced by different kinds of errors. If not take proper 

measures to control the accumulation of error 𝑒𝑟
𝐼 , it will 

bring about losing control of vehicles. 

2.7 Crawler Robot 

Crawler Robots, mainly used for inspecting pipelines [30], 

large ships or storage tanks, are another type of equipment 

in the remote visual inspection (RVI) technical kit. The 

operation of the crawler robot is very similar to that of a 

remote-control car with a controlled camera when lengthy 

distances must be travelled to do the check. Robotic lanes 
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require a long control distance and long battery life. Most 

robotic lanes come with tank pedals or miniature 

construction tires, as foreign debris is a real threat to 

mobility [31].describes the mathematical model of the 

suspension of robot traction of crawler type shown in [32]. 

in the mentioned model, to reduce mechanical vibrations 

caused by the operation of the motors and overcome 

obstacles in a path.  

Figure 8. The traction crawler Scheme parametric 
[19]  

To investigate the robot's dynamic behaviour, a reference 

system located at its centre of gravity which is used to 

determine the relative positions of the points of interest, 

Then, the lateral displacement is analyzed 𝑌, and the 

vertical displacement 𝑍. Additionally, is represented the 

angular displacement in the axes 𝑋 and 𝑌, which result in 

the roll and pitch angle respectively. The following 

parametric scheme (Fig. X) of the robot represents a model 

12 degrees of freedom because of the displacement in 𝑍 

and 𝑌, of each of the reference points of the rigid body 𝑚𝑠,

like contemplating the pitch angles 휃 and roll 𝜙.For 

analysis 𝑍 one considers each reference point (1-4) (see 

Fig. 9), taking into account the inclination angle produced 

by the opening of the rubber tracks, the forces of the system 

are obtained. 

𝐹𝐾𝑧 = 𝐹𝐾cos 𝛼
𝐹𝐵𝑧 = 𝐹𝐵cos 𝛼
𝐹𝐾0𝑧 = 𝐹𝐾0cos 𝛼

 (147) 

The following equation represents the input signal. 

𝑃𝑖1−4𝑧 = 𝑃𝑖1−4cos 𝛼 (148) 

∑  𝐹 = 𝑚𝑜𝑍𝑖1−4 
∗

𝐹𝐾𝑧 + 𝐹𝐵𝑧 − 𝐹𝐾0 −𝑊 = 𝑚𝑜𝑍𝑖1−4
(149) 

The following equations represent the forces acting on the 

sprung mass.Forces acting on the left side: 

𝐹𝐼𝑧 = 𝐹𝐾1𝑧 + 𝐹𝐵1𝑧 + 𝐹𝐾3𝑧 + 𝐹𝐵3𝑧 (150) 

Forces acting on the right side: 

𝐹𝐷𝑧 = 𝐹2𝑧 + 𝐹4𝑧
𝐹𝐷𝑧 = 𝐹𝐾2𝑧 + 𝐹𝐵2𝑧 + 𝐹𝐾4𝑧 + 𝐹𝐵4𝑧

(151) 

∑  𝐹𝑧 = 𝑚𝑠𝑍𝑠
′′(𝑡)

−𝐹𝐼𝑧 − 𝐹𝐷𝑧 −𝑚𝑠𝑔 = 𝑚𝑠𝑍𝑠
′′(𝑡)

(152) 

For analysis at 𝑌 is followed a similar process than 𝑍. 

𝐹𝐾𝑦 = 𝐹𝐾sen 𝛼
𝐹𝐵𝑦 = 𝐹𝐵sen 𝛼
𝐹𝐾0𝑦 = 𝐹𝐾0sen 𝛼

𝑃𝑖1−4𝑦 = 𝑃𝑖1−4 sen\alpha

(153) 

Mathematical Analysis in Y for reference points (1 − 4): 

𝐹𝐾𝑧 + 𝐹𝐵𝑧 − 𝐹𝐾0 −𝑊 = 𝑚0𝑌𝑖1−4 
′ (154)

Mathematical analysis regarding the lateral axis 𝑌 (sprung 

mass).Forces acting on the left side: 

𝐹𝐼𝑦 = 𝐹1𝑦 + 𝐹3𝑦 (155) 

Forces acting on the right side: 

𝐹𝐷𝑦 = 𝐹2𝑦 + 𝐹4𝑦 (156) 

Is obtained the equation of the sprung mass. 

−𝐹𝐼𝑦 + 𝐹𝐷𝑦 = 𝑚𝑠𝑌𝑠(𝑡) (157) 

Mathematical analysis regarding the angles of rotation 

(pitch and roll). Only the rotation angles produced by 

overpassing obstacles is studied because 𝑣 ≈ 90 mm/s 
Analysis Pitch: 𝐼𝜃  is the moment of inertia generated

about axis 𝑌 (Fig. X). 

𝐼𝜃휃̈ = (𝐹1𝑧)𝐷𝑓 + (𝐹2𝑧)𝐷𝑓 − (𝐹3𝑧)𝐷𝑟 − (𝐹4𝑧)𝐷𝑟
−(𝐹1𝑦)𝐷𝑓 + (𝐹2𝑦)𝐷𝑓 + (𝐹3𝑦)𝐷𝑟 − (𝐹4𝑦)𝐷𝑟

(158) 

𝑌𝑠1 = 𝑌𝑠 + 𝐷𝑓휃 (159) 

𝑌𝑠2 = 𝑌𝑠 + 𝐷𝑓휃

𝑌𝑠3 = 𝑌𝑠 − 𝐷𝑟휃

𝑌𝑠4 = 𝑌𝑠 − 𝐷𝑟휃

(160) 

Analysis Roll: 𝐼𝜙 is the moment of inertia generated about

axis 𝑋 (Fig. X). 

𝐼𝜙�̈� = (𝐹1𝑧)𝑅𝑓 − (𝐹2𝑧)𝑅𝑓 + (𝐹3𝑧)𝑅𝑟 − (𝐹4𝑧)𝐻𝑟 (161) 

2.8 Legged Robot 

Legged robots are mobile robots that use mechanical limbs 

to move, like wheeled robots, but move more complexly 

than wheeled robots, which perform better than wheeled 

robots on rough terrain and are essential in most 

applications, such as one-legged robots: two-Legged 
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Robot, Three-Legged Robot, Four-Legged Robot, Six-

Legged Robot and Multi-Legged Robot [33]. The model 

presented in [34]  a complete kinematical model and 

dynamic model of a hexapod robot's leg. In order to obtain 

a more precise model we divided the mass of each link in 

two (Mi
−servomotor mass, mi-link mass, 𝑀𝑖 > 𝑚𝑖 ).

Figure 9.  the legged robot Scheme 

Considering the generalized coordinates vector 𝑞 =
[𝑞1, 𝑞2, q3]

T the generalized vector forces can be computed

using the below equation: 

τi =
d

dt
(
∂L

∂q̇i
) −

∂L

∂qi
(162) 

where:𝐿(𝑞, �̇�) = 𝐸𝑐(𝑞, �̇�) − 𝐸𝑝(𝑞)

Considering that all three servomotors have the same 

mass M1 = M2 = M3 = M and the last two links have the

same mass 𝑚2 = 𝑚3 = 𝑚2 but different length the

expressions for generalized forces are: 

𝜏1 = 휃̈1(𝐼1
′ + 𝐼1

′′ +𝑀(𝑙1
2 + 𝑅3

2) + 𝑚2(𝑟2
2 + 𝑟3

2))

𝜏2 = 휃̈2(𝐼2
′ + 𝐼2

′′ +𝑀𝑙2
2 +𝑚3𝑟4

2) − {𝑔[𝑙3cos(휃2 + 휃3) ∗

(3𝑀 + 𝑚1 +
3𝑚2

2
) + 𝑙2cos(휃2) (2𝑀 + 𝑚1 +

𝑚2

2
)]}

𝜏3 = 휃̈3(𝐼3
′ + 𝐼3

′′) − 𝑔𝑙3cos(휃2 + 휃3) (3𝑀 + 𝑚1 +
3𝑚2

2
)

(163) 

where 𝐼𝑖
′ are the moments of inertia associated with the

servomotors;𝐼𝑖
′′ are the moments of inertia associated with

the links;𝑟𝑖 radius of the instantaneous circle of rotation of

the center of mass associated with the link i of the leg( 𝑖 =
2…4);𝑅3 radius of the instantaneous circle of rotation of

the servomotor 3 . The other Mathematical model for this 

type of biped robot leg with three links and four degrees of 

freedom was modelled using DH convention and Lagrange 

Euler equation[35]. 

𝐴𝑖
−1

= [

cos(휃𝑖) −sin(휃𝑖)cos(𝛼𝑡) sin(휃𝑖)sin(𝛼𝑖) 𝑎cos(휃𝑖)

sin(휃𝑖) cos(휃𝑖)cos(𝛼𝑖) −cos(휃𝑖)sin(𝛼𝑖) 𝑎sin(휃𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖
0 0 0 1

] (164) 

Using the Lagrange-Euler equations, the following 

equation is derived by utilizing the kinetic and potential 

energy of every link in the system as given: 

𝑑

𝑑𝑡

∂𝐾

∂�̇�
−
∂𝐾

∂𝑞
+
∂𝑃

∂𝑞
= 𝑄 

(165) 

Where 𝐾 and 𝑃 represent kinetic and potential energy, 

respectively and 𝑄 is a vector with non-conservative forces 

like damping, applied torques and various kinds of friction. 

Kinetic energy is the amount of energy that a system has. 

Using the following formulas, we can determine Kinetic 

and Potential energy for the entire system: 

K =
1

2
qT(∑  n

i=1  miJvi
TJvi + Jwi

T RiIiRi
TJwi)q̇ (166)

We can simplify it as follow: 

𝐷 = (∑  𝑛
𝑖=1  𝑚𝑖𝐽𝑣𝑖 

𝑇𝐽𝑣𝑖 + 𝐽𝑤𝑖
𝑇 𝑅𝑖𝐼𝑖𝑅𝑖

𝑇𝐽𝑤𝑖) (167) 

In equation (167) 𝐷 is called the inertia matrix. The 

potential energy of a system with links i in a gravity field 

𝑔 with its centre of mass at the position for each link 𝑂𝑐𝑖  is:

P = ∑  n
i=1 mig

Toci (168) 

The equations of motion can be derived using the Lagrange 

Euler equation, but we can simplify the process by 

assuming that no external forces are operating on the 

system other than the applied torques, which can be 

rewritten as in equation (169): 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= 𝛤𝑖  (169) 

Where 𝐿 = 𝐾 − 𝑃 and 𝑞𝑖 and Γ𝑖 are the link I joint variable

and joint torque Assume that the joint has no damping or 

friction, and that Q merely contains joint torques. For each 

link I the Lagrange-Euler equations are as follows: 

∑  𝑛
𝑗=1 𝑑𝑖𝑗 �̈�𝑗 + ∑  𝑛

𝑘=1 ∑  𝑛
𝑗=1 (

𝑑𝑖𝑗

∂𝑞𝑘
−

1

2

∂𝑑𝑘𝑗

∂𝑞𝑖
)𝑞�̇�𝑞�̇� +

∂𝑃

∂𝑞𝑖
=

Γ𝑖(3.7) 

(170) 

This in matrix form can be written as: 

𝐷�̈� + 𝐶�̇� + 𝐺 = Γ (171) 

Where 𝐷 is inertia matrix, 𝐶 is coriolis and centrifugal 

matrix and 𝐺 is gravity vector. The final set point 휃𝑓 is

calculated as: 

휃𝑓 = [

휃1𝑧
휃2𝑧
휃3𝑧
휃4𝑧

] =

[

0
0
0

−
𝜋

2]

(172) 
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The difference between the setpoint and the initial value 

of the joint angles that is denoted as 휃0 is represented as:

𝑒(휃1) = 휃1𝑧 − 휃1
𝑒(휃2) = 휃2𝑧 − 휃2
𝑒(휃3) = 휃3𝑧 − 휃3
𝑒(휃4) = 휃4𝑧 − 휃4

(173) 

Every system should ideally have an error signal that is 

set to zero so the initial position is:  

휃0 =

[

0
0
0
𝜋

2]

(174) 

In order to implement a PID controller on a system we 

need to give it the following equation:  

𝜏 = 𝐾𝑃𝑒 + 𝐾𝐷�̇� + 𝐾𝐼∫ 𝑒 (175) 

We have four different inputs therefore the equation for 

each is:  

𝜏1 = 𝐾𝑝𝑒(휃1) + 𝐾𝐷𝑒(휃1) + 𝐾1∫ 𝑒(휃1)

𝜏2 = 𝐾𝑃2𝑒(휃1) + 𝐾𝐷2𝑒(휃̇1) + 𝐾𝐼2∫ 𝑒(휃2)

𝜏3 = 𝐾𝑃3𝑒(휃3) + 𝐾𝐷3𝑒(휃3) + 𝐾𝐼3∫ 𝑒(휃3)

𝜏4 = 𝐾𝑃4𝑒(휃4) + 𝐾𝐷4𝑒(휃̇4) + 𝐾14∫ 𝑒(휃4)

(176) 

In order to solve on Matlab and to understand the 

programming, the following equations as system 

equations can be used : 

𝑥1 = 휃1𝑧 − 휃1
�̇�2 = 휃2𝑧 − 휃2
�̇�3 = 휃3𝑧 − 휃3
�̇�4 = 휃4𝑧 − 휃4

(177) 

The characteristics of the two controllers were tweaked to 

have the optimal performance by trial and error. The 

following were found to be the optimal settings for the 

parameters: 

KpID1 = [
𝐾𝑃1
𝐾𝐷1
𝐾𝐼1

] = [
15
3
2
]

KPID2 = [

𝐾𝑃2
𝐾𝐷2
𝐾𝐼2

] = [
15
4
2
]

KPID3 = [

𝐾𝑃3
𝐾𝐷3
𝐾𝐼3

] = [
20
5
4
]

KPID4 = [

𝐾𝑃4
𝐾𝐷4
𝐾𝐼4

] = [
10
5
5
]

(178) 

Observing the structure of the preceding ODE with 

control, we can see that (roughly): KP is related to direct

error and evolution speed.The pace of interaction with 

changes in states is connected to KD.Overall error

cancellation is connected to KI

2.9 Snake Robot 

Snake Robot is a new type of robot known as the 

Serpentine Robot. As the name suggests, these robots have 

multiple drive joints and, therefore, multiple degrees of 

freedom. This allows them to take advantage of Infinite's 

vast configuration, adapt, touch, and come close to a large 

capacity in their workspace [36].The omni-tread snake 

robot [37], Caleb III, presented in [38] designed to 

locomote on narrow space and rough terrain. Caleb III 

consists of three parts linked together by 2 DOF joints for 

pitch and yaw movements. The four sides of each segment 

have movable orbits that provide propulsion even when the 

robot is rolling. 2 D.O.F. connectors are actuated by 2 

servomotors that produce sufficient torque to lift a front or 

next segment overcome obstacles. 

Figure 7. Snake Robot Schematic 

Figure 10 shows the schematic of the snake where Caleb 

III has articulated steering as shown and the motion of the 

robot is analyzed by representative points in the front 

frame, middle frame and rear frame. Then the following 

equation is obtained: 

휃𝑓 − 휃𝑚 = 𝜙1
휃𝑚 − 휃𝑟 = 𝜙2

(179) 

Here 𝜙1, 𝜙2 is the steering angle. Eqs. 172 is rewritten as

follows by using the angular velocity 𝜔𝑓, 𝜔𝑚 and 𝜔𝑟 of

the front, middle and rear frame: 

𝜔𝑓 − 𝜔𝑚 =
𝑑𝜙1
𝑑𝑡

𝜔𝑚 −𝜔𝑟 =
𝑑𝜙2
𝑑𝑡

(181) 

The velocity vector of the front, middle and rear frame 

𝑓𝑣𝑓 , 
𝑚𝑣𝑚 and 𝑟𝑣𝑟 are expressed as follows based on the

assumption of no-slip in the lateral direction: 
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𝑓𝑣𝑓 = [𝑣𝑓 0]𝑟

𝑚𝑣𝑚 = [𝑣𝑚 0]𝑇

𝑟𝑣𝑟 = [𝑣𝑟 0]𝑇
(182) 

The velocity vector (𝑠𝑣𝑞) of the first joint 𝐶1 relative to

the front frame is expressed as follows: 

𝑣𝑣𝑐1 = [𝑣𝑓 −
𝐿

2
𝜔𝑓]

𝑇

(183) 

The velocity vector (𝑚𝑐1
) of the first joint 𝐶1 relative to

the middle frame is expressed as follows: 

𝑚𝑣𝑐1 = [𝑣𝑚
𝐿

2
𝜔𝑚]

𝑇

(184) 

The velocity vector (𝑚𝑣𝑐2) of the second joint 𝐶2 relative

to the middle frame is expressed as follows: 

𝑚𝑐2 = [𝑣𝑚 −
𝐿

2
𝜔𝑚]

𝑇

(185) 

The velocity vector (𝑟𝑐2) of the second joint 𝐶2 relative to

the rear frame is expressed as follows: 

𝑟𝑣𝑐2 = [𝑣𝑟
𝐿

2
𝜔𝑟]

𝑇

   (186)

Since 𝑣𝑣𝑞  and 𝑚𝑞 have to be the same, also 𝑚𝑣𝑐2  and 𝑟𝑣𝑎
have to be the same, the following equations are obtained: 

[
𝑣𝑓

−𝜔𝑓
𝐿

2

] = [
cos 𝜙1 sin 𝜙1
−sin𝜙1 cos 𝜙1

] [
𝑣𝑚

𝜔𝑚
𝐿

2

]

[
𝑣𝑚

−𝜔𝑚
𝐿

2

] = [
cos 𝜙2 sin 𝜙2
−sin 𝜙2 cos 𝜙2

] [
𝑣𝑟

𝜔𝑟
𝐿

2

]

(186) 

From Eqs. (187)  the next equations are obtained. 

ωf =
1

1+cosϕ1

dϕ1

dt
+
2

L
tan (

ϕ1

2
) vf

vf = vm −
L

2
tan (

ϕ1

2
)
dϕ1

dt

vm = vr −
L

2
tan (

ϕ2

2
)
dϕ2

dt

(187) 

These Equations indicate the kinematic restrain conditions 

of the Caleb III. The position (x, y) and orientation 휃𝑓 of

the front body at the base frame ∑𝑤   are expressed as

follows: 

𝑥𝑓(𝑡) = 𝑥𝑓0 + ∫  𝑣𝑓(𝑡)cos 휃𝑓(𝑡)𝑑𝑡

𝑦𝑓(𝑡) = 𝑦𝑓0 + ∫  𝑣𝑓(𝑡)sin 휃𝑓(𝑡)𝑑𝑡

휃𝑓(𝑡) = 휃𝑓0 + ∫ 𝑤𝑓(𝑡)𝑑𝑡

 (188) 

Here, 𝑥𝑓0𝑦𝑓0 and 휃𝑓0 are initial value. The other shape of

this robot type, known as the worm robot prototype, is 

presented in [39-41] as shown in figure 11. 

Figure 8. Snake Robot Schematic [25]. 

To assess the torque required in the Sub-Motion, it is 

necessary to solve the inverse dynamic problem as a 

function of the given nominal path. Therefore, the dynamic 

equations which govern each sub-motion must be 

available. The equations of motion in each sub-motion are 

established using a set of local coordinates. Therefore, we 

present the following local coordinate sets, which relate to 

the global coordinate set shown in Figure 11. 

{휃1, 휃2, 휃3}
𝑡: = {휃2

∗, 휃3
∗, 휃4

∗}𝑡 in sub-motion M1

{휃1, 휃2, 휃3, 휃4}
𝑡: = {휃1

∗, 휃2
∗, 휃3

∗, 휃4
∗}𝑡  in sub-motion M2

(182) 

Since the use of equations of motion is aimed at solving 

inverse dynamic problems rather than controlling, and 

interpretation is made based on the absolute angle of the 

connecting rod (measured in a positive direction with 

respect to the horizontal axis) and is calculated as follows: 

𝜑0 = 0, 𝜑𝑖 = 𝜑𝑖−1 + 휃𝑖 , 𝑖 = 1, … , 𝑛 (183) 

Also, the closed loop constraint in each sub-motion can be 

formulated as the below: 

∑  𝑛
𝑖=1 sin 𝜑𝑖 = 0 (189) 

Thus, the equations of motion governing in sub-motion 

𝑀1 has been explained as follows:
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𝑚𝑙2

6
(
14 9 𝑐12 3 𝑐13
9 𝑐12 8 3 𝑐23
3 𝑐13 3 𝑐23 2

)(
�̈�1
�̈�2
�̈�3

)

+
𝑚𝑙2

6
(
0 9 𝑠12 3𝑠13
−9 𝑠12 0 3 𝑠23
−3 𝑠13 −3 𝑠23 0

)(

�̇�1
2

�̇�2
2

�̇�3
2

)

+
𝑚𝑔𝑙

2
(
5cos 𝜑1
3cos𝜑2
cos 𝜑3

) = (
1 −1
0 1
0 0

) (
𝜏1
𝜏2
) + (

𝜆1
𝜆2
𝜆3

)

(190) 

where, 𝑚 and 𝑙 denote the mass and length of the links, 𝑔 

is gravity acceleration, and for the sake of abbreviation it's 

taken 𝑐𝑖𝑗 = cos(𝜑𝑖 − 𝜑𝑗) and 𝑠𝑖𝑗 = sin(𝜑𝑖 − 𝜑𝑗).

Similarly, in sub-motion M2 the equations of motion are

𝑚𝑙2(

20 15𝑐12 9 𝑐13 3 𝑐14
15 𝑐12 14 9 𝑐23 3 𝑐24
9 𝑐13 9 𝑐23 8 3 𝑐34
3 𝑐14 3 𝑐24 3 𝑐34 2

)(

�̈�1
�̈�2
�̈�3
�̈�4

)

+
𝑚𝑙2

6
(

0 15𝑠12 9𝑠13 3𝑠14
−15 𝑠12 0 9 𝑠23 3𝑠24
−9 𝑠13 −9 𝑠23 0 3𝑠34
−3𝑠14 −3 𝑠24 −3 𝑠34 0

)

(

�̇�1
2

�̇�2
2

�̇�3
2

�̇�4
2
)

+
𝑚𝑔𝑙

2

(

7𝑐𝑜𝑠 𝜑1 0 0

5 𝑐𝑜𝑠 𝜑2
3𝑐𝑜𝑠 𝜑3 0 1 −1
𝑐𝑜𝑠 𝜑4 0 0 1

0 0 0 )

(

𝜏1
𝜏2
𝜏3
) + (

𝜆2
𝜆3
𝜆4

)𝑅

(191)

Assuming a Coulomb friction model and using the 

Lagrange multiplier method, considering the stress 

equation, the normal component of the reaction, i.e. R, 

calculations can be performed from of the last row of the 

matrix form equation (191) given for the sub-motions M1 

and M2 respectively, where we need to be replaced by: 

λi = li(cos ϕi + μsgn(vtip ⋅ �̂�)sin ϕi) (192) 

where, 𝜇 is the kinetic friction coefficient, and 𝐯tip  is the 

velocity vector of the tip of the last link in each sub-

motion scuffing on the ground. 

3. Conclusions

In the recent past, Automated Guided Vehicles (AGVs) 

have been the subject of a research effort to improve 

vehicle intelligence in different applications. Path tracking 

has been seen as a major challenge in autonomous mobile 

systems. Currently, some researchers are studying this 

problem under uncertain conditions such as dynamic 

obstacles and some known environments. This paper 

reviewed the different mathematical models for various 

AGV and service robots. Comparing the different AGV 

structures shows that the robot platform is mostly 

categorized based on its wheels or motion mechanism. To 

summarize, the AGV can be categorized as Differential 

type with Four, Six and Caterpillar, Independent’s type, 

Ackerman, Legs and other structures as shown in figure 

(12). The following figure shows the types of service 

robots whose dynamic models are accumulated in this 

paper. 

Figure 9. Types of service robot surveyed 

based on the robots structures, the two Four- and six-wheel 

robots are typically used to carry higher payloads and / or 

to traverse rough terrain and they can offer good mobility. 

Compared to the four-wheel robot, the six-wheel robot has 

more redundancy in the event of wheel failure or loss. For 

the same tire size and vehicle mass, six wheels will exert 

less ground pressure than four wheels. However, six-

wheeled vehicles of the same size may be heavier. Six 

wheels require more complex steering, drivetrain and 

suspension arrangements than four. To apply the same 

tractive force, the friction between the six-wheel drive and 

the ground is less than that of the four-wheel drive [42]. 
The applications of robotic could be extended on various 

potential works such as environmental, energy, hybrid 

materials, biomaterials, etc [43-52]. 
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